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1. Introduction

In recent decades, the research community evidenced that plants affected by pathogens
and pests may display delayed development. This phenomenon can be partially explained
by the destruction of photosynthetic tissues, but this is not the only cause. Any defense
response, i.e., the production of induced chemical defenses, is costly in terms of plant
resources and energy investment, and a tradeoff may exist with other plant functions,
such as growth or reproduction, which could negatively impact plant fitness and biomass
production [1-5]. This activation of defense mechanisms at the expense of growth inhibition
is known as the “growth-immunity tradeoff” phenomenon. This is an adaptive strategy to
protect against pathogens and pests when necessary while conserving energy for growth in
less challenging conditions [3]. For a long time, it was thought that the “dilemma of plants
to grow or defend” was a simply model, where elevated defense is based on a shift from
metabolic resources to defense [6]. However, the costs derived from defenses are evident
even in environments where nutrients are unlimited and, theoretically, the plant could grow
and defend itself optimally [7]. This fact highlights that behind this phenomenon, a complex
and precise coordination of plant growth and metabolism through immune signaling
pathways may be in place. Multiple cellular mechanisms are in charge of this imaginary
balance, involving gene transcription, molecular signaling and metabolism [8-10].

Pest and pathogens cause significant yield and economic losses in agricultural systems.
Therefore, increasing resistance to biotic stresses is a desired strategy in crop breeding.
However, the costs associated with enhanced resistance may also have an impact on crop
production. Therefore, knowledge of how this balance is produced and regulated is of vital
importance when deciding on the best strategy to improve crop resistance [11-13].

2. Evidence of Growth-Immunity Tradeoff in Brassica Crops upon Pathogens’ Attack

Brassica crops have significant relevance for human nutrition, as they are important
contributors to daily food supplies worldwide [14]. Several studies have provided valuable
insights into the resource allocation mechanisms in Brassica crops, enabling them to strate-
gically prioritize either defense or growth to optimize survival and fitness in response to
the diverse demands derived from pathogens’ attachment [9,15-21].

Evidence of a growth-immunity tradeoff has been documented in Brassica napus.
Even in the absence of the pathogen, a Peronospora-parasitica-resistant variety of B. napus
exhibits a developmental delay compared to susceptible varieties. This occurs due to the
action of a single gene, which constitutively increases the defenses at the expense of plant
growth [9]. Growth-immunity tradeoffs are regulated at a transcriptional level in the
B. napus—Sclerotinia sclerotiorum pathosystem. The silencing of MYP43 in B. napus decreases
growth and increases resistance to S. sclerotiorum [19]. The transcription of WRKY33 is
activated in B. napus by an MAPK cascade after infection by S. sclerotiorum, enhancing
phytoalexins” accumulation early in the infection. During late-stage infection, the WRKY28
transcription is induced, suppressing the transcription of WRKY33 and activating growth
factors [17].
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Defensive hormones play a crucial regulatory role in balancing growth and immunity.
In the B. napus-Leptosphaeria maculans pathosystem, the early increase in salicylic acid
was correlated with the prioritizing of defenses versus growth. However, when salicylic
acid, jasmonic acid, and ethylene were activated in a balanced manner, both growth and
defense mechanisms were concurrently promoted [18]. Growth hormones are also involved
in the regulation of the growth—-immunity tradeoffs in Arabidopsis thaliana. Specifically,
jasmonic acid, a key regulator of basal and induced defence metabolite accumulation, such
as glucosinolates, and defensive structures, is influenced by auxins, cytokinins, gibberellins
and brassinosteroids [20].

Brassica oleracea is highly susceptible to black rot disease, triggered by the bacterium
Xanthomonas campestris pv. campestris [22]. We found that seedlings of several crops
of Brassica oleracea (cabbage, kale, cauliflower and broccoli) showed weight loss during
black rot disease [16,21] as a possible consequence of the allocation of resources towards
defense mechanisms rather than growth. This hypothesized growth-immunity tradeoff
is supported by the optimal defense hypothesis, since the effect was found in seedlings,
which are the most inclined to induce defenses [20]. Therefore, we decided to explore the
following question: Can X. campestris pv. campestris, the causative agent of black rot disease,
exert pressure on the Brassica crops to prioritize either growth or immunity?

3. Growth-Immunity Tradeoff in Brassica oleracea Infected by Xanthomonas campestris
pv. campestris: A New Vision

After exploring the cited tradeoff in two B. oleracea lines differing in their resistance
in depth, we found that the loss of plant’s biomass upon infection was related to the
increment in the expression of key genes of the synthesis the ethylene hormone (resistant
line) and salicylic acid hormone (susceptible line) [16]. The hormonal alterations favored
the activation of defenses, such as the synthesis of glucosinolates, phenolic compounds
and stomatal closure, at the expense of growth and development. After analyzing the
activation of these defenses, we concluded that the loss of biomass can be partially related
to a reallocation of resources through the defensive metabolism.

However, an additional mechanism could be involved in the biomass loss during
infection. Surprisingly, the loss of biomass was mainly due to the accumulation of starch
and the immobilization of free sugars [16]. These results expand the concept of tradeoff,
emphasizing the role of primary metabolites in the defensive strategies of plants against
pathogens. They are reallocated to synthetize defensive compounds but also play an active
role in plant defense by restricting the contribution of nutrients to the pathogen, despite
causing a slowdown in the growth of the plant itself.

4. Future Implications

The recent advances in the B. oleracea—X. campestris pv. campestris pathosystem expand
the current information about tradeoff mechanisms. Our results suggest that the decrement
in plant development is mainly due to the down-regulation of primary metabolism, and
the immobilization of sugars, employed as a defense strategy. This completes the current
vision of plant immunity. Any advances in this matter present exciting prospects for the
future to enhance resistance and combat crop diseases.
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