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Abstract: Central Asia is an important region for the growth of winter wheat, with a cultivation
area of more than 15 million hectares (ha). However, the average yield is approximately 3 tons
per ha, which is significantly lower than that in developed countries. Therefore, the development
of new competitive high-yielding cultivars, including those based on the application of modern
molecular genetics tools, is a key priority in winter wheat breeding projects. One of these tools is
the result of the identification of new genes and quantitative trait loci (QTLs) for agronomic traits
using diverse germplasm panels and genome-wide association studies (GWAS). In this work, a panel
of winter wheat accessions was assembled using 115 accessions from Central Asia and 162 samples
from other regions of the world. The GWAS, based on a two-year field evaluation of the collection in
Kazakhstan’s southern and southeastern regions and 10,481 polymorphic SNP (single-nucleotide
polymorphism) markers, allowed for the detection of 173 stable QTLs in nine studied agronomic
traits. A survey of the published scientific literature suggests that 23 of these 173 stable QTLs have
locations similar to those of previously reported QTLs, supporting the robustness of the research. In
addition, 221 and 162 accessions surpassed local standards for grain yield at Kazakhstan’s southern
and southeastern stations, respectively. Therefore, this study is an additional contribution to the
identification of new QTLs for key agronomic traits and valuable genetic lines in winter wheat
breeding projects.

Keywords: Triticum aestivum L.; genome-wide association studies; quantitative trait loci; agronomic
traits; winter wheat

1. Introduction

Bread wheat (Triticum aestivum L.) is the third most important cereal after maize and
rice, with a predicted global production of 794.6 million tons in 2023 [1]. However, due to
predicted population growth, climate change, and political instability, there is a worldwide
demand for greater wheat production [2], including in Central Asia. In the Central Asian
region, wheat is grown on more than 15 million hectares (ha) of land with an average
yield of 1.4 tones/ha [3], which is significantly lower than that in advanced agricultural
countries, such as in USA (3.0 tones/ha in 2021–2022) [4]. Consequently, to increase the
wheat production potential in this region, there is a necessity to generate new cultivars
with higher yield and yield stability and increased resistance/tolerance to biotic and abiotic
stresses [5].

Wheat is commonly divided into spring and winter types in relationship to their
sensitivity to low temperatures and the photoperiod [6], where the spring type does not
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require vernalization and can produce fertile plants when sown in spring [7]. Winter wheat
is sown in the autumn and differs from spring wheat in its expression of the vernalization
response, which is controlled by Vrn genes [8]. In Central Asia, the yield of winter wheat
(3.1 t/ha in 2020) is nearly three times higher than that of spring wheat (1.1 t/ha in 2020),
which is the type predominantly grown in Kazakhstan [3]. Still, there are potentials to
increase the yield of winter wheat up to the level achieved in developed countries. There-
fore, it is important to promote winter wheat production, improve agronomy technologies,
and enhance regional breeding activities, focusing on the generation of new competitive
cultivars with higher grain yields. Central Asia’s average winter wheat production is
significantly lower than that in developed countries. For instance, grain productivity in
the U.K. was 7.8 t/ha per year during 2021–2022 [4]. It is well known that grain yield is a
complex trait and is associated with main components such as the number of productive
spikes, spike length, number of spikelets per spike, number of kernels per spike, kernel
size, and thousand-kernel weight [9]. The performance of these quantitative components
is affected not only by environmental factors but also by genotype and is controlled by
multiple quantitative trait loci (QTLs) located in different parts of the genome [10,11].

The availability of powerful molecular tools, such as genome-wide association stud-
ies (GWAS), has dramatically improved the possibility of dissecting the genetic basis of
complex quantitative traits in crop plants, including cereals [12]. GWAS has higher resolv-
ing power in comparison to bi-parental linkage mapping and is currently considered the
method of choice to better understand the genetics of resistance/tolerance to biotic and
abiotic stresses and yield-related traits [13–18]. Recently, GWAS of winter wheat have been
actively employed to study grain quality [19,20], drought tolerance [21,22], pre-harvest
sprouting resistance [23], disease resistance [24,25], and yield and its components [26–30].
As seen from these studies, the success of each GWAS relies on the availability of diverse
germplasm. Therefore, to evaluate untapped local germplasm, the CAWBIN (Central
Asian Wheat Breeding Initiative) was recently launched as a collective effort of Central
Asian and British scientists in Kazakhstan to establish a bank of genotypes of winter wheat
collected from Central Asia [3]. The CAWBIN winter wheat collection consists of 277 acces-
sions, including 115 samples from Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, and
Uzbekistan) [3]. Another issue is the consideration of genotype–environment interaction
patterns, as a survey of the published GWAS articles for cereal crops, including winter
wheat types [4,31], suggests a strong influence of the growth environment on the detection
of QTLs for yield components. As environmental conditions may greatly impact the timing
of the heading date and seed maturation, they may also significantly alter yield compo-
nents [32,33]. The particular purpose of this GWAS was to evaluate the CAWBIN winter
collection harvested in the southern and southeastern regions of Kazakhstan to identify
QTLs of important agronomic traits in this previously poorly studied region. Detection of
efficient QTLs for key agronomic traits will be an essential step in breeding activities based
on molecular-assisted selection.

2. Materials and Methods
2.1. Plant Material and Field Experiments

The collection used in this study consisted of 277 winter wheat genotypes from
21 countries. The places of origin of this collection were Europe (84 accessions), Central
Asia (115), Afghanistan (32), Russia (25), Turkey (14), the USA (3), Australia (3), and Iran (1).
The Central Asian collection consisted of 115 samples and included those from Kazakhstan
(52), Kyrgyzstan (27), Uzbekistan (27), and Tajikistan (9) (Table S1). All genotypes were
tested in two regions of Kazakhstan at the Kazakh Research Institute of Agriculture and
Plant Growing (KRIAPGG, Almaty region, Southeast Kazakhstan) and Krasnovodopad
Breeding Station (KBS, Turkestan region, South Kazakhstan) during the 2020–2021 and
2021–2022 growing seasons. The genotypes were planted in both locations with two
replications in randomized plots. The distance between rows was 15 cm, with a 5 cm
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distance between plants [34]. The climate conditions recorded during the trials are shown
in Table 1.

Table 1. Location, environment, and weather data for the two study regions in Kazakhstan.

Site/Region KRIAPG (Almaty Region) KBS (Turkestan Region)

Latitude/Longitude 43◦21′/76◦53′ 41◦46′/69◦45′

Soil type Light chestnut (humus 2.0–2.5%) Light serozem (humus 1.1%)

Conditions Rainfed Rainfed

Year 2020–2021 2021–2022 2020–2021 2021–2022

Annual rainfall, mm 464.7 568.9 279.4 421.0

Mean temperature, ◦C 10.5 12.2 17.5 11.7

Max temperature, ◦C 26.9 26.5 31.6 23.3

Min temperature, ◦C 1.8 1.1 2.7 4.0

2.2. Phenotyping of the Collection

The collection was analyzed for two groups of traits: plant adaptation-related traits
and yield components. The plant adaptation traits included the heading date (HD, days),
seed maturation days (SMD, days), plant height (PH, cm), and peduncle length (PL, cm).
The yield components included the spike length (SL, cm), number of productive spikes
(NPS, pcs), number of kernels per spike (NKS, pcs), thousand-kernel weight (TKW, g), and
yield per square meter (YM2, g/m2). A phenological evaluation of these traits was carried
out according to the protocol of the “ADAPTAWHEAT” project [35].

2.3. Genotyping of the Collection

A panel of 188 winter wheat accessions from Central Asia, Afghanistan, Russia, Turkey,
and Ukraine was genotyped using the Axiom Wheat Breeder’s Genotyping Array with
35 K single-nucleotide polymorphism (SNPs) [36]. A panel consisting of 89 accessions from
Europe, the USA, and Australia was genotyped previously using the same SNP array [37].
The monomorphic markers with a minor allele frequency (MAF) of <5% and >15% missing
data were removed from the analysis. In total, 10,481 polymorphic SNP markers were used
in the GWAS analysis.

2.4. Analysis of Linkage Disequilibrium and Population Structure

The population structure of the winter wheat panel was assessed using a model-based
clustering method (admixture models with correlated allele frequencies) in STRUCTURE
v.2.3.4 software (USA, Pritchard Lab, Stanford University) [38]. The population structure
was determined by inferring K ranging from 2 to 10 using 100,000 burn-in lengths and
100,000 Markov chain Monte Carlo (MCMC) iterations, with five replications for each
K. The optimal number of clusters (K) was chosen based on ∆K as described by using a
STRUCTURE harvester v.0.6.94 (USA, University of California) [39]. The obtained results
were then converted into a population structure matrix (Q). The linkage disequilibrium
(LD) in the studied collection was separately calculated for each hexaploid common wheat
genome (genome A, genome B, and genome D), in addition to the average LD for the three
genomes, using Java-based TASSEL v.5.2.90 software (USA, Cornell University) [40]. The
R statistical platform was used to build a plot between the pairwise R2 and the genetic
distance (LD decay plot) [41]. The analysis of variance (ANOVA) and correlation analysis
were performed using Rstudio v. 2023.03.1software (USA, Boston) [41]. The broad-sense
heritability index (hb

2), describing the proportion of phenotypic variation due to genetic
factors, was calculated based on the ANOVA results as follows:

h2
b =

SSg

SSt
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where SSg is the sum of squares for the genotype, and SSt is the total sum of squares [42].

2.5. Genome-Wide Association Study

The GWAS was performed using the R package Genome Association and Prediction
Integrated Tool (GAPIT) v.3 [43]. The Mixed Linear Multiple Loci Model (MLMM) with
the application of K and Q matrices was applied for the identification of QTLs for the
studied traits in the two regions. The evaluations of nine agronomic traits generated in
field trials over two years in the two locations were used as phenotypic data. The criterion
p < 1 × 10−3 was used as a significance threshold for the identified QTLs. The Bonferroni
correction index was applied to determine the statistical significance threshold in GWAS.
The distribution lines in each quantile–quantile (Q-Q) plot were analyzed to confirm the
correction due to the K and Q matrices. In the case of several significant QTLs positioned
close to each other, the SNP with the lowest p-value was chosen. Manhattan plots and SNP
density plots were generated using the rMVP package [44].

2.6. Candidate Gene Analysis

To identify the protein-coding genes that overlapped the identified significant QTLs,
the sequence for each marker was used in the BLAST tool of Ensembl Plants [45] for
comparison against the reference genome of T. aestivum.

3. Results
3.1. Descriptive Statistics of Phenotypic Traits

The field performance of the 277 winter wheat accessions was analyzed at KRIAPG
and KBS during the 2020–2021 and 2021–2022 growing seasons (Table S2). We recorded the
phenotypic variability of nine traits between the two regions, including the average SMD,
which ranged from 35.35 ± 0.18 days at KRIAPG to 39.46 ± 0.31 days at KBS. The average
PH ranged from 70.58 ± 0.81 cm at KRIAPG to 41.95 ± 0.45 cm at KBS (Table 2), which
showed that the mean PH was 1.7 times is taller at the southeastern station. Most of the
average yield components (SL, NKS, TKW, and YM2) showed a higher value at KRIAPG;
on the contrary, the average NPS was higher at KBS.

The assessment of HD and SMD showed that in the Almaty region, the mean perfor-
mance of the collection was shorter than that of the local standard “Zhetisu” (Table 2). In
contrast, in the Turkestan region, the average HD was ten days longer and the average
SMD was three days longer than those of the local standard “Pamyat 47”. The evaluation
of the mean YM2 revealed that the yield at the southeastern station at 4.8 times higher
than that at the southern station. In total, 162 and 221 accessions demonstrated higher
values in comparison to local standards at KRIAPG and KBS, respectively. The ANOVA
showed that the region and year of the trials (Table S3) highly significantly affected all
nine studied phenotypic traits. In addition, PH and YM2 were affected by three factors
(genotype, region, and year). The index of heritability (hb

2) was analyzed for all traits
under all conditions (Table S3), and the highest hb

2 value was recorded for NKS (0.44) and
TKW (0.36). Pearson’s correlation of the average phenotypic values in the two regions
indicated that YM2 was positively correlated with NPS, NKS, and TKW (Figure 1). The
results of correlation analysis at KBS showed a positive correlation between HD and SMD
and between SMD and NKS, but at KRIAPG, there was a negative correlation between these
traits (Figure 1). Notably, a shorter SMD was favorable for higher YM2 at KRIAPG, but it
was not a significant factor of yield at KBS. At KRIAPG, taller PH positively correlated with
YM2, and longer PL positively correlated with TKW (Figure 1A). At KBS, HD negatively
correlated with PH, PL, and TKW (Figure 1B).
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Table 2. Phenotypic variability of the studied traits of 277 accessions of winter wheat in the two
regions.

Traits Site Check Cultivar Min Max Mean ± SE

HD, days
KRIAPG 102.75 ± 31.75 44.00 143.00 102.37 ± 1.29

KBS 92.00 ± 12.00 82.50 115.00 102.98 ± 0.38

SMD, days
KRIAPG 36.50 ± 5.50 24.50 44.00 35.35 ± 0.18

KBS 36.00 ± 6.50 26.50 52.00 39.46 ± 0.31

PH, cm
KRIAPG 71.92 ± 20.75 35.00 132.00 70.58 ± 0.81

KBS 42.00 ± 0.00 26.40 58.25 41.95 ± 0.45

PL, cm
KRIAPG 30.83 ± 8.83 13.42 61.33 25.47 ± 0.41

KBS 16.75 ± 0.25 6.90 31.55 17.38 ± 0.30

SL, cm
KRIAPG 8.52 ± 0.19 3.17 12.65 9.52 ± 0.08

KBS 7.20 ± 1.00 5.40 28.85 8.29 ± 0.14

NPS, pcs
KRIAPG 3.17 ± 0.83 1.33 6.17 3.27 ± 0.06

KBS 2.50 ± 0.50 3.00 8.00 4.57 ± 0.06

NKS, pcs
KRIAPG 50.49 ± 4.86 23.17 70.88 47.04 ± 0.48

KBS 18.50 ± 1.50 25.00 70.00 42.60 ± 0.50

TKW, g
KRIAPG 40.66 ± 6.61 19.85 58.80 35.25 ± 0.43

KBS 30.27 ± 4.15 13.49 33.42 20.44 ± 0.29

YM2, g/m2
KRIAPG 354.80 ± 176.09 22.95 997.28 393.48 ± 7.88

KBS 36.72 ± 1.85 15.05 266.98 81.33 ± 2.16
Note: min—minimum value, max—maximum value, mean—mean value, SE—standard error.
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3.2. SNP Genotyping and Population Structure in the Studied Winter Wheat Collection

The GWAS relied on the use of 10,481 informative SNP markers, of which 37.78%
mapped to the A genome, 48% mapped to the B genome, and 14.22% mapped to the D
genome (Figure 2). The minimum number of SNPs (79) was assigned to chromosome 4D,
while the maximum number of SNPs was assigned to chromosome 1B (1004) (Figure 2).
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Chromosome 2D contained the largest number of markers, at 1929 SNP markers, having
a subgenome A of 711 SNPs, subgenome B of 848 SNPs, and subgenome D of 370 SNPs.
Chromosome 4 had the smallest number, with only 890 markers, with a subgenome A of
382 SNPs, subgenome B of 429 SNPs, and subgenome D of 79 SNPs (Figure 2A). The smallest
size was found in chromosome 6D (461 Mb), and the longest was found in chromosome 3B
(829 Mb). The marker density ranged from 263 SNP/Mb to 450 SNP/Mb, with an average
of 365 SNP/Mb. The highest average marker density (450 SNP/Mb) was recorded for
chromosome 5B, followed by 442 SNP/Mb for chromosomes 3A and 4A, and the lowest
(263 SNP/Mb) was found in chromosome 1D, followed by 281 SNP/Mb and 283 SNP/Mb
for chromosomes 7D and 6D (Figure 2B).
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The results of the STRUCTURE and STRUCTURE Harvester analyses suggested that
K = 4 was the optimal number of clusters for studying 277 accessions (Figure 3A,B). It can be
seen from the STRUCTURE results that most samples from Central Asia were grouped into
cluster 1 and cluster 3 (Figure 3B,C). The samples from Kazakhstan (45) and Uzbekistan (14)
were predominantly in cluster 1 and cluster 3. Furthermore, all samples from Afghanistan
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(31) were grouped into cluster 3, while most of the samples from cluster 1 were from the
Russian Federation (24) (Figure 3C). The samples from Europe, Australia, and the USA
were grouped into cluster 2 and cluster 4.

Agronomy 2023, 13, x FOR PEER REVIEW  7  of  16 
 

 

be seen from the STRUCTURE results that most samples from Central Asia were grouped 

into  cluster  1  and  cluster  3  (Figure  3B,C).  The  samples  from  Kazakhstan  (45)  and 

Uzbekistan (14) were predominantly in cluster 1 and cluster 3. Furthermore, all samples 

from Afghanistan (31) were grouped into cluster 3, while most of the samples from cluster 

1 were from the Russian Federation (24) (Figure 3C). The samples from Europe, Australia, 

and the USA were grouped into cluster 2 and cluster 4.   

 

Figure 3. Population structure of  the winter wheat collection based on 10,481 SNP markers:  (A) 

STRUCTURE Harvester output  for delta K;  (B) separation of samples  into clusters based on  the 

STRUCTURE  package  at  K  =  4;  (C)  frequency  of  populations  in  clusters  of  the winter wheat 

population at K = 4. The colors in the boxes represent the clusters identified in (B). 

3.3. Identification of Marker–Trait Associations for Agronomic Traits 

The GWAS  in  the  two  studied  regions  for  the nine  agronomic  traits  allowed  the 

identification of 951 QTLs (Table S4), including 173 stable QTLs that were significant for 

two or more conditions (Tables 3 and S5). In all, 59 and 95 stable QTLs were identified at 

KRIAPG and KBS, respectively. The comparative assessment of the GWAS suggested that 

19 QTLs were significant in both regions (Tables 3 and S5). The highest number of stable 

QTLs was localized on chromosomes of genome B (83), followed by genomes A (60) and 

D (30). Among the nine traits, the number of identified QTLs ranged from 1 QTL for TKW 

to 68 QTLs for PH (Table 3). The total number of stable QTLs identified for the group of 

plant-adaptation-related traits was 121 QTLs (Table 3), and for the yield components, it 

was 52 QTLs (Table 3). 

Figure 3. Population structure of the winter wheat collection based on 10,481 SNP markers:
(A) STRUCTURE Harvester output for delta K; (B) separation of samples into clusters based on
the STRUCTURE package at K = 4; (C) frequency of populations in clusters of the winter wheat
population at K = 4. The colors in the boxes represent the clusters identified in (B).

3.3. Identification of Marker–Trait Associations for Agronomic Traits

The GWAS in the two studied regions for the nine agronomic traits allowed the
identification of 951 QTLs (Table S4), including 173 stable QTLs that were significant for
two or more conditions (Table 3 and Table S5). In all, 59 and 95 stable QTLs were identified
at KRIAPG and KBS, respectively. The comparative assessment of the GWAS suggested
that 19 QTLs were significant in both regions (Table 3 and Table S5). The highest number of
stable QTLs was localized on chromosomes of genome B (83), followed by genomes A (60)
and D (30). Among the nine traits, the number of identified QTLs ranged from 1 QTL for
TKW to 68 QTLs for PH (Table 3). The total number of stable QTLs identified for the group
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of plant-adaptation-related traits was 121 QTLs (Table 3), and for the yield components, it
was 52 QTLs (Table 3).

Table 3. Summary of identified marker–trait associations in the winter wheat collection based on
field performance in the two locations.

Traits Total QTLs Stable QTLs
KRIAPG
(Almaty
Region)

KBS
(Shymkent

Region)

Both
Regions

HD, days 187 37 22 8 7

SMD, days 96 8 3 5 NA

PH, cm 171 68 11 52 5

PL, cm 105 8 3 4 1

SL, cm 76 9 3 6 NA

NPS, pcs 52 4 1 3 NA

NKS, pcs 123 25 10 12 3

TKW, g 55 1 1 NA NA

YM2, g/m2 86 13 5 4 4

Total 951 173 59 94 19
Note: NA—not available.

The GWAS for four traits related to plant adaption allowed the detection of 37 sig-
nificant QTLs for HD, 8 for SMD and PL, and 68 for PH. However, the application of the
Bonferroni threshold suggested that only 18 QTLs can be confidently accepted, comprising
11 QTLs for HD, 1 QTL for SMD, 4 QTLs for PH, and 2 QTLs for PL (Table 4).

Table 4. List of QTLs after application of the Bonferroni test.

Traits SNP Chromosome Physical
Position (Mb) p-Value Effect PVE (%) Conditions

HD AX-95186349 1A 102,166,440 4.19 × 10−6 −3.59 6.00 AL2021

HD AX-94958010 1B 548,536,119 9.61 × 10−8 10.98 12.88
AL2021, 2022,
average; SH 2021,
average

HD AX-94687276 2D 5,326,043 7.24 × 10−11 −19.50 39.08 AL2022, average;

HD AX-94440472 3B 507,287,720 5.08 × 10−7 5.12 64.32 AL2021, SH2022

HD AX-94567204 3D 496,732,990 4.15 × 10−9 −30.26 95.13 SH2022

HD AX-94720837 5A 416,225,444 2.27 × 10−7 −3.67 29.92 AL2021

HD AX-94999352 5A 563,498,900 7.60 × 10−8 −8.64 3.24 AL2022

HD AX-94464997 5A 591,156,115 1.08 × 10−8 9.18 9.47 AL2021,2022,
average

HD AX-94675648 6B 704,187,628 5.18 × 10−7 −10.74 5.39 AL2022

HD AX-94994788 7A 446,323,817 5.18 × 10−7 −5.80 40.95 AL2021, average

HD AX-95074391 7A 468,461,397 5.39 × 10−9 17.34 18.86 AL2022, average

PH AX-94442698 1B 457,863,915 4.61 × 10−6 2.88 15.74 AL2021, SH2021

PH AX-94384624 2D 10,323,263 3.72 × 10−8 −13.42 35.21 AL2021, 2022,
average
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Table 4. Cont.

Traits SNP Chromosome Physical
Position (Mb) p-Value Effect PVE (%) Conditions

PH AX-94711247 3A 687,675,656 2.43 × 10−6 5.56 48.06 SH2022, average

PH AX-94517571 5A 585,434,191 2.44 × 10−6 −4.61 10.65 AL2021, average

PL AX-94599879 2D 32,190,116 2.72 × 10−7 4.13 43.37 AL2022, average

PL AX-95633357 5D 46,980,690 3.77 × 10−12 −31.38 46.21 SH2021

NKS AX-94594842 2A 36,131,037 4.67 × 10−7 −3.34 18.44 SH2022, average

Note: PVE—phenotypic variation, AL2021,2022, average—KRIAPG (Almaty region), SH2021, 2022, average—KBS
(Turkestan region).

In total, 37 stable QTLs were identified for HD, with 22 and 8 of these QTLs detected
at KRIAPG and KBS, respectively. Seven of the thirty-seven QTLs for HD were detected in
both regions. The most significant p-value was 7.24 × 10−11, which was for chromosome
2D at KRIAPG (Table 4). The effect of each individual QTL varied significantly, with
the highest value detected for QHD.ta.w.ipbb-3D (−30 days), explained by the highest
phenotypic variation (PVE) of 95.3%. QHD.ta.w.ipbb-1B.4 (AX-94958010) was also detected
in the two regions and had a p-value from 9.73 × 10−4 to 9.61 × 10−8, with phenotypic
variation of 12.8%. The second QHD.ta.w.ipbb-3B.3 (AX-94440472) was detected in the two
regions with a PVE of 64.32% (Table 4).

The highest QTL for PH was detected on chromosome 2D (Figure 4), and it was
significant in the two-year trials at KRIAPG, with a PVE of 35.2% (Table 4). The QTL
AX-94442698 was detected in the two regions and was mapped to chromosome 1B with a
PVE of 12.7%. The highest PVE identified for PH, equal to 48.1%, was on chromosome 1B
and was detected in both regions.

The details of the identified QTLs are presented in Table S5 and illustrated in Manhat-
tan plots and Q–Q plots in Figure 4A,B.

In the GWAS of the yield components, the highest number of QTLs was detected
for NKS (25). However, only one QTL on chromosome 2A (AX-94594842) passed the
Bonferroni threshold. In the assessment of the QTLs for NKS, three QTLs (QNKS.ta.w.ipbb-
2A.3, QNKS.ta.w.ipbb-5A.5, QNKS.ta.w.ipbb-5B) were detected in the two regions. In total,
13 stable QTLs were identified for YM2, including four QTLs on chromosomes 1B (3)
and 3B (1) that were significant at both KRIAPG and KBS. The highest QTL effect value
was detected in QYM2.ta.w.ipbb-7B (104.8 g/m2). Despite the fact that none of those four
associations for YM2 passed the Bonferroni threshold, these signals could still be important
for consideration in breeding projects. The significant SNPs associated with nine traits
were used to identify the putative candidate genes using the annotated wheat reference
sequence Chinese Spring and are presented in Table S5. The results showed that out of
the 173 identified stable QTLs, the significant SNPs in 107 QTLs were in genic positions
(Table S5). The most significant SNPs were associated with controlling plant growth, plant
development, and abiotic/biotic stress tolerance.
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4. Discussion

This evaluation of field data from winter wheat collections indicated a wide range of
phenotypic variations in the southern and southeastern regions of the country. A compara-
tive analysis of the meteorological data and soil parameter conditions (Table 1) suggested
that higher precipitation and soil quality significantly contributed to the increased produc-
tivity at KRIAPG (Table 2). The assessment of the studied traits revealed that the largest
differences between the two regions were in PH and YM2 (Table 2). Pearson’s correlation
analysis showed a sharp difference between the two regions that affected TKW. For instance,
at the KRIAPG site, the TKW did not correlate with HD and positively correlated with
SMD, while at the KBS site, the TKW negatively correlated with HD and SMD (Figure 1).
Similarly, NKS negatively correlated with SMD at KRIAPG and positively correlated with
SMD at the KBS site (Figure 1). Expectedly, as detailed in many published reports [46–48],
NKS negatively correlated with TKW at both locations. TKW was more strongly corre-
lated with YM2 at KRIAPG (0.33) in comparison to KBS (0.17). The ANOVA among yield
components identified highly significant effect of the genotype at p < 0.0001. The genetic
variation among genotypes is very important for breeders to select the high-yielding acces-
sions for local breeding programs. The genotype × environment interactions (GEI) were
significant at p < 0.0001 for PH and YM2. The significant GEI suggests that genotypes react
differently on changes of the environment [5]. The analysis of the average YM2 revealed
162 and 221accessions that exceeded the YM2 of the local comparison cultivars at KRIAPG
and KBS, respectively. Four accessions, CAWBIN-070, CAWBIN-074, CAWBIN-135, and
CAWBIN-137, demonstrated adaptability to both regions and showed higher yield than
the local comparison cultivars under all studied conditions (Table S2); these can be used for
further winter wheat breeding projects in Kazakhstan.

The GWAS analyses of the winter wheat collection in the two regions led to the
identification of 173 stable QTLs in nine agronomic traits in two or more environments
(Table S5). However, the Bonferroni test suggested that only 19 of these QTLs can be
confidently accepted for HD, PH, PL, and NKS. Still, minor QTL hypothetically may
play an important role in the expression of complex traits and should be considered in
regional breeding projects [19,49], including in Kazakhstan. Notably, the largest number of
associations was identified for HD, PH, and NKS, which shows a wide range of variation
of these traits in the two regions. The literature survey suggested that 23 of the 173 QTLs
identified in our study had also been detected in previous QTL mapping studies and
GWAS for HD, SMD, PH, SL, NKS, and YM2 [18,28,50–57] (Table S6). The majority of
these matches were found for PH (nine QTLs), followed by HD (six QTLs) and NKS (four
QTLs) (Table S6). Four associations matched the results from studies of the UK reference
mapping population Avalon × Cadenza, where QTL associations with HD, PH, and YM2
were identified in the northern, central, and southern regions of Kazakhstan [55]. Another
four associations were identical to the genetic positions of QTLs identified in analyses of
eight traits using 94 recombinant inbred lines of the mapping population of Pamyati Azieva
× Paragon, which were tested in the northern and southern regions of Kazakhstan [56].
Three QTLs (QHD.ta.w.ipbb-2A.2, QHD.ta.w.ipbb-5B.1, and QSMD.ta.w.ipbb-3B) had identical
genetic positions to QTLs identified in the GWAS of yield components in a spring wheat
collection harvested under two water regimes in northern Kazakhstan [18] (Table S6).
Further, QPH.ta.w.ipbb-5B.2 had an identical to QTLs identified in the analyses of seven
traits using a winter wheat doubled haploid population under different soil moisture
conditions [28]. Two associations matched the results from the GWAS studies of 290 lines
of the Wheat Association Mapping Initiative population in terms of PH and SL, which were
identified under drought and terminal heat stress tolerance [57].

The GWAS analysis of the winter wheat collection allowed the identification of 150 pu-
tative novel, stable QTLs. The most significant numbers of presumably novel QTLs were
identified in PH (57) and HD (31), including three QTLs that were revealed in both regions
(Table S5). In addition, two of these SNPs (AX-94450249 and AX-94711247) significantly af-
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fected both HD and PH (Table 4). In the southern region, it was revealed that QPH.ta.w.ipbb-
7B.6 and QPL.ta.w.ipbb-7B shared locations with QTLs relating to PH and PL, respectively
(Table S5). Forty-six presumably novel QTLs were identified for yield-related traits, which
included eight for SL, four for NPS, twenty-one for NKS, one for TKW, and twelve for YM2
(Table S5).

The significant SNPs in the detected QTLs were analyzed to identify putative can-
didate genes using the annotated Chinese Spring reference genome [58] in the Wheat
Ensembl database [45]. The results showed that out of the 173 identified stable QTLs,
107 were located in genic positions (Table S5). An analysis of these 107 genes suggested
that most of them were associated with controlling plant growth, plant development,
and abiotic/biotic stress tolerance. For instance, the evaluation suggests that the genes
for carboxypeptidase located on chromosome 2A (TraesCS2A02G133700) and on chro-
mosome 4A (TraesCS4A02G035200) are involved in the regulation of plant growth, de-
velopment, and pathogen defense [59]. It was determined that AX-94614447 associated
with PH and AX-94594842 associated with NKS both encode Domain of unknown func-
tion (DUF) domain-containing proteins, which play a role in plant development and
fitness in rice [60]. TraesCS3B02G041700 also appears to encode the α-glucosidase pro-
tein, which controls the plant polysaccharide composition at the stage of plant maturation
in rice and potato [61]. TraesCS7A02G322800 (TOM1-like protein 5) genes were shown
to be important factors in the uptake of soil iron and its translocation and were signif-
icantly associated with HD [62]. TOM1 was first identified in rice and barley. The list
of genes related to stress resistance/tolerance genes includes TraesCS6B02G411900 (pro-
tein kinase superfamily protein) [63]; TraesCS1A02G105700 (YTH domain-containing fam-
ily protein) [64]; TraesCS7A02G403900 (basic helix–loop–helix transcription factors) [65];
TraesCS5B02G057800 (glutathione S-transferase zeta class) for drought tolerance,
TraesCS1B02G323500 (zinc finger protein) [66]; TraesCS3B02G563200 (protein detoxifica-
tion) for heavy metal stress tolerance [67]; and TraesCS1D02G439800 (trimethylguanosine
synthase) for chilling tolerance [68]. Finally, TraesCS2A02G253900 on chromosome 2A is
a transcription factor that regulates the photoperiodic control of the flowering time and
is associated with PH [69]. The matching of the associations identified in this study with
previously published reports confirms the robustness of the results in this work. Although
the identified QTLs should be further validated in subsequent experiments, there is a
promising assumption that most presumably novel associations have true significance for
plant adaptation-related traits and yield components. Therefore, the identified SNPs in
the detected QTLs may have great value for successful application in the marker-assisted
breeding of winter wheat.

5. Conclusions

A collection of winter wheat from Central Asia was compiled, including accessions
from Kazakhstan (52), Kyrgyzstan (27), Tajikistan (9), and Uzbekistan (27). The samples
from Central Asia, along with accessions from other parts of the world, were united to form
the CAWBIN winter wheat collection, consisting of 277 genotypes. The CAWBIN winter
wheat collection was tested at stations in Kazakhstan’s southern and southeastern regions
during the 2021–2022 seasons and comparatively analyzed by examining nine agronomic
traits. It was revealed that 162 and 221 accessions surpassed the local standards for YM2 at
KRIAPG (Southeast Kazakhstan) and KBS (South Kazakhstan), respectively. Therefore, the
collection has tremendous potential for the improvement of winter wheat productivity in
Kazakhstan. The CAWBIN collection was genotyped using the Axiom Wheat Breeder’s
Genotyping Array with 35 K SNPs, and 10,481 polymorphic SNPs were further utilized
for a GWAS of the agronomic traits in winter wheat. The results of the GWAS based on
the GAPIT package and MLMM method allowed the detection of 173 stable QTLs in the
nine studied agronomic traits. A survey of the published scientific literature suggested
that 23 of the 173 stable QTLs have locations similar to those of previously reported QTLs.
Therefore, the remaining revealed QTLs are presumably novel loci for the studied nine
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traits and can provide a wealth of genetic information for marker-assisted breeding in
winter wheat projects.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy13082054/s1, Table S1: List of common winter
wheat cultivars used in the current study. Table S2. The raw field data at Kazakh Research Institute of
Agriculture and Plant Industry (KRIAPG, Almaty region, Southeast Kazakhstan) and Krasnovodopad
Breeding Station (KBS, Turkestan region, South Kazakhstan). Table S3. Three-way analysis of variance
(ANOVA) for phenotypic traits of the winter wheat. Table S4. GWAS results for nine studied traits
identified using 277 winter wheat accessions in condition Kazakh Research Institute of Agriculture
and Plant Industry (KRIAPG, Almaty region, Southeast Kazakhstan) and Krasnovodopad Breeding
Station (KBS, Turkestan region, South Kazakhstan) in 2020–2022. Table S5. The list of stable QTLs and
genes for nine studied traits identified using 277 winter wheat accessions in condition KRIAPG and
KBS (2020–2022). Table S6. List of identified QTL based on GWAS analysis of winter wheat collection
in comparison to the associations revealed in previously published reports.
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