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Abstract: Grape maturity estimation is vital in precise agriculture as it enables informed decision
making for disease control, harvest timing, grape quality, and quantity assurance. Despite its
importance, there are few large publicly available datasets that can be used to train accurate and
robust grape segmentation and maturity estimation algorithms. To this end, this work proposes the
CERTH grape dataset, a new sizeable dataset that is designed explicitly for evaluating deep learning
algorithms in grape segmentation and maturity estimation. The proposed dataset is one of the largest
currently available grape datasets in the literature, consisting of around 2500 images and almost
10 k grape bunches, annotated with masks and maturity levels. The images in the dataset were
captured under various illumination conditions and viewing angles and with significant occlusions
between grape bunches and leaves, making it a valuable resource for the research community.
Thorough experiments were conducted using a plethora of general object detection methods to
provide a baseline for the future development of accurate and robust grape segmentation and
maturity estimation algorithms that can significantly advance research in the field of viticulture.
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1. Introduction

In recent years, due to climate change, it has become clear that the agricultural sector
faces significant challenges in providing food of high quality and sufficient quantity to
feed the entire population. In viticulture, specifically, the abrupt changes in temperature
and humidity have contributed to the high occurrence of various grape diseases, such as
downy mildew, powdery mildew, black rot, and botrytis, which can significantly affect
the production and quality of table grapes. As a result, it is imperative for the research
community to develop cost-effective methods that can automatically identify vulnerable-
to-disease grape clusters before they are infected. These methods should be capable of
accurately detecting grape clusters and estimating their maturity, as high sugar levels are
accompanied by an increased risk of disease development, so farmers can optimize their
harvests and enhance the overall quality of their produce. Through the robust estimation
of grape maturity levels, such methods can also inform farmers about the correct time to
harvest their grapes, contributing to the improvement of the quality and quantity of grapes
sent to consumers.

Fortunately, advances in machine learning and sensor technologies have provided
important tools for the development of automated methods for grape-bunch identification
and maturity estimation. Regarding grape-bunch identification, early works relied on
traditional machine learning techniques, such as support vector machines (SVMs) [1,2]
and artificial neural networks (ANNs) [3], as well as image-filtering approaches, such as
thresholding, mathematical morphology operators, and edge detection [4–7].
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Recently, the success of deep learning in various computer vision applications has also
led to its adoption for grape-bunch identification [8]. Powerful object detection models,
such as Fast R-CNN [9], Faster R-CNN [10], Mask R-CNN [11], and YOLO [12], have been
employed in the context of grape segmentation, achieving remarkable accuracy and real-
time performance. These models initially employ convolutional neural networks (CNNs)
to identify image regions as candidates for the location of the object of interest, and then
they classify the objects in the candidate image regions into specific classes.

In [13], the authors employed Mask R-CNN, YOLOv2 [14], and YOLOv3 [15] for
accurate grape segmentation and showed that Mask R-CNN achieved superior perfor-
mance compared to the other networks. In a similar fashion, the authors of [16] employed
YOLOv4 [17] to detect and quantify the grape yield in vineyards and found that YOLOv4
primarily detected large grape bunches due to occlusions of smaller grape bunches by
leaves. Through extensive experimental results, the authors of [18] showed that YOLOv5x
can achieve optimal performance in correctly detecting grape bunches, while the authors
of [19] concluded that YOLOv5s can meet the precision and real-time performance require-
ments for grape-cluster detection. Finally, the authors of [20] employed more advanced
YOLO network architectures (i.e., YOLOv5x6, YOLOv7-e6e, and YOLOR-CSP-X) to detect
and classify grape bunches as healthy or damaged. Additionally, the authors created
two new publicly available datasets for grape-bunch detection and classification with the
same 910 original images and 1066 annotated grape bunches, augmented through scaling,
rotation, translation, and blurring operations, ultimately leading to around 10 K images
and more than 11.6 K grape bunches.

On the other hand, Shen et al. [21] introduced a novel method to accurately identify
veraison in colored wine grapes under natural field-growing conditions. Initially, the
authors utilized a semantic segmentation model to effectively eliminate the irrelevant
background, and then a Mask R-CNN pipeline, which incorporates anchor parameter
optimization, was utilized to further enhance the accuracy and robustness of the grape
identification process. Finally, to deal with issues regarding grape-cluster overlapping and
occlusions, Chen et al. in [22] employed the post-processing algorithm of Mask R-CNN, en-
hanced by the linear weighting method of the soft non-maximum suppression (Soft-NMS)
algorithm [23], achieving significant performance improvements. To improve real-time per-
formance in grape bunch detection, the authors of [24] combined a Swin Transformer [25]
with YOLOv5. Their model was tested on two different grape varieties, ‘Chardonnay’
and ‘Merlot’, and under different conditions, including two weather conditions, two berry
maturity stages, and three sunlight intensities. A comparison with other common detectors,
such as Faster R-CNN, YOLOv4, and YOLOv5, revealed the superior performance that can
be achieved when a Transformer network is combined with an object detection network.
However, the complicated environment of vineyards, with varying illumination conditions
and occlusions, and the lack of large annotated public datasets can significantly affect the
performance of these methods.

Regarding grape maturity estimation, there are two main methods used in viticulture
to estimate the maturity level of grapes. The first one is the traditional method, where we
measure the sugar level using a specific instrument that is usually calibrated in Brix or pH,
called a refractometer [26]. However, this specialized sensor is costly and requires farmers
with technological knowledge to handle it. The second and most cost-effective solution
involves the processing of grape images using machine learning and Artificial Intelligence
(AI) techniques. A comprehensive review of these techniques in viticulture, along with a
new dataset (i.e., GrapeCS-ML) that contains images of grape varieties at different stages
of development, together with the corresponding ground-truth data obtained through
chemical analysis (i.e., pH and Brix), can be found in [27].

To estimate grape maturity, color images have been utilized and processed using standard
machine learning algorithms, such as artificial neural networks [28,29], random forests [30],
unsupervised clustering [31], and CNNs [32–35]. For ground-truth maturity levels, some
methods in the literature have utilized grape color and shape information [28,30,31,36], the
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knowledge of the harvesting week [33], and well-known chemical indices, such as total soluble
solids (TSSs), titratable acidity (TA), and pH [29]. Attention mechanisms have also been
employed, achieving significant performance improvements in grape maturity estimation.
An improved SM-YOLOv4 algorithm that utilizes YOLOv4, as well as Mobilenetv3 and the
SENet attention mechanism as the backbone feature extraction network, was proposed in [34]
to increase inference speed, improve robustness, and make the network more lightweight.
In addition, a novel Mask R-CNN-based algorithm that utilizes three different attention
mechanism modules (i.e., squeeze-and-excitation attention (SE), convolutional block attention
(CBAM), and coordinate attention (CA)) in its ResNet backbone was proposed in [35].

Other works have utilized hyperspectral or multispectral images to improve classifica-
tion accuracy and robustness. In [37], partial least-squares regression (PLSR) and neural
networks were utilized to estimate the quality of grapes from sugar content predictions
based on hyperspectral imaging. The results suggest that the combination of hyperspectral
imaging with appropriate chemometric techniques or machine learning algorithms can
lead to satisfactory generalization for vintages not employed in model training. Similarly,
the authors of [38] proposed a CNN-based method to predict two important enological
parameters (i.e., sugar level and pH) from hyperspectral images and achieved excellent
overall performance, even for different varieties or vintages that were not employed during
training. On the other hand, dimensionality reduction methods were studied in [39] for the
prediction of sugar content from hyperspectral images of wine grape berries. The authors
combined hyperspectral imaging with neural networks, achieving good generalization
capacity across different datasets.

Similarly, the authors of [40] tested a multilayer perceptron (MLP) and a 3D-CNN
network in a novel multispectral dataset of grape images, coupled with measurements such
as weight, anthocyanin content, and Brix index, achieving very high accuracy. In [41], data
from canopy reflectance sensors, as well as Unmanned Aerial Vehicle (UAV) and satellite
images, were processed using open-source AutoML techniques for robust prediction of
grape-quality attributes. On the other hand, absorbance and fluorescence data of Cabernet
Sauvignon grape samples were employed to predict relevant grape indices in terms of
technological, phenolic, and flavor maturity in [42]. Finally, in [43], four different machine
learning algorithms (i.e., PLSR, random forest regression, support vector regression (SVR),
and CNN) were employed to estimate grape ripeness in Brix from hyperspectral data
received from a contact probe spectrometer. The authors concluded that the CNN model
outperformed the other algorithms in most test cases.

Despite the high performance of the aforementioned deep learning algorithms in
grape segmentation and maturity estimation, there is still room for improvement so that
these algorithms can be used in real-life applications. In principle, deep learning algorithms
usually require more data than traditional machine learning techniques and thus they
are heavily dependent on large, annotated datasets to achieve high accuracy, robustness,
and generalization. To address this need, several datasets encompassing different data
types (e.g., images, sugar levels, hyperspectral information) have been proposed in the
literature, but they remain too small to be successfully employed for deep learning training.
This work proposes one of the largest annotated grape datasets to date, called the CERTH
grape dataset, whose purpose is to be used for the training and optimization of both
grape segmentation and maturity estimation algorithms. The images in the dataset depict
table grapes from the Crimson Seedless variety, which were captured under different
environmental conditions and with significant occlusions between grape clusters and leaves.
Thus, the size and the challenging nature of the CERTH grape dataset can substantially
benefit any machine learning method trained and evaluated on it. As a result, the main
contributions of this work are as follows:

• The new CERTH grape dataset is one of the largest grape segmentation and maturity
estimation datasets in the literature. It consists of around 2.5 K images, captured
under varying illumination and viewing conditions, with strong occlusions between
grape bunches and leaves. The dataset contains almost 10 K annotated grape bunches,
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which are further classified into three maturity classes (i.e., immature, semi-mature,
and mature).

• A plethora of state-of-the-art object detection methods are trained and evaluated on
the CERTH grape dataset, providing a baseline for future research and showcasing
the challenging nature of the CERTH grape dataset.

2. Materials and Methods

This section initially presents the well-known publicly available image-based grape
segmentation and maturity estimation datasets and then introduces the proposed CERTH
grape dataset, which aims to overcome the limitations of the currently available datasets.
Finally, this section presents state-of-the-art object detection algorithms, which are trained
and evaluated in the tasks of grape segmentation and maturity estimation.

2.1. Available Datasets

Several publicly available grape datasets, comprising different types of data, such as
images, genetic data, environmental and weather data, and chemical data (e.g., Brix, pH),
have been developed to support research in grape segmentation and maturity estimation.
The Grape CS-ML database [27], released by Charles Sturt University in 2018, consists of five
datasets showcasing 15 grape varieties at different stages of development, accompanied
by size and Macbeth color references. The Embrapa Wine Grape Instance Segmentation
Dataset (WGISD) [44], released in 2019, contains 300 images with annotated grape clusters,
including bounding boxes and binary masks. The AI4EU Grape Dataset [45], published
in 2021, contains 250 images of Tempranillo grapes with bounding box annotations. The
wGrapeUNIPD-DL dataset [46], available since 2022, comprises 373 images of various grape
varieties captured at different phenological stages across six Italian vineyard locations.
GrapesNet [47], published in 2023, offers four datasets containing RGB and RGB-D images
of grape bunches, facilitating tasks such as grape segmentation and weight prediction.
Representative examples of images appearing in the aforementioned datasets are presented
in Figure 1.

Despite the importance of these datasets for grape segmentation and maturity esti-
mation, there are some shortcomings. Most of the currently available datasets have been
developed for grape segmentation, and only the Grape CS-ML database can be used for
maturity estimation. However, the Grape CS-ML database consists of several smaller
datasets that depict a lot of different grape varieties with their own distinct characteristics.
These datasets are annotated based on different criteria (i.e., color, shape, size, sugar levels)
for maturity estimation. Additionally, the relatively small number of images in most of
the other datasets can significantly affect the performance of deep learning-based grape
segmentation algorithms.

2.2. CERTH Grape Dataset

To leverage the scarcity of large annotated grape datasets and overcome the shortcom-
ings of the currently available grape datasets, we introduce in this work a new dataset,
named the CERTH grape dataset. The aim is to advance computer vision and machine
learning research in the field of viticulture by providing valuable annotated data for devel-
oping and refining algorithms for accurate grape segmentation, yield prediction, and, most
importantly, maturity estimation. The proposed dataset consists of 2502 high-resolution
images captured from a vineyard cultivating the ‘Crimson Seedless’ table grape variety
during the 2022–2023 development and harvesting period.

The data collection process involved the use of an iPhone 11 Pro smartphone, posi-
tioned strategically between the rows of vines, to capture grape images at distances ranging
from approximately 1 to 2 m. This careful arrangement ensured optimal visualization of
the grape bunches and their surroundings. To maintain consistency and uniformity within the
dataset, all captured images were subsequently scaled to a resolution of 2160 × 3840 pixels,
ensuring the same high level of detail and clarity for each image in the dataset.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1. Representative images from currently available datasets. (a) Dataset 1 of the Grape CS-
ML dataset, (b) Dataset 5 of the Grape CS-ML dataset; (c) Grapevine dataset [20], (d) Embrapa
WGISD dataset, (e) AI4EU Grape Dataset, (f) wGrapeUNIPD-DL dataset, (g) Dataset 1 of GrapesNet,
(h) Dataset 3 of GrapesNet.

Afterward, the images in the CERTH grape dataset were meticulously annotated by
human experts using the advanced Ritm segmentation tool [48], which offers advanced
functionalities to aid in the accurate and efficient annotation of grape bunches while also
utilizing cutting-edge algorithms and models to automate the process of segmenting objects.
During the annotation procedure, all grape bunches were identified and segmented from
their surroundings using detailed object masks, as shown in Figure 2. Additionally, each
bunch was categorized into three distinct classes (i.e., immature, semi-mature, and mature)
based on the degree of grape maturity, as identified by the color of the grapes in the
bunch. In the maturity annotation procedure, assistance was provided by agronomists
who received information regarding the week of grape development and the time distance
from harvest. As a result, grapes in the immature class were early in their development
phase, grapes in the mature class were close to the harvesting season, and grapes in the
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semi-mature class were in the intermediate period when changes in the color of the grapes
from yellow to red had initiated.

Figure 2. Images from the CERTH grape dataset annotated with masks and maturity levels.

After the annotation procedure, the CERTH grape dataset consisted of 9832 labeled
grape bunches, extracted from the 2502 images. The grape images were then split into
training, validation, and test sets, consisting of 2000, 251, and 251 images, respectively. The
distribution of the grape bunches and their maturity levels in the images in the proposed
dataset can be seen in Table 1. In the table, it can be seen that most of the labeled grape
bunches belonged to the mature class, whereas the other two classes had a similar, smaller
number of labeled bunches, close to 1500. Due to the capturing setup and environmental
conditions, the CERTH grape dataset was designed to be a challenging dataset for machine
learning techniques. The proposed dataset exhibits different view angles, camera focus
conditions, and illumination variations (Figure 3), as well as significant occlusions between
grape bunches and between bunches and leaves (Figure 4).
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Table 1. Distribution of labeled grape bunches per maturity level in the CERTH grape dataset.

Immature Semi-Mature Mature Total

Training set 1278 1099 5582 7959
Validation set 200 155 559 914

Test set 190 144 625 959

Total 1668 1398 6766 9832

Figure 3. Images of grape bunches with varying camera focuses and illumination conditions.

Figure 4. Images of grape bunches with significant occlusions between grape bunches and leaves.

Furthermore, to facilitate the comprehensive evaluation of the performance of the
algorithms in single-instance classification, 100 images were taken from the test set of
the CERTH grape dataset and cropped to depict a single grape bunch per image. This
new single-instance/one-class subset consisted of 36, 43, and 21 images that depict grape
bunches from the immature, semi-mature, and mature classes, respectively. This subset
provides a unique opportunity to assess the robustness and reliability of the object detection
models in accurately identifying and classifying objects in a highly specific context.

Finally, a comparison of the proposed dataset and other publicly available image-
based grape datasets is presented in Table 2. It can be concluded that the proposed dataset
is the only other dataset, apart from the Grape CS-ML database, that can be used for
both grape segmentation and maturity estimation. However, the Grape CS-ML database
depicts different grape varieties with their own distinct characteristics, whereas the CERTH
grape dataset depicts a single grape variety. Additionally, most of the available grape
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segmentation datasets comprise a relatively small number of images, which can significantly
inhibit the performance of the deep learning algorithms trained on them. Therefore, due to
its size, uniformity (i.e., depiction of a single grape variety), and annotated maturity levels,
the proposed dataset can be considered suitable for the training and evaluation of deep
learning models in the tasks of grape segmentation and maturity estimation.

Table 2. Comparison of CERTH grape dataset and publicly available image-based grape datasets.
GS: Grape segmentation; ME: Maturity estimation.

Name Year Number
of Images

Grape
Varieties Modality Applicability

Grape CS-ML
(Datasets
1–4) [27]

2018 2016 15 RGB, Macbeth
color, size GS, ME

Grape CS-ML
(Dataset 5) [27] 2018 62 1 RGB, Sugar level GS, ME

Embrapa
WGISD [44] 2019 300 5 RGB GS

AI4EU Grape
Dataset [45] 2021 250 1 RGB GS

wGrapeUNIPD-
DL dataset [46] 2022 271 4 RGB GS

GrapesNet [47] 2023 2129 1 RGB-D GS

Grapevine bunch
(condition)

detection [20]
2023 910 * 6 RGB GS

CERTH
grape dataset 2023 2502 1 RGB, Matu-

rity levels GS, ME

* The original 910 images were augmented to 10 K images using various morphological and blurring operations.

2.3. Deep Learning Methods

To train and evaluate the performance of deep learning algorithms in the tasks of
grape segmentation and maturity estimation using the proposed CERTH grape dataset,
the MMDetection toolbox [49] was utilized. MMDetection is a versatile object detection
toolbox based on PyTorch that provides a wide range of pre-trained models, algorithms,
and modules for object detection and instance segmentation tasks. A training pipeline was
developed in this work that included 13 pre-trained object detection and instance segmen-
tation models taken from the library of MMDetection and fine-tuned on the augmented
CERTH grape dataset in a similar fashion to the COCO training pipeline.

2.3.1. YOLOv3

YOLOv3 [15] consists of Darknet-53 as the backbone network, followed by detection
layers with anchor boxes at different scales, allowing for accurate predictions of objects of
various sizes and different classes in an image. The output of YOLOv3 includes bounding
boxes, object classes, and confidence scores, specifying the location, size, and class of the
objects in an image, as well as the confidence of the model in its prediction. In this work,
two YOLOv3 variants, namely YOLOv3-320 and YOLOv3-608, differing in the size of the
input image (i.e., 320 and 608 pixels, respectively), were evaluated.

2.3.2. YOLOv8

YOLOv8 [50] utilizes an anchor-free model with a decoupled head, enabling indepen-
dent processing of objectness, classification, and regression tasks. This design empowers
each branch to focus on its specific task, ultimately improving the overall accuracy of the
model. In this work, we utilized YOLOv8n, which consists of 225 layers, with a depth and
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width of 0.33 and 0.25, respectively, and prioritizes speed and efficiency. In addition, we
utilized YOLOv8s, which consists of 225 layers, with a depth and width of 0.33 and 0.5,
respectively, and strikes a balance between performance and model size.

2.3.3. Mask R-CNN

Mask R-CNN [11] consists of three key components: (a) the backbone network, which
combines a ResNet [51] and a Feature Pyramid Network (FPN) [52] to extract features
at different scales; (b) the Region Proposal Network (RPN), which proposes candidate
object regions as bounding box coordinates and binary classes (foreground or background);
and (c) the Region of Interest (ROI) Align component that processes the candidate regions to
perform class prediction, bounding box refinement, and pixel-wise mask generation for each
detected object instance. In this study, we evaluated the performance of Mask R-CNN-R50 and
Mask R-CNN-R101, which use ResNet-50 and ResNet-101 backbones, respectively.

2.3.4. Cascade Mask R-CNN

Cascade Mask R-CNN [53] enhances the original Mask R-CNN architecture through
the use of cascades. The cascades divide the task into multiple stages with different IoU
thresholds, sequentially training each stage using the output of the previous stage as
the training set. This approach improves object detection and instance segmentation by
adapting to varying IoU thresholds. In this study, we evaluated Cascade Mask R-CNN-R50
and Cascade Mask R-CNN-R101, which use ResNet-50 and ResNet-101, respectively, as
the backbones.

2.3.5. Hybrid Task Cascade (HTC)

HTC [54] is inspired by Cascade Mask R-CNN and introduces direct connections
between mask branches in the cascade for robust information flow and the progressive
refinement of masks. HTC also includes a new branch for pixel-wise semantic segmen-
tation, trained jointly with the other branches. By incorporating semantic segmentation
information, HTC achieves improved predictions, especially in complex backgrounds. In
this study, we evaluated HTC with ResNet-50 and ResNet-101 backbones, resulting in
HTC-R50 and HTC-R101, respectively.

2.3.6. Mask R-CNN with Swin Transformer

The Swin Transformer [25] is a versatile backbone architecture that splits the input
image into non-overlapping patches and then processes these patches using a self-attention
mechanism to identify the content of the image. Mask R-CNN and Swin can be combined
by allowing Swin to replace the backbone network of Mask R-CNN, enabling more efficient
and effective feature extraction by addressing the known limitations of traditional CNN
backbones, such as handling large-scale images and effectively capturing global contexts.
In this work, we utilized the well-known Swin tiny and Swin small network architectures
as the backbones in Mask R-CNN, giving rise to the Mask R-CNN-Swin(T) and Mask
R-CNN-Swin(S) architectures, respectively.

2.3.7. Mask2Former with Swin Transformer

Mask2Former [55] is a unified model designed for various image segmentation tasks,
including panoptic, instance, and semantic segmentation. It incorporates masked attention
to extract localized features within predicted mask regions, enabling the model to focus
on relevant areas and capture fine-grained details. In this study, we utilized Mask2Former
with Swin small as the backbone, giving rise to the Mask2Former-Swin(S) architecture.

3. Results and Discussion

This section presents the experimental results related to the evaluation of a plethora of
state-of-the-art object detection methods in the task of grape segmentation and maturity
estimation using the CERTH grape dataset. These experiments aim to provide a baseline
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for the development and evaluation of future object detection algorithms. To this end, the
13 different object detection methods introduced in Section 2.3 were tested on the multiple-
instance/multi-class CERTH grape dataset, as well as on the single-instance/one-class
subset of the CERTH grape dataset. As far as the implementation details are concerned,
all the network architectures utilized were the default ones provided by the MMDetection
toolbox, with the differences lying in the number of classes of the head, which was set to 3
(i.e., the number of maturity levels). As a result, all object detection methods were trained
to identify both the location and maturity level of grape bunches in a similar fashion to the
COCO models, which identify both object boundaries and classes. The RPN anchors were
the default values, configured to have one scale of a size of 8 pixels and three aspect ratios,
which were 0.5, 1.0, and 2.0. In addition, Mask2Former’s object queries were set to 100.

Table 3 presents the sizes of the tested object detection methods. In Table 3, it can
be observed that the YOLOv8 networks were the most lightweight, with less than 12 M
parameters. On the other hand, Cascade Mask R-CNN-R101 and HTC-R101 were the
largest networks, with more than 96 M parameters. Such large networks usually require
large datasets for effective training, and the aim of this work was to provide one such
dataset for the tasks of grape segmentation and maturity estimation.

Table 3. Number of parameters for the tested object detection methods.

Method Parameters Method Parameters

YOLOv3-320 61.53 M Cascade Mask R-CNN-R101 96.02 M
YOLOv3-608 61.53 M HTC-R50 77.16 M
YOLOv8n 3.01 M HTC-R101 96.15 M
YOLOv8s 11.12 M Mask R-CNN-Swin(T) 47.38 M
Mask R-CNN-R50 43.76 M Mask R-CNN-Swin(S) 69.11 M
Mask R-CNN-R101 62.75 M Mask2Former-Swin(S) 68.71 M
Cascade Mask R-CNN-R50 77.03 M

The CERTH grape dataset was split into training, validation, and test sets, with each
set representing 80%, 10%, and 10% of the dataset for each class, ensuring equal distribution
of samples per class among all sets. The performance of the methods was measured using
the standard metric of mean average precision (mAP) with predictions of either bounding
boxes or masks, depending on the capabilities of the specific method. Mean average
precision was computed by taking the average precision for the confidence threshold of
0.3 and IoU thresholds ranging from 0.5 to 0.95 with an increment of 0.05. In addition,
precision, recall, and F1-score metrics were utilized for predictions with an IoU threshold
of 0.5 and a confidence threshold of 0.3. Tables 4 and 5 present the experimental results
of the different object detection methods on the test set of the CERTH grape dataset (i.e.,
multiple-instance/multi-class scenario) and on the single-instance/one-class subset of the
CERTH grape dataset, respectively, in the form of bounding box/mask performance.

From the experimental results in Tables 4 and 5, it can be concluded that the optimal
performance was achieved by the Mask2Former-Swin(S) algorithm. More specifically,
Mask2Former-Swin(S) significantly outperformed all the other algorithms by at least 6% in
both scenarios, achieving an mAP of 51.5% and 83.7% in mask prediction in the multiple-
instance/multi-class and single-instance/one-class scenarios, respectively. Of significance
was the performance of the YOLOv8s algorithm, which was able to achieve the second-
highest accuracy in the prediction of bounding boxes for both scenarios, even overcoming
the accuracy of the Mask R-CNN-Swin(S) algorithm. Moreover, the comparison of the
Mask R-CNN algorithm with a backbone of ResNet or the Swin Transformer showed
that the Swin Transformer was capable of better modeling the input image compared to
ResNet, effectively leading to an overall improvement in the accuracy of the Mask R-CNN
algorithm in grape segmentation and maturity estimation by at least 2% in the multiple-
instance/multi-class scenario and 1.6% in the single-instance/one-class scenario. Finally,
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among all the versions of the YOLO algorithms, YOLOv8 achieved the best results, with a
significant accuracy margin of at least 11% compared to YOLOv3.

Table 4. Comparison of different state-of-the-art algorithms in the multiple-instance/multi-class
scenario of the CERTH grape dataset for grape segmentation and maturity estimation. Results appear
in the form of bounding box/mask performance.

Method mAP Precision Recall F1-Score

YOLOv3-320 31.7%/ - 0.57/- 0.84/- 0.68/-
YOLOv3-608 36.0%/- 0.71/- 0.87/- 0.71/-
YOLOv8n 45.4%/- 0.68/- 0.93/- 0.78/-
YOLOv8s 46.3%/- 0.68/- 0.95/- 0.79/-
Mask R-CNN-R50 42.9%/40.4% 0.64/0.64 0.87/0.87 0.74/0.74
Mask R-CNN-R101 44.7%/42.2% 0.64/0.67 0.87/0.88 0.74/0.76
Cascade Mask R-CNN-R50 45.5%/42.0% 0.65/0.67 0.84/0.85 0.73/0.75
Cascade Mask R-CNN-R101 45.9%/42.1% 0.64/0.66 0.85/0.86 0.73/0.75
HTC-R50 46.5%/42.6% 0.66/0.67 0.92/0.93 0.77/0.78
HTC-R101 46.9%/42.9% 0.65/0.67 0.93/0.94 0.77/0.78
Mask R-CNN-Swin(T) 45.4%/43.3% 0.66/0.69 0.92/0.93 0.77/0.79
Mask R-CNN-Swin(S) 45.6%/44.1% 0.68/0.71 0.95/0.95 0.79/0.81
Mask2Former-Swin(S) 52.3%/51.5% 0.68/0.73 0.95/0.96 0.79/0.83

Table 5. Comparison of different state-of-the-art algorithms in the single-instance/one-class scenario
of the CERTH grape dataset for grape segmentation and maturity estimation. Results appear in the
form of bounding box/mask performance.

Method mAP Precision Recall F1-Score

YOLOv3-320 59.0%/- 0.85/- 0.99/- 0.91/-
YOLOv3-608 59.1%/- 0.88/- 0.99/- 0.93/-
YOLOv8n 79.3%/- 0.89/- 0.99/- 0.94/-
YOLOv8s 79.3%/- 0.90/- 0.99/- 0.95/-
Mask R-CNN-R50 66.7%/63.4% 0.89/0.87 0.99/0.98 0.94/0.92
Mask R-CNN-R101 76.0%/71.6% 0.90/0.90 0.99/0.99 0.94/0.95
Cascade Mask R-CNN-R50 75.2%/68.1% 0.88/0.88 0.99/0.99 0.93/0.93
Cascade Mask R-CNN-R101 73.2%/66.9% 0.85/0.85 0.99/0.99 0.92/0.91
HTC-R50 74.9%/67.3% 0.87/0.87 0.99/0.99 0.93/0.93
HTC-R101 76.1%/69.4% 0.89/0.89 0.99/0.99 0.94/0.94
Mask R-CNN-Swin(T) 73.4%/69.5% 0.90/0.88 0.99/0.98 0.94/0.93
Mask R-CNN-Swin(S) 78.7%/73.2% 0.89/0.89 0.99/0.99 0.94 /0.94
Mask2Former-Swin(S) 85.7%/83.7% 0.92/0.93 0.99/0.99 0.96/0.96

Similar conclusions can be drawn for the other metrics. Mask2Former-Swin(S) achieved
the highest F1-score, with a value of 0.79 for the bounding boxes and 0.83 for the masks.
From the recall and precision values, it can be seen that most of the grape bunches were
correctly identified by all the object detection algorithms (recall ranged from 0.84 to 0.96).
However, the algorithms tended to make several mistakes through detections that were
not actual grape bunches (i.e., false positives), with precision ranging from 0.57 to 0.73.
These false positives were usually parts of grape bunches that were identified by the
object detection algorithms as individual instances and rarely background objects that
were identified as grape bunches. This observation verifies an inherent issue in grape
segmentation concerning the correct delineation of individual grape bunches, especially
when such bunches are occluded by other bunches or background objects.

Additionally, for the four state-of-the-art mask-prediction object detection algorithms
(i.e., Cascade Mask R-CNN-R101, HTC-R101, Mask R-CNN-Swin(S), and Mask2Former-
Swin(S)), a different presentation of the results based on the maturity level of the grape
bunches was performed. The aim of this experiment was to analyze the performance of a
few of the best-tested object detection algorithms in terms of their ability to correctly classify
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the maturity levels of the grape bunches and use these results as a baseline for evaluations
in future research. Tables 6 and 7 present the performance of the four object detection
algorithms in the task of grape maturity level estimation in the multiple-instance/multi-
class and single-instance/one-class scenarios, respectively.

Table 6. Grape maturity level estimation in the multiple-instance/multi-class scenario of the test set
of the CERTH grape dataset.

Method
Cascade Mask
R-CNN-R101 HTC-R101 Mask R-CNN-

Swin(S)
Mask2Former-

Swin(S)

Maturity Level mAP BBox/Mask

Immature 41.4%/35.4% 41.3%/35.1% 42.5%/39.3% 47.8%/44.5%
Semi-mature 34.3%/32.9% 38.4%/35.6% 33.8%/33.2% 43.7%/42.6%

Mature 61.9%/58.1% 61.0%/57.8% 60.4%/59.8% 65.5%/66.3%

Total 45.9%/42.1% 46.9%/42.9% 45.6%/44.1% 52.3%/51.5%

Table 7. Grape maturity level estimation in the single-instance/one-class scenario of the CERTH
grape dataset.

Method
Cascade Mask
R-CNN-R101 HTC-R101 Mask R-CNN-

Swin(S)
Mask2Former-

Swin(S)

Maturity Level mAP BBox/Mask

Immature 62.7%/55.5% 66.8%/58.4% 62.2%/59.4% 83.5%/77.8%
Semi-mature 80.2%/70.8% 88.7%/78.0% 71.3%/71.1% 91.1%/86.2%

Mature 74.1%/72.0% 72.9%/69.8% 76.6%/76.3% 82.5%/87.2%

Total 73.2%/66.9% 76.1%/69.4% 78.7%/73.2% 85.7%/83.7%

From the results in Tables 6 and 7, it can be concluded that the Mask2Former-Swin(S)
achieved the best performance in every maturity level category, outperforming all the other
algorithms by a significant margin. A comparison of the maturity level estimation results
revealed that all the tested algorithms achieved the highest accuracy for the mature class,
whereas the lowest accuracy was achieved for the semi-mature class. This can be attributed
to the color discrepancies among the mature red grapes, the immature yellow grapes, and
the leaves, which led the yellow grapes to be more easily blended with the leaves compared
to the red grapes. On the other hand, the existence of semi-mature grape bunches with red
and yellow grapes in the same bunch posed challenges for the object detection algorithms
in accurately segmenting them from the background. Moreover, the high accuracy for the
mature class can also be attributed to the fact that the samples for this class were five times
greater than the samples for the other two classes. These results further support the need
for large, annotated datasets to enhance the accuracy and robustness of grape segmentation
and maturity estimation algorithms.

Figure 5 presents a few images from the CERTH grape dataset, along with the pre-
dictions made by the four state-of-the-art object detection algorithms, namely Cascade
Mask R-CNN-R101, HTC-R101, Mask R-CNN-Swin(S), and Mask2Former-Swin(S). From
these images, a few important observations can be made regarding the performance of
the algorithms in grape segmentation and maturity estimation. Although Cascade Mask
R-CNN-R101 estimated the maturity levels of the grape bunches with high accuracy, it
faced problems with the segmentation of small bunches, and it made several predictions
for the same grape bunch. Similarly, HTC-R101 failed to segment small bunches, and it also
had issues with detecting the large grape bunch in the image in the second row of Figure 5.
On the other hand, Mask R-CNN-Swin(S) managed to identify even small grape bunches
in the images but at the expense of incorrectly estimating the maturity levels of some
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grape bunches. Finally, Mask2Former-Swin(S) successfully detected all grape bunches,
even ones of small sizes, in the images, and correctly predicted the maturity levels of most
grape bunches, achieving the best accuracy among all the state-of-the-art algorithms on the
CERTH grape dataset. However, Mask2Former-Swin(S) incorrectly split the large grape
bunch in the image in the second row of Figure 5 into three sub-bunches.

(a) (b) (c) (d)

Figure 5. Predictions in 3 images of the CERTH grape dataset using (a) Cascade Mask R-CNN-R101,
(b) HTC-R101, (c) Mask R-CNN-Swin(S), and (d) Mask2Former-Swin(S).

From Figure 5, it is clear that almost all tested algorithms faced difficulties in accurately
detecting and correctly estimating the maturity of grape bunches in the images. This
inability stems from the challenging nature of the CERTH grape dataset, which contains
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images with significant illumination variations, grape bunches captured under different
viewing angles and focal lengths, and occlusions between grape bunches and between grape
bunches and leaves. These challenges are further enhanced by the complex environment of
the vineyard and the trellis system that is used for systematic cultivation.

Finally, Figure 6 presents two confusion matrices, which describe the maturity estima-
tion results of the best-performing algorithm (i.e., Mask2Former-Swin(S)) in the multiple-
instance/multi-class and single-instance/one-class scenarios. From the results, it can be
seen that the most challenging class for correct classification was the semi-mature class. This
can be attributed to the fact that the color of grapes can be both yellow and red, which posed
challenges to the performance of the object detection algorithm. Of significant interest are
the results in the confusion matrix of the multiple-instance/multi-class scenario regarding
the misclassifications of the background. From these results, it can be determined that more
than 12% of the immature grape bunches were not correctly identified, a percentage that
fell to almost 8.6% in the case of the mature grape bunches. These results can be attributed
to the yellow color of the immature grape bunches, which can be easily mistaken for the
leaves in the complex environment of a vineyard, whereas the red mature grape bunches
can be better distinguished from the background.

Figure 6. Confusion matrix of maturity estimation results from Mask2former-Swin(S) in the multiple-
instance/multi-class and single-instance/one-class scenarios.

The aforementioned results reveal that the CERTH grape dataset is quite challenging
due to the large number of grape bunches, the illumination variations, and the occlusions
between grape bunches and between bunches and leaves. The results presented in other
works show that even traditional machine learning algorithms can achieve high perfor-
mance on publicly available datasets. For instance, the authors of [27] employed several
traditional machine learning algorithms (e.g., SVM, k-NN, classification trees, etc.) for
grape detection on the Grape CS-ML dataset, achieving high accuracy of more than 80%
and 85% for white and red grape varieties, respectively. In future work, they stated the
need to collect more data and experiment with more complex deep learning networks
to facilitate research in viticulture. On the other hand, the authors of [20] tested three
YOLO networks for grape bunch identification, concluding that the best performance was
achieved by YOLOv7, with a precision of 98%, a recall of 90%, an F1-score of 94%, and
an mAP of 77%. Similarly, the authors of [56] tested their proposed model, consisting
of a Transformer network and a multi-scale feature extractor inspired by YOLO, on the
wGrapeUNIPD-DL dataset, achieving a precision of 85.7%, a recall of 62.3%, an F1-score
of 72.2%, and an mAP of 72.8%. The same authors tested their model on the Embrapa
WGISD dataset, achieving a precision of 88.6%, a recall of 78.3%, an F1-score of 83.1%,
and an mAP of 87.7%. These results demonstrate the enhanced performance of the object
detection methods tested on the currently available datasets, with mAPs higher than 70%.
The results on the Grapevine bunch (condition) detection and Embrapa WGISD datasets
reveal high accuracy and recall results, meaning that the tested object detection methods
can easily detect the actual grape bunches without producing a lot of false positives. On
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the other hand, the results on the wGrapeUNIPD-DL dataset reveal a high precision of
78.3%, with a mediocre recall of 62.3%, meaning that the tested object detection methods
do not identify a lot of false positives but fail to recognize the actual grape bunches.

In comparison to previous works, the best-performing model on the proposed dataset
achieved an mAP of 52.3%, a precision of 68%, and a recall of 95%. This means that the model
recognized almost every annotated grape bunch but also produced a lot of false positives.
When the task of grape bunch segmentation was simplified by cropping a single grape bunch
in each image (single-instance/one-class scenario), thus removing most of the background
objects and occlusions, the performance of all object detection methods significantly improved,
with Mask2Former-Swin(S) achieving an mAP of 85.7% and an F1-score of 96%. However, in
real-life applications, the complex environment of a vineyard with varying lighting conditions
and strong occlusions can pose significant challenges to a grape segmentation and maturity
estimation algorithm, thus demonstrating the importance of developing challenging datasets
that can thoroughly test the performance of such algorithms.

4. Conclusions

Leveraging the need for large and challenging public datasets in viticulture, this work
introduces the CERTH grape dataset, which is one of the largest grape segmentation and
maturity estimation datasets in the literature. The proposed dataset consists of around 2.5 K
images, captured under varying illumination conditions and viewing angles, and almost 10 K
heavily occluded grape bunches annotated with their detailed masks and maturity levels.
Experimental results using a plethora of state-of-the-art object detection methods demonstrate
the challenging nature of the proposed dataset and provide a baseline for the development
of accurate and robust grape segmentation and maturity estimation algorithms in the future,
thus laying the groundwork for significant advances in the field of viticulture. In future work,
we aim to employ the proposed dataset, as well as other indicators (e.g., weather data), to
develop automatic methods for predicting grape diseases at the early stages of infection, thus
contributing to grape quality control and safeguarding measures.
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