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Abstract: Effective in-season crop nitrogen (N) status diagnosis is important for precision crop N
management, and remote sensing using an unmanned aerial vehicle (UAV) is one efficient means of
conducting crop N nutrient diagnosis. Here, field experiments were conducted with six N levels and
six maize hybrids to determine the nitrogen nutrition index (NNI) and yield, and to diagnose the
N status of the hybrids combined with multi-spectral data. The NNI threshold values varied with
hybrids and years, ranging from 0.99 to 1.17 in 2018 and 0.60 to 0.71 in 2019. A proper agronomic
optimal N rate (AONR) was constructed and confirmed based on the measured NNI and yield. The
NNI (R2 = 0.64–0.79) and grain yield (R2 = 0.70–0.73) were predicted well across hybrids using a
random forest model with spectral, structural, and textural data (UAV). The AONRs calculated using
the predicted NNI and yield were significantly correlated with the measured NNI (R2 = 0.70 and
0.71 in 2018 and 2019, respectively) and yield (R2 = 0.68 and 0.54 in 2018 and 2019, respectively). It
is concluded that data fusion can improve in-season N status diagnosis for different maize hybrids
compared to using only spectral data.

Keywords: precision nitrogen management; nitrogen nutrition index; agronomic optimum N rates;
remote sensing; random forest; multi-spectral data fusion

1. Introduction

Maize (Zea mays L.) is the most planted crop in the world, and its production reached
1.45 billion tons in recent years, with 22.7% being produced in China [1]. Nitrogen (N) loss
is one of the negative factors in maize production affecting the environment in China [2].
One strategy to solve this problem is to adopt high nitrogen use efficiency (NUE) maize
hybrids through breeding [3], and another strategy is through optimized N management [4].
Precision N management can effectively improve NUE and reduce environmental pollution
caused by over-fertilization [5,6]. Rapid in-season N status diagnosis and N recommenda-
tion through remote sensing strategies are vital to precision N management [7,8].

The N nutrition index (NNI) is currently one of the most commonly used methods
to evaluate crop N nutrition diagnosis. The NNI is already considered to be an important
symbol of plant N status, which is defined by the relative relationship between measured
plant N concentration (PNC) and the critical PNC [9]. An NNI value of 1 indicates optimal
N status, an NNI greater than 1 indicates N surplus, while an NNI less than 1 indicates
N deficiency [9]. Suitable NNI threshold values may vary with different hybrids or envi-
ronments and can be determined by relative yield and NNI [10]. The relationship between
the NNI and the relative grain yield was expressed with a linear plateau model, and it was
found that the two have a high correlation [10]. Therefore, the NNIs of different varieties
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and environments could be improved continuously to evaluate the nitrogen deficiency
status of crops more reasonably.

The calculation of NNI requires the determination of PNC and aboveground biomass
(AGB) through destructive sampling and laboratory analysis. Given this situation, proximal
and remote sensing equipment have their advantages in the non-destructive estimation
of NNI [11,12]. Satellite remote sensing has the advantage of high efficiency for plant N
diagnosis and yield estimation across large areas [13,14]. However, it generally has low
spatial or temporal resolution and is influenced by bad weather conditions [15]. Unmanned
aerial vehicles (UAVs) are widely applied for estimating plant traits based on image spectral,
structural, textural information, etc. That may be due to their advantages of low cost, real-
time image transmission, high spatial resolution, and flexible maneuverability [16]. Canopy
spectral information based on multi-spectral or hyperspectral images has been used for
estimating leaf chlorophyll content [17], PNC [18], and crop yield [19]. Canopy structure
information, for instance, crop heights obtained by light detection and ranging systems,
point clouds based on digital photogrammetry, and canopy cover or vegetation fractions,
can interact with spectral information. And it has also been applied in crop AGB [20],
leaf area index (LAI) [21], and yield research [22]. In addition, the time series canopy
structure also affects the robustness of vegetation indices. The structure information can
be inputted into a yield prediction model [15]. Canopy texture information extracted
from UAV remote sensing images is helpful for estimating yield [23], AGB [24], LAI [25],
chlorophyll content [26], and PNC [27]. In recent years, multi-sensor data fusion technology
has been used for plant trait estimation [28]. However, research on the high-throughput
prediction of maize NNI and yield of different hybrids from UAV remote sensing spectral,
structural, and textural information has been limited.

Machine learning (ML) methods are increasingly applied in precision agriculture
for their ability to process huge data. ML provides a powerful and flexible tool for
decision-making and professional knowledge integration [29], and has been used together
with remote sensing data for predicting AGB [30], yield [31], and plant N status indica-
tors [32]. Studies have shown that the ML method has advantages in N status diagnosis
and precision agriculture through integrating spectral, genetic, climate, and management
information [33,34]. Thus, the effectiveness of using ML methods and UAV remote sensing
data fusion for N status diagnosis and recommendation should be evaluated.

The objectives of this study were to (1) establish new NNI threshold values for diagnos-
ing plant N status of different maize hybrids, (2) develop a random forest (RF) model using
multispectral UAV remote sensing image data to predict NNI and grain yield, and (3) evalu-
ate the performance of the RF model for in-season N status diagnosis and recommendation
of different maize hybrids.

2. Materials and Methods
2.1. Experimental Design and Field Management

This experiment was conducted at Shangzhuang Experimental Station (116◦11′ N,
48◦08′ E) in Beijing, China (Figure S1). The soil was classified as sandy loam soil. The
basic soil properties were determined before sowing in 2018 (Table S1). The precipitation
information in 2018 and 2019 is given in Figure S2.

The experiment adopted a split-plot design with N level as the main plot and hybrid
as the subplot, and it had three replications. There were six N levels (0, 60, 120, 180, 240, and
300 kg ha−1) and six hybrids randomly arranged in each replicate. The six maize hybrids
included N_efficiency 30 (NE30), Jinqing 202 (JQ202), Keyu 188 (KY188), Zhengdan 958
(ZD958), N_efficiency 31 (NE31), and Xianyu 335 (XY335). NE30 and NE31 were selected by
the breeding group at China Agricultural University. ZD958 and XY335 are the two maize
hybrids that occupy the largest area in China. Detailed information is shown in Table S2.

For each hybrid, the area of the sub-plot was 4 m long and 5 m wide with 10 rows at a
row spacing of 0.5 m. The planting densities were 80,000, 100,000, 100,000, 60,000, 60,000,
and 60,000 plant ha−1 for NE30, JQ202, KY188, ZD958, NE31, and XY335, respectively,
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based on best management practices recommended for each hybrid. Maize was sown on
29 April 2018 and 2 May 2019, and harvested on 12 September 2018 and 14 September 2019.
For N fertilizer, 30% was applied as basal fertilizer before sowing, and 70% was applied
as side-dress fertilizer at the V6–V8 stages for the treatments of N60, N120, N180, and
N240. For the N300 treatment, N fertilizer was applied according to the ratio 3:4:3 before
sowing, at the V6–V8 stage, and V10–V12 stage. Phosphate (90 kg P2O5 ha−1) and potash
(75 kg K2O ha−1) fertilizers were applied as basal fertilizers. The rest of the management
practices followed local standards.

2.2. Ground Data Collection and Analysis
2.2.1. Plant Sampling and Measurement

Three uniform plants were randomly selected in one middle row from the ten rows in
each plot. For each hybrid at each growth stage of V6, V9, and V12, samples were collected
in the form of leaves and stems separately. First, these samples were dried to deactivate the
enzymatic activities (105 ◦C, 30 min), and then dried to a constant weight (70 ◦C). Based
on the leaf and stem dry weight, the plant AGB was obtained. The PNC was determined
using a high-throughput method based on a near-infrared spectroscopic (NIRS) assay [35].
The plant PNU and PNC were calculated by the following formulas:

PNU = W1 × N1 + W2 × N2 (1)

PNC = PNU/(W1 + W2) (2)

where W1 and W2 represent the dry weights of the leaves and stems, and N1 and N2
represent the N concentrations of leaves and stems, respectively.

At the maturity stage, maize ears from two rows were randomly selected for threshing
to measure the ear and cob weight for grain weight (14% moisture).

2.2.2. Calculation of the Nitrogen Nutrition Index

The equation of critical N concentration (Nc) for the North China Plain was developed
in a previous study [36]:

Nc = 34.914W−0.4134 (3)

where Nc is expressed in g kg−1, and the dimension of W is t ha−1.
The NNI was calculated following [9]:

NNI = Nm/Nc (4)

where Nm is the measured PNC.

2.2.3. Determination of NNI Threshold Values

Previously, the NNI threshold was defined as 1 [9]. Here, the NNI threshold was
re-estimated using the NNI and relative yield at different N rates. First, the NNI value
of each hybrid at each N rate was calculated. After that, the relative yield was calculated
using the following formula:

Relative yield = yield at each N level and hybrid/max yield (5)

The max yield is the maximum yield among the six N rates of each hybrid. Based
on the NNI at the V9 stage and the relative yield, the linear plus plateau model was used
to identify the NNI threshold value of each hybrid in 2018 and 2019 [10]. The linear plus
plateau method was fitted using the “NLIN” function in SAS v.8.1 (SAS Institute, Cary, NC,
USA). The inflection points of the linear plus plateau models (start of the plateau) were
used as the threshold NNI value for each hybrid.
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2.2.4. N Recommendation Strategy

The in-season N recommendation is calculated by the difference between the recom-
mended agronomic optimum nitrogen rate (AONR) and the basal N application rate. The
AONR is equal to the lowest N rate applied to get the highest yield. It was defined by the
inflection point of the N rate for maximum yield using the linear plus plateau model. In
addition, it could be estimated by the regression relationship of the N rate and NNI based
on the NNI threshold.

2.3. UAV Remote Sensing Data Collection and Analysis
2.3.1. UAV Image Acquisition and Processing

The DJI Inspire 2 equipment with a DJI FC6510 RGB camera (DJI Technology Co.,
Shenzhen, China) octocopter was used as the UAV platform. A 1.2 MP Parrot Sequoia
multispectral camera (Parrot SA, Paris, France) was also integrated into the UAV platform.
It includes four band sensors, including green (530–570 nm), red (640–680 nm), red edge
(730–740 nm), and near-infrared (770–810 nm), and a separate sunshine sensor to measure
solar irradiance for radiometric calibration. The 20 MP DJI RGB camera (DJI FC6510) with
the pan/tilt/zoom platform of ZENMUSE X7 was used to create the RGB orthomosaic
images. The white Spectralon® panel (Labsphere, Inc., North Sutton, NH, USA) was used
for the camera calibration.

At the V6, V9, and V12 stages of each hybrid, the UAV images were obtained between
11:00 a.m. and 2:00 p.m. under clear and windless conditions. The flight altitude was
60 m and the forward and side overlap were 85% and 75%, respectively. Pix4Dmapper v.
4.5.6 software (Pix4D SA, Lausanne, Switzerland) was used for mosaicking the geotagged
images. To register the images of different stages, 10–20 easily recognizable landmarks
such as the pavilion were selected as ground control points (GCPs) of the first flight. Esri
ArcGIS 10.2 (ESRI, Redlands, CA, USA) was employed to build the plot boundaries and
regions of interest (ROI).

2.3.2. Multispectral Image Processing and Vegetation Index

A total of 26 spectral indices, including the four bands’ reflectance, were used as
canopy spectral information defined as a multiple spectral index [37–47] (MS) (Table S3).

Canopy texture information was also used as the input variable based on the gray-
level co-occurrence matrix (GLCM). Six features were extracted and calculated including
homogeneity (green, red), variance (NIR, red, red edge), and correlation (red) (Table S3).
The process was performed using ENVI 5.1 (Eris Inc., Redlands, CA, USA).

2.3.3. RGB Image Data Processing

Green cover (GC) directly reflects the growth of plants. This index represents the ratio
of projected green vegetation area to the total ground surface area [48]. The formula is
as follows:

GC = crop pixels/plot pixels (6)

ENVI 5.1 software was employed for distinguishing vegetation from soil pixels. There
were three steps in classifying pixels. First, the orthomosaics from the RGB color model
were transformed into the YCbCr color model. Second, 100 samples of soil and plant pixels
were selected from the orthomosaics. Third, canopy pixels and soil pixels were classified
using the support vector machine method based on these samples. The RGB spectral
band-based GC index was used as canopy structure information (Table S3).

2.4. Statistical Analysis and Model Development

Three-way ANOVA was conducted by SAS v8.1 for AGB, PNC, PNU, NNI, and grain
yield. Year, N level, and hybrid were the fixed factors, and random forest (RF) was applied
to predict AGB, PNU, PNC, NNI, and grain yield.
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In order to improve the robustness of the prediction models, MS, GC, GLCMand N
rate were combined as inputs for the RF model.

The input feature vector was expressed as:

Xi = [x1, x2, x3, x4] (7)

where Xi represents each sample; x1 indicates the MS features including the 4 basic spectral
bands and 22 vegetation indices; x2 represents the 6 GLCM features; and x3 and x4 represent
GC and N rate, respectively. The model can be expressed as follows:

y = f (X1, X2, . . ., Xn) (8)

where y represents an agronomic parameter, which can be AGB, PNC, PNU, NNI, or grain
yield, f indicates the function of RF, X represents the integration of each sample’s spectral
data with the nitrogen rate features (format 7), and n is the sample number. To build a
regression model, the samples were divided into two parts, 70% of which were randomly
selected as the training datasets and the remaining 30% of which were the test datasets, and
10-fold cross-validation was used to optimize the model. The RF model was established by
the random forest [49] package of R 4.0.3 (https://www.r-project.org/ accessed on 5 May
2021). A total of 70% of the training datasets and 30% of the test datasets were randomly
selected, and the model was optimized by 10-fold cross-validation.

The coefficient of determination (R2), root mean square error (RMSE), and relative
error (RE) were computed to evaluate different models using the following equations:

R2= 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (9)

RMSE =

√
∑n

i=1 (y i − ŷi)
2

n
(10)

RE =
RMSE

y
×100% (11)

where yi and ŷi are the measured and predicted data, respectively, y is the mean of the
measured parameter, and n is the number of samples.

Areal agreement and the kappa statistic were effective methods for evaluating the di-
agnostic results based on the predicted NNI. The samples of each hybrid were divided into
two groups: N-limiting group (NNIa < NNIt) and N-non-limiting group (NNIa ≥ NNIt),
with NNIa and NNIt representing the measured NNI and NNI threshold, respectively.
According to the kappa coefficient, the degree of agreement can be classified into three
levels: fair (0.21–0.40), moderate (0.41–0.60), and substantial (0.61–0.80) [50].

3. Results
3.1. Variation in Maize Nitrogen Status Indicators and Yield

The ANOVA results showed that N rate and hybrid had significant effects on AGB,
PNC, PNU, and NNI at different growth stages (Figures 1 and 2). The interaction between
N and hybrid had a minor effect on these traits (Table S4).

https://www.r-project.org/
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Figure 1. Measured nitrogen status indicators of different nitrogen rates and growth stages in 2018
(a–d) and 2019 (e–h). The mean and standard deviation are shown (n = 18). The label “N” refers to
the nitrogen treatments. **, p < 0.01; ***, p < 0.001.

Figure 2. Measured nitrogen status indicators of different hybrids and growth stages in 2018 (a–d)
and 2019 (e–h). The mean and standard deviation are shown (n = 18). ns, p > 0.05; **, p < 0.01;
***, p < 0.001.

The AGB and PNC of the six hybrids increased with the N rate in 2018 and 2019.
The AGB, PNC, PNU, and NNI were significantly different at N levels higher than N60
compared with N0 in 2018 (Figure 1a–d). This trend occurred at N rates equal to or
above N120 in 2019 (Figure 1e–h). The six hybrids were significantly different at most
growth stages in 2018 and 2019 (Figure 2a–h). The AGB, PNU, PNC, and NNI were
significantly different among the hybrids at the V9 stage in 2018, but only AGB and PNC
were significantly different among hybrids at the V9 stage in 2019 (Figure 2). Maize yield
increased gradually from the N0 to the N60 level and reached a plateau at the N60 and
N120 levels (Figure S4).

In summary, N and hybrid significantly affected plant N status indicators at different
growth states. The V9 stage is the key stage for assessing N status because in-season
side-dress N is usually applied around this stage.

3.2. NNI Threshold Values for Different Hybrids

In 2018, it was found that treatments with less than N60 had PNC values below the
critical curve, the PNC values of N60 treatments were close to the curve, and the other
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points of PNC values were above the curve. In 2019, it was found that PNC values with N
rates ≤ 60 kg ha−1 were below the curve, and treatments with N rates > 60 kg ha−1 had
PNC values near the curve (Figure S3). These results suggested that the curve could be
used under normal climatic conditions, but needed improvement under special climate
conditions such as drought in 2019. Linear plus plateau analysis of NNI and relative yield
showed that the NNI threshold values for different hybrids were 0.99 to 1.17 in 2018 and
0.60 to 0.71 in 2019 (Figure S4). ZD958 had the lowest threshold of 0.99, while XY335 had
the highest threshold of 1.17 in 2018. JQ202 had the lowest threshold of 0.60, while ZD958
had the highest threshold of 0.71 in 2019. The average NNI threshold in 2018 was 40%
higher than in 2019 (Figure S4).

The AONR was determined using the relationship between NNI and N rates for the six
hybrids between 51 and 103 kg ha−1 in 2018, with an average of 74 kg ha−1 (Figure S5a). In
2019, the AONRs were between 76 and 112 kg ha−1, and 91 kg ha−1 on average (Figure S5b).
Based on yield data at different N levels, the AONRs were between 62 and 94 kg ha−1 in
2018, with an average of 74 kg ha−1, and from 73 to 109 kg ha−1 in 2019, with an average of
85 kg ha−1 (Figure 3). The comparison of the linear model and non-linear model is shown
in Table S5. The AONRs determined using these two methods were statistically significant,
with R2 being 0.62 and 0.87 in 2018 and 2019, respectively (Figure 4). The KY188 hybrid
had the lowest fertilizer demand and NE31 had the highest fertilizer demand.

Figure 3. Identification of different AONRs based on yield for different varieties in 2018 (a) and
2019 (b). AONR is the optimal nitrogen application rate. The inflection point of the linear plus
platform equation is defined as the AONR. ***, p < 0.001.
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Figure 4. The relationships between the agronomic optimal nitrogen rate (AONR) from measured
NNI and measured yield in 2018 (a) and 2019 (b). The AONR from the measured NNI is based on the
nutrition index and relative yield. The AONR from the measured yield is obtained from the linear
addition platform of the yield of different nitrogen rates. Red solid line: regression line; gray solid
line: 1:1 line; gray dotted lines: ±20% lines; dots of different colors: data of each hybrid.

3.3. Performance of the Random Forest Model for Estimating N Status Indicators

The ML analysis showed that models using the MS, GLCM, and GC information
performed better than those using MS or the MS and GLCM average of two years, and the
R2 was increased by 17.6% and 18.1%, respectively (Table 1). Therefore, the fusion of MS,
GLCM, and GC using the RF model performed the best among the tested strategies for N
status indicator prediction.

Table 1. Validation of different models for measured traits at the V9 stage.

Trait Sensor Type
2018 2019

RMSE R2 RE RMSE R2 RE

AGB
MS 0.11 0.63 9.6 0.70 0.5 26.4

MS+GLCM 0.10 0.63 9.5 0.68 0.52 25.8
MS+GC+GLCM 0.07 0.85 6.2 0.49 0.79 17.1

PNC
MS 1.91 0.64 8.8 2.09 0.72 12.8

MS+GLCM 1.95 0.63 8.9 2.11 0.70 12.9
MS+GC+GLCM 1.24 0.81 5.6 1.38 0.85 8.1

PNU
MS 14.11 0.55 16.5 12.63 0.72 28.1

MS+GLCM 14.26 0.54 16.7 12.58 0.72 28
MS+GC+GLCM 9.88 0.78 11.6 9.00 0.87 17.7

NNI
MS 0.11 0.63 9.6 0.11 0.80 16.3

MS+GLCM 0.10 0.63 9.5 0.11 0.79 16.4
MS+GC+GLCM 0.10 0.64 9.4 0.11 0.79 16.4

Yield
MS 0.81 0.78 8.59 1.08 0.73 10.84

MS+GLCM 0.82 0.78 8.63 1.08 0.73 10.83
MS+GC+GLCM 0.82 0.77 8.62 1.08 0.73 10.83

Note: The fusion data are MS, GC, GLCM, and N rates of four feature vectors. MS: multispectral data; GLCM:
gray-level co-occurrence matrix; GC: green cover index. Aboveground biomass (AGB), plant N concentration
(PNC), plant N uptake (PNU), N nutrition index (NNI).

Detailed analysis of the NNI prediction models with six hybrids indicated that the
R2 of the RF models was 0.72 on average in 2018 and 2019. The R2 for the RF-based NNI
prediction models for each of the six cultivars varied from 0.78 to 0.98 (Figure 5a,b). The
areal agreement based on the RF model was 89% in both 2018 and 2019 and the kappa
statistics were 0.82 and 0.85 in 2018 and 2019, respectively.
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Figure 5. Validation of NNI prediction based on the RF model at the V9 stage in 2018 (a) and
2019 (b). The fusion data are MS, GC, GLCM, and N rates of four feature vectors. MS is multispectral
information; GC is structure information; and GLCM is texture information. The green dot represents
each data point. The red solid line is the regression line. The gray dotted line is the 1:1 line. These data
are based on three replicates of six nitrogen rates. Cross-validation was performed during modeling.

3.4. Performance of the RF Model for Yield Prediction

The ML models performed quite well in predicting maize yield, with R2 ≥ 0.66
(Table 1). The RF model combined with multi-spectral data fusion (MS+GLCM+GC)
performed slightly better in 2018 (R2 = 0.77; RMSE = 8.6%) than in 2019 (R2 = 0.73;
RMSE = 10.8%). Hybrid-specific analysis indicated that the R2 of the RF models for differ-
ent hybrids at the V9 stage ranged from 0.82 to 0.96, and there were significant differences
among hybrids in 2018 (Figure 6a). The best relationship was observed for KY188 with an
R2 of 0.94 and the worst was for NE30 with an R2 of 0.86 in 2019 (Figure 6b).
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Figure 6. Validation of yield prediction based on the RF model at the V9 stage in 2018 (a) and
2019 (b). The fusion data are MS, GC, GLCM, and N rates of four feature vectors. MS is multispectral
information; GC is structure information; and GLCM is texture information. The green dot represents
each data point. The red solid line is the regression line. The gray dotted line is the 1:1 line. These data
are based on three replicates of six nitrogen rates. Cross-validation was performed during modeling.

3.5. Diagnosis of N Nutrition Status at the Field Scale

The N status diagnosis map is based on data at the V9 stage. The NNI calculated by
the nitrogen dilution curve has a significant response to different nitrogen treatments. It
received about 1 in the N60 treatment in 2018 (Figure 7a) and 0.71 in 2019 (Figure 7b). The
NNI estimated based on remote sensing data (Figure 7c,d) shows the same trend among
different nitrogen treatments compared to measured NNI.
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Figure 7. The N status diagnosis map at the V9 stage. The N status diagnosis map based on the
measured NNI was shown in 2018 (a) and 2019 (b), respectively. The N status diagnosis map based
on the remote sensing data in 2018 (c) and 2019 (d), respectively. The NNI–M and NNI–S represent
the measured NNI and simulated NNI. The different colors represent different NNI values.

3.6. Evaluation of the AONR Determination Based on the RF Model Estimation of NNI and Yield

The AONR based on the RF model estimated yield was significantly related to the
AONR based on measured yield (R2 = 0.68, in 2018; R2 = 0.54, in 2019; Figure 8a,b), with
about 92% of the points within the error range of 20% of the measured AONR (2018,
RMSE = 9.9 kg ha−1; 2019, RMSE = 8.1 kg ha−1) (Figure 8a,b). Moreover, the AONR based
on the RF-model-predicted NNI was also significantly related to the AONR based on
measured NNI (R2 = 0.70, in 2018; R2 = 0.71, in 2019; Figure 8c,d), with about 83% of the
points within the error range of 20% of the measured AONR (2018, RMSE = 8.9 kg ha−1;
2019, RMSE = 14.3 kg ha−1) (Figure 8c,d). The R2 for the relationship between AONR
calculated by simulated yield and NNI and AONR based on measured yield and NNI
were 0.62 and 0.90, respectively (Table S6). These results indicated that it was feasible to
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diagnose N status and make N recommendations based on NNI and yield predicted using
UAV data and the RF model.

Figure 8. The relationships of the recommended agronomic optimum nitrogen rate (AONR) based
on simulated and measured yield and simulated and measured nitrogen nutrition index (NNI).
(a) Comparison of AONR calculated by simulated yield and measured yield in 2018 and (b) 2019.
(c) Comparison of AONR calculated by simulated NNI and measured NNI in 2018 and (d) 2019. Red
solid line: regression line; gray solid line: 1:1 line; gray dotted lines: ±20% lines; dots of different
colors: data of each genotype. The data were calculated by the mean value of three repetitions.

4. Discussion
4.1. Hybrid Differences in NNI Threshold Values

NNI is a reliable indicator to diagnose crop N status, and the threshold of NNI is
determined by the critical N dilution curve. The parameters of the curve vary by crop
species [9]. For maize, several curves have been developed for different regions [51],
and the construction of a critical N dilution curve is time-consuming and labor-intensive.
The threshold value of NNI is usually set as 1, but it may vary among growth stages or
varieties. In addition to using the standard NNI threshold value of 1, researchers have also
determined the threshold NNI values for different varieties, climate conditions, or field
management practices [10]. Chen et al. [52] suggested that NNI thresholds of 1.00 and
1.25 were suitable for the study area. Zhang et al. [53] reported that the NNI threshold for
different varieties was variable (0.95–1.1).

In this study, the average NNI values of six hybrids were near 1 in 2018, and 0.74 in
2019 (Figure 2), and the NNI of the N60 treatment was near 1 in 2018, but 0.55 in 2019
(Figure 1). It turned out that the N status of different hybrids varied under the influence
of weather conditions in different years. Therefore, there is a need to evaluate the NNI
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threshold values to diagnose N status more accurately. The NNI thresholds of different
hybrids based on the relative yield ranged from 0.99 to 1.15 in 2018, but from 0.60 to 0.71
in 2019, being significantly lower than 1 (Figure S4). A serious drought at the V9 stage in
2019 drastically affected the PNU (Figure S2). In addition, the N requirements of different
hybrids varied in this study, and they would have different NUEs. The results revealed
that the AONR based on the NNI threshold was consistent with the fertilizer rate applied
to obtain the maximum yield (Figure 4). These results indicated that the NNI threshold
values established by this study could be used for effective diagnosis of maize N status.

4.2. UAV Remote Sensing Data Fusion Using Machine Learning for N Status Diagnosis

Compared with proximal sensors, UAV remote sensing has the advantages of real-
time information collection, cost-effectiveness, and high spatial resolution [54]. It has been
used for crop N status diagnosis [24] and yield prediction [55]. This study indicated that
UAV remote-sensing-based ML models performed well in predicting maize NNI and yield
(R2 = 0.40–0.81) (Table 1), confirming the findings of previous research.

With the development of spectroscopy technology, canopy spectral, structural, textural,
and other related information has been used to predict plant N indicators and diagnose
N nutrition [56]. Crop canopy spectrum and structure provide complementary data for
yield prediction [57]. Canopy texture features can provide additional information related to
structural features [58]. More studies have been trying to improve plant N status prediction
through data fusion. Multiple spectral data fusion performed better than models using
single spectral information. For example, researchers have combined plant height, canopy
coverage, and vegetation index to predict rice yield [15]. Texture and thermal information
can also be used in data fusion for yield prediction [28]. In this study, 22 canopy spectral
variables were applied to predict crop AGB, NNI, and yield. In general, models using
canopy spectral, structural, and textural data fusion performed better than models using
a single source of data (Table 1). These results are consistent with previous research
results [28]. The texture information is complementary to spectral, structural, and thermal
data, thereby increasing crop trait predictions [59].

In the past, several statistical models using spectral indices have been applied to
predict crop AGB, PNC, and yield [60,61], and ML methods have also been increasingly ap-
plied for the data analysis of remote sensing [62,63]. The relationships between vegetation
indices and plant traits are generally nonlinear. ML models can consider both linear and
nonlinear relationships and can improve the prediction of plant traits with spectral indices.
So, the RF method has been applied to predict plant traits with spectral data [34,64]. More
ML methods should be applied to improve plant N status prediction and diagnosis, like
deep learning [65], or by combining remote sensing data with genetic, environmental, and
management information [34].

4.3. Implications for Maize Management and Breeding

Nitrogen diagnosis is of great significance to crop N management. UAV remote sensing
can be used for the detection of plant N deficiency and in-season N recommendation [33,60],
which can improve agricultural sustainability [66]. This study determined the NNI thresh-
old values of different hybrids based on the NNI and relative yield (Figure S5). The AONRs
of these hybrids ranged from 63 kg ha−1 to 109 kg −1 in this study. That was significantly
lower than the AONR based on a meta-analysis (from 146 kg ha−1 to 180 kg ha−1) [67].
This may be because of the N deposition in North China (47.1 kg N ha−1 yr−1) [68] and
the maize monoculture model for consecutive years in the experimental area. Moreover,
high-throughput UAV remote sensing data were used with the ML method for efficient NNI
prediction and in-season N recommendation (Figure 5). This strategy can provide technical
support for improving N status diagnosis and in-season N management in farm conditions.

The results of this study are also of great value to maize breeding [69]. The vegetation
indices and other data based on the UAV images have great value for high-throughput
phenotyping applications [70]. Canopy traits and vegetation indices have been used as pre-
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dictors of LAI and the photosynthetic capacity of wheat [71]. This study demonstrated that
UAV remote sensing can be used to predict maize AGB, PNC, PNU, NNI, and yield across
different hybrids more efficiently. This will save time, labor, and cost in maize breeding.

5. Conclusions

The results showed that the NNI threshold values varied with years and maize hy-
brids, based on the linear plus plateau model analysis of relative yield and NNI. N status
indicators were well estimated using UAV multi-source remote sensing data fusion with an
RF regression model. Data fusion significantly improved the prediction of AGB and PNU
but did not work better in the prediction of NNI and yield compared with using one source
or two sources of UVA remote sensing data. The AONR values based on predicted NNI
or yield for different maize hybrids using multi-source remote sensing data were similar
to those based on measured NNI and yield. It is concluded that fusion data and using
ML models can improve in-season maize N status diagnosis and N recommendation for
different hybrids compared to only using spectral data. This method has the potential to
improve N management in maize production and maize breeding.
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yield and NNI for 2018 and 2019; Figure S1. Information of experiment location. (a) The location of
the experiment sites. (b) The experimental plot layout of different nitrogen rates; Figure S2. Daily
precipitation information during the growing season. 2018 (a) and 2019 (b); Figure S3. Evaluation of
the existing critical N dilution curve for spring maize in North China with measurement phenotype;
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of NNI to nitrogen application rate for each variety.

Author Contributions: Methodology, J.L., W.R. and H.Z.; Formal analysis, J.L. and W.R.; Investi-
gation, J.L., X.L., X.W., C.H., J.S. and M.Z.; Data curation, J.L., W.R., X.L., H.Z. and C.H.; Writing—
original draft, J.L.; Writing—review & editing, G.M., Y.M. and Q.P.; Supervision, F.C., Y.M. and Q.P.;
Project administration, F.C., Y.M. and Q.P.; Funding acquisition, F.C. and Q.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Key Research and Development
Program of China (2021YFD1200704, 2022YFD1900701), and the National Natural Science Foundation
of China (31971948, 31972485).

Data Availability Statement: The UAV images and R codes in this study are freely available. These
data may be obtained from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. Free Access to Food and Agriculture Statistics. Available online: http://www.fao.org (accessed on 30 June 2019).
2. Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing

environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106,
3041–3046. [CrossRef] [PubMed]

3. Chen, F.; Liu, J.; Liu, Z.; Chen, Z.; Ren, W.; Gong, X.; Wang, L.; Cai, H.; Pan, Q.; Yuan, L.; et al. Breeding for high-yield and
nitrogen use efficiency in maize: Lessons from comparison between Chinese and US cultivars. Adv. Agron. 2021, 166, 251–275.
[CrossRef]

4. Hartmann, T.E.; Yue, S.; Schulz, R.; He, X.; Chen, X.; Zhang, F.; Müller, T. Yield and N use efficiency of a maize–wheat cropping
system as affected by different fertilizer management strategies in a farmer’s field of the North China Plain. Field Crops Res. 2015,
174, 30–39. [CrossRef]

5. Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving nitrogen use efficiency
with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 2017, 214,
365–372. [CrossRef]

https://www.mdpi.com/article/10.3390/agronomy13081994/s1
https://www.mdpi.com/article/10.3390/agronomy13081994/s1
http://www.fao.org
https://doi.org/10.1073/pnas.0813417106
https://www.ncbi.nlm.nih.gov/pubmed/19223587
https://doi.org/10.1016/bs.agron.2020.10.005
https://doi.org/10.1016/j.fcr.2015.01.006
https://doi.org/10.1016/j.fcr.2017.09.033


Agronomy 2023, 13, 1994 15 of 17

6. Wang, S.; Yang, L.; Su, M.; Ma, X.; Sun, Y.; Yang, M.; Zhao, P.; Shen, J.; Zhang, F.; Goulding, K.; et al. Increasing the agricultural,
environmental and economic benefits of farming based on suitable crop rotations and optimum fertilizer applications. Field Crops
Res. 2019, 240, 78–85. [CrossRef]

7. Quemada, M.; Gabriel, J.L.; Zarco-Tejada, P. Airborne Hyperspectral Images and Ground-Level Optical Sensors as Assessment
Tools for Maize Nitrogen Fertilization. Remote Sens. 2014, 6, 2940–2962. [CrossRef]

8. Yao, Y.; Miao, Y.; Cao, Q.; Wang, H.; Gnyp, M.L.; Bareth, G.; Khosla, R.; Yang, W.; Liu, F.; Liu, C. In-Season Estimation of Rice
Nitrogen Status with an Active Crop Canopy Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4403–4413. [CrossRef]

9. Lemaire, G.; Jeuffroy, M.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage. Eur. J. Agron. 2008, 28, 614–624.
[CrossRef]

10. Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active Optical Sensing of Spring Maize for In-Season Diagnosis of Nitrogen
Status Based on Nitrogen Nutrition Index. Remote Sens. 2016, 8, 605. [CrossRef]

11. Zhao, B.; Duan, A.; Ata-Ul-Karim, S.T.; Liu, Z.; Chen, Z.; Gong, Z.; Zhang, J.; Xiao, J.; Liu, Z.; Qin, A.; et al. Exploring new
spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur. J. Agron. 2018, 93, 113–125.
[CrossRef]

12. Dong, R.; Miao, Y.; Wang, X.; Chen, Z.; Yuan, F.; Zhang, W.; Li, H. Estimating Plant Nitrogen Concentration of Maize using a Leaf
Fluorescence Sensor across Growth Stages. Remote Sens. 2020, 12, 1139. [CrossRef]

13. Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.; Rascher, U.; et al. Satellite
Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667.
[CrossRef]

14. Fabbri, C.; Mancini, M.; Marta, A.D.; Orlandini, S.; Napoli, M. Integrating satellite data with a Nitrogen Nutrition Curve for
precision top-dress fertilization of durum wheat. Eur. J. Agron. 2020, 120, 126148. [CrossRef]

15. Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using
multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of
China. Agric. For. Meteorol. 2020, 291, 108096. [CrossRef]

16. Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [CrossRef]
17. Qiao, L.; Gao, D.; Zhang, J.; Li, M.; Sun, H.; Ma, J. Dynamic Influence Elimination and Chlorophyll Content Diagnosis of Maize

Using UAV Spectral Imagery. Remote Sens. 2020, 12, 2650. [CrossRef]
18. Caturegli, L.; Corniglia, M.; Gaetani, M.; Grossi, N.; Magni, S.; Migliazzi, M.; Angelini, L.; Mazzoncini, M.; Silvestri, N.;

Fontanelli, M.; et al. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses. PLoS ONE 2016, 11, e0158268. [Cross-
Ref]

19. Du, M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using
Color Images Acquired from UAV-camera System. Remote Sens. 2017, 9, 289. [CrossRef]

20. Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models
(CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [CrossRef]

21. Sun, B.; Wang, C.; Yang, C.; Xu, B.; Zhou, G.; Li, X.; Xie, J.; Xu, S.; Liu, B.; Xie, T.; et al. Retrieval of rapeseed leaf area index using
the PROSAIL model with canopy coverage derived from UAV images as a correction parameter. Int. J. Appl. Earth Obs. Geoinf.
2021, 102, 102373. [CrossRef]

22. Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface
Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335–10355. [CrossRef]

23. Wang, F.; Yi, Q.; Hu, J.; Xie, L.; Yao, X.; Xu, T.; Zheng, J. Combining spectral and textural information in UAV hyperspectral
images to estimate rice grain yield. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102397. [CrossRef]

24. Zheng, H.; Cheng, T.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral
Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Front. Plant Sci. 2018, 9, 936.
[CrossRef] [PubMed]

25. Li, D.; Gu, X.; Pang, Y.; Chen, B.; Liu, L. Estimation of Forest Aboveground Biomass and Leaf Area Index Based on Digital Aerial
Photograph Data in Northeast China. Forests 2018, 9, 275. [CrossRef]

26. Lu, B.; He, Y.; Liu, H.H.T. Mapping vegetation biophysical and biochemical properties using unmanned aerial vehicles-acquired
imagery. Int. J. Remote Sens. 2017, 39, 5265–5287. [CrossRef]

27. Fu, Y.; Yang, G.; Li, Z.; Song, X.; Li, Z.; Xu, X.; Wang, P.; Zhao, C. Winter Wheat Nitrogen Status Estimation Using UAV-Based
RGB Imagery and Gaussian Processes Regression. Remote Sens. 2020, 12, 3778. [CrossRef]

28. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using
multimodal data fusion and deep learning. Remote Sens. Environ. 2019, 237, 111599. [CrossRef]

29. Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation
in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [CrossRef]

30. Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine
learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [CrossRef]

31. Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten years of corn yield dynamics at field scale under digital
agriculture solutions: A case study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [CrossRef]

https://doi.org/10.1016/j.fcr.2019.06.010
https://doi.org/10.3390/rs6042940
https://doi.org/10.1109/JSTARS.2014.2322659
https://doi.org/10.1016/j.eja.2008.01.005
https://doi.org/10.3390/rs8070605
https://doi.org/10.1016/j.eja.2017.12.006
https://doi.org/10.3390/rs12071139
https://doi.org/10.3390/rs70810646
https://doi.org/10.1016/j.eja.2020.126148
https://doi.org/10.1016/j.agrformet.2020.108096
https://doi.org/10.1038/nature14542
https://doi.org/10.3390/rs12162650
https://doi.org/10.1371/journal.pone.0158268
https://doi.org/10.1371/journal.pone.0158268
https://doi.org/10.3390/rs9030289
https://doi.org/10.3390/rs61110395
https://doi.org/10.1016/j.jag.2021.102373
https://doi.org/10.3390/rs61110335
https://doi.org/10.1016/j.jag.2021.102397
https://doi.org/10.3389/fpls.2018.00936
https://www.ncbi.nlm.nih.gov/pubmed/30034405
https://doi.org/10.3390/f9050275
https://doi.org/10.1080/01431161.2017.1363441
https://doi.org/10.3390/rs12223778
https://doi.org/10.1016/j.rse.2019.111599
https://doi.org/10.1016/j.compag.2018.05.012
https://doi.org/10.1186/s13007-019-0394-z
https://doi.org/10.1016/j.compag.2021.106126


Agronomy 2023, 13, 1994 16 of 17

32. Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote
Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [CrossRef]

33. Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.;
Myers, D.B.; Nafziger, E.D.; et al. Statistical and machine learning methods evaluated for incorporating soil and weather into
corn nitrogen recommendations. Comput. Electron. Agric. 2019, 164, 104872. [CrossRef]

34. Li, D.; Miao, Y.; Ransom, C.J.; Bean, G.M.; Kitchen, N.R.; Fernández, F.G.; Sawyer, J.E.; Camberato, J.J.; Carter, P.R.;
Ferguson, R.B.; et al. Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and
Management Factors with Active Canopy Sensing Using Machine Learning. Remote Sens. 2022, 14, 394. [CrossRef]

35. Li, M.; He, S.; Wang, J.; Liu, Z.; Xie, G.H. An NIRS-based assay of chemical composition and biomass digestibility for rapid
selection of Jerusalem artichoke clones. Biotechnol. Biofuels 2018, 11, 334. [CrossRef]

36. Liang, X.-G.; Zhang, J.-T.; Zhou, L.-L.; Li, X.-H.; Zhou, S.-L. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Index for
Summer-Maize in North China Plain. Acta Agron. Sin. 2013, 39, 292. [CrossRef]

37. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

38. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

39. Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status
with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [CrossRef]

40. Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using
portable RapidSCAN active canopy sensor. Sci. Rep. 2017, 7, 14073. [CrossRef]

41. Rouse, J.W.J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings
of the Third ERTS Symphony, Colombia, WA, USA, 1 January 1974; pp. 309–317.

42. Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens.
Environ. 1995, 51, 375–384. [CrossRef]

43. Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18,
2691–2697. [CrossRef]

44. Dash, J.; Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [CrossRef]
45. Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters

and nitrogen status in wheat cultivars. Field Crops Res. 2011, 124, 74–84. [CrossRef]
46. Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-

season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [CrossRef]
47. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6,

610–621. [CrossRef]
48. Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation

and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [CrossRef]
49. Liaw, A.; Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18–22.
50. Hornung, A.; Khosla, R.; Reich, R.; Inman, D.; Westfall, D.G. Comparison of Site-Specific Management Zones: Soil-Color-Based

and Yield-Based. Agron. J. 2006, 98, 407–415. [CrossRef]
51. Ciampitti, I.A.; Fernandez, J.; Tamagno, S.; Zhao, B.; Lemaire, G.; Makowski, D. Does the critical N dilution curve for maize crop

vary across genotype × environment × management scenarios? A Bayesian analysis. Eur. J. Agron. 2020, 123, 126202. [CrossRef]
52. Chen, Z.; Miao, Y.; Lu, J.; Zhou, L.; Li, Y.; Zhang, H.; Lou, W.; Zhang, Z.; Kusnierek, K.; Liu, C. In-Season Diagnosis of Winter

Wheat Nitrogen Status in Smallholder Farmer Fields Across a Village Using Unmanned Aerial Vehicle-Based Remote Sensing.
Agronomy 2019, 9, 619. [CrossRef]

53. Zhang, K.; Wang, X.; Wang, X.; Tahir Ata-Ul-Karim, S.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Does the Organ-Based N Dilution Curve
Improve the Predictions of N Status in Winter Wheat? Agriculture 2020, 10, 500. [CrossRef]

54. Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci.
2019, 24, 152–164. [CrossRef]

55. Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice
using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens.
2017, 130, 246–255. [CrossRef]

56. Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of Vegetation Indices to Determine Nitrogen
Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [CrossRef]

57. Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height
parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44–59. [CrossRef]

58. Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high
resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [CrossRef]

59. Pelizari, P.A.; Spröhnle, K.; Geiß, C.; Schoepfer, E.; Plank, S.; Taubenböck, H. Multi-sensor feature fusion for very high spatial
resolution built-up area extraction in temporary settlements. Remote Sens. Environ. 2018, 209, 793–807. [CrossRef]

https://doi.org/10.3390/rs12020215
https://doi.org/10.1016/j.compag.2019.104872
https://doi.org/10.3390/rs14020394
https://doi.org/10.1186/s13068-018-1335-1
https://doi.org/10.3724/SP.J.1006.2013.00292
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/j.fcr.2013.08.005
https://doi.org/10.1038/s41598-017-14597-1
https://doi.org/10.1016/0034-4257(94)00114-3
https://doi.org/10.1080/014311697217558
https://doi.org/10.1080/0143116042000274015
https://doi.org/10.1016/j.fcr.2011.06.007
https://doi.org/10.1016/j.compag.2014.02.009
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.rse.2016.10.005
https://doi.org/10.2134/agronj2005.0240
https://doi.org/10.1016/j.eja.2020.126202
https://doi.org/10.3390/agronomy9100619
https://doi.org/10.3390/agriculture10110500
https://doi.org/10.1016/j.tplants.2018.11.007
https://doi.org/10.1016/j.isprsjprs.2017.05.003
https://doi.org/10.3390/rs8120973
https://doi.org/10.1016/j.eja.2016.04.013
https://doi.org/10.1016/S0034-4257(03)00094-4
https://doi.org/10.1016/j.rse.2018.02.025


Agronomy 2023, 13, 1994 17 of 17

60. Moghimi, A.; Pourreza, A.; Zuniga-Ramirez, G.; Williams, L.E.; Fidelibus, M.W. A Novel Machine Learning Approach to Estimate
Grapevine Leaf Nitrogen Concentration Using Aerial Multispectral Imagery. Remote Sens. 2020, 12, 3515. [CrossRef]

61. Liang, T.; Duan, B.; Luo, X.; Ma, Y.; Yuan, Z.; Zhu, R.; Peng, Y.; Gong, Y.; Fang, S.; Wu, X. Identification of High Nitrogen Use
Efficiency Phenotype in Rice (Oryza sativa L.) Through Entire Growth Duration by Unmanned Aerial Vehicle Multispectral
Imagery. Front. Plant Sci. 2021, 12, 740414. [CrossRef]

62. Wieland, M.; Pittore, M. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-
spectral Satellite Images. Remote Sens. 2014, 6, 2912–2939. [CrossRef]

63. Hrisko, J.; Ramamurthy, P.; Gonzalez, J.E. Estimating heat storage in urban areas using multispectral satellite data and machine
learning. Remote Sens. Environ. 2020, 252, 112125. [CrossRef]

64. Fletcher, R.S.; Reddy, K. Random forest and leaf multispectral reflectance data to differentiate three soybean varieties from two
pigweeds. Comput. Electron. Agric. 2016, 128, 199–206. [CrossRef]

65. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating
machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886.
[CrossRef]

66. Iatrou, M.; Karydas, C.; Iatrou, G.; Pitsiorlas, I.; Aschonitis, V.; Raptis, I.; Mpetas, S.; Kravvas, K.; Mourelatos, S. Topdressing
Nitrogen Demand Prediction in Rice Crop Using Machine Learning Systems. Agriculture 2021, 11, 312. [CrossRef]

67. Liu, B.-Y.; Lin, B.-J.; Li, X.-X.; Virk, A.L.; Yves, B.N.; Zhao, X.; Dang, Y.P.; Zhang, H.-L. Appropriate farming practices of summer
maize in the North China Plain: Reducing nitrogen use to promote sustainable agricultural development. Resour. Conserv. Recycl.
2021, 175, 105889. [CrossRef]

68. Wen, Z.; Xu, W.; Li, Q.; Han, M.; Tang, A.; Zhang, Y.; Luo, X.; Shen, J.; Wang, W.; Li, K.; et al. Changes of nitrogen deposition in
China from 1980 to 2018. Environ. Int. 2020, 144, 106022. [CrossRef]

69. Shu, M.; Shen, M.; Zuo, J.; Yin, P.; Wang, M.; Xie, Z.; Tang, J.; Wang, R.; Li, B.; Yang, X.; et al. The Application of UAV-Based
Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines. Plant Phenom. 2021, 2021, 9890745. [CrossRef]

70. Grzybowski, M.; Wijewardane, N.K.; Atefi, A.; Ge, Y.; Schnable, J.C. Hyperspectral reflectance-based phenotyping for quantitative
genetics in crops: Progress and challenges. Plant Commun. 2021, 2, 100209. [CrossRef]

71. Jiang, L.; Sun, L.; Ye, M.; Wang, J.; Wang, Y.; Bogard, M.; Lacaze, X.; Fournier, A.; Beauchêne, K.; Gouache, D.; et al. Functional
mapping of N deficiency-induced response in wheat yield-component traits by implementing high-throughput phenotyping.
Plant J. 2019, 97, 1105–1119. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12213515
https://doi.org/10.3389/fpls.2021.740414
https://doi.org/10.3390/rs6042912
https://doi.org/10.1016/j.rse.2020.112125
https://doi.org/10.1016/j.compag.2016.09.004
https://doi.org/10.1016/j.agrformet.2019.107886
https://doi.org/10.3390/agriculture11040312
https://doi.org/10.1016/j.resconrec.2021.105889
https://doi.org/10.1016/j.envint.2020.106022
https://doi.org/10.34133/2021/9890745
https://doi.org/10.1016/j.xplc.2021.100209
https://doi.org/10.1111/tpj.14186

	Introduction 
	Materials and Methods 
	Experimental Design and Field Management 
	Ground Data Collection and Analysis 
	Plant Sampling and Measurement 
	Calculation of the Nitrogen Nutrition Index 
	Determination of NNI Threshold Values 
	N Recommendation Strategy 

	UAV Remote Sensing Data Collection and Analysis 
	UAV Image Acquisition and Processing 
	Multispectral Image Processing and Vegetation Index 
	RGB Image Data Processing 

	Statistical Analysis and Model Development 

	Results 
	Variation in Maize Nitrogen Status Indicators and Yield 
	NNI Threshold Values for Different Hybrids 
	Performance of the Random Forest Model for Estimating N Status Indicators 
	Performance of the RF Model for Yield Prediction 
	Diagnosis of N Nutrition Status at the Field Scale 
	Evaluation of the AONR Determination Based on the RF Model Estimation of NNI and Yield 

	Discussion 
	Hybrid Differences in NNI Threshold Values 
	UAV Remote Sensing Data Fusion Using Machine Learning for N Status Diagnosis 
	Implications for Maize Management and Breeding 

	Conclusions 
	References

