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Abstract: Orchardgrass (Dactylis glomerata L.) is highly tolerant of shade, cold, and overwintering,
making it an ideal species for grassland ecological restoration and livestock production. However,
the genetic diversity of orchardgrass may be threatened by climate change. Using a Maximum
Entropy (MaxEnt) model with the BCC-CSM2-MR global climate database and the Harmonized
World Soil Database, we projected the current and future distribution of orchardgrass suitable areas
globally. The predicted ecological thresholds for vital environmental factors were determined to
be a temperature seasonality range of 411.50–1034.37 ◦C, a mean diurnal range of −0.88–10.69 ◦C,
a maximum temperature of the warmest month of 22.21–35.45 ◦C, and precipitation of the coldest
quarter of 116.56–825.40 mm. A range of AUC values from 0.914 to 0.922, indicating the accuracy
of the prediction model. Our results indicate that the total area of current suitable habitats for
orchardgrass was estimated to be 2133.01 × 104 km2, it is dispersed unevenly over six continents.
Additionally, the suitable areas of habitats increased in higher latitudes while decreasing in lower
latitudes as greenhouse gas emissions increased. Therefore, efforts should be made to save places
in the southern hemisphere that are in danger of becoming unsuitable, with the possibility of using
northern America, China, and Europe in the future for conservation and extensive farming.

Keywords: bioclimatic; climate change; Dactylis glomerata; habitat shift; MaxEnt model; potential
geographic distribution

1. Introduction

Orchardgrass (Dactylis glomerata L.) is a perennial cold-season forage grass of the
Poaceae family native to northern Africa, Europe, and some temperate regions of Asia [1,2].
It plays a crucial role in the generation of forage-based meat and dairy across temperate ar-
eas as one of the top four commercially significant forage types of grass grown globally [3,4].
Orchardgrass is known for its rapid growth, high biomass, high sugar content, strong shade
tolerance, and adaptability to different environments [5–8]. Additionally, orchardgrass has
been cultivated in North America for over two centuries and is currently one of the most
widely cultivated grass, primarily for grass grazing and hay production [1]. Orchardgrass
exhibits high genetic diversity, extensive geographical distribution, and varied habitat con-
ditions, making it an excellent candidate grass for further genetic and ecological studies [2].
The temperature, moisture, and soil conditions are key factors influencing the growth and
development of vegetation in orchardgrass [9–11]. Due to climate change, the regional
climate patterns might change, and catastrophic climatic phenomena such as heat and
droughts will become more frequent, leading to the extinction of species that cannot adapt
to the environment or have a limited capacity to adjust [12]. Climate change will likely
cause further harm to orchardgrass varieties and habitats in the future. Therefore, it is
vital to improve the management and preservation of the main distribution regions of

Agronomy 2023, 13, 1985. https://doi.org/10.3390/agronomy13081985 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13081985
https://doi.org/10.3390/agronomy13081985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-3086-0282
https://doi.org/10.3390/agronomy13081985
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13081985?type=check_update&version=1


Agronomy 2023, 13, 1985 2 of 17

orchardgrass and safeguard critically threatened natural populations through in situ and
ex-situ conservation measures.

Niches are habitats with the minimum thresholds necessary for survival [13]. The
grassland niche is highly influenced by the surrounding environment, causing it to adapt
or relocate in response to environmental changes. The Earth’s temperature is projected to
rise by 0.2 ◦C per decade due to greenhouse gas (GHG) emissions, with expected increases
ranging from 0.3–1.7 ◦C at a minimum, up to 2.6–4.8 ◦C at a maximum for the twenty-first
century [14]. As a widely distributed temperate perennial grass species, orchardgrass will
inevitably struggle to move and colonize suitable habitats at a fast enough pace to cope with
the predicted rapid climate change. This could result in elevated rates of species extinction,
as well as diminished plant growth and yield due to the warmer temperatures [15,16]. As a
result, there is a pressing need to determine the amount of climate change during the next
few decades and evaluate its impact on specific indigenous grass habitats using a variety
of techniques, which will develop future conservation and cultivation plans [17].

Species distribution modeling is a developing field of study that employs niche theory
to derive the ecological requirements of specific species using mathematical models. These
models combine environmental factors and occurrence data to provide a statistical or
mechanical representation of the organism’s probable distribution [18–20]. Currently, the
most widely utilized niche models for species distribution are GARP (Genetic Algorithm
for Rule-set Production) [21], MaxEnt (Maximum Entropy modeling) [22], Bioclim [23],
Random Forest [24], and the Boosted Regression Tree [25]. Notably, MaxEnt, in accordance
with the principle of maximum entropy [19,22,26], is frequently regarded as outperforming
other species distribution models (SDMs) due to its strong toleration and precise forecasting
in many model intercomparisons [27–29]. Researchers worldwide in the last decade have
achieved significant success in applying species distribution models to issues such as pro-
tecting the diversity of rare animals and plants [30–33], estimating the dangers of invasive
species [34–36], protecting marine ecosystem [37,38], predicting disaster distribution [39],
and disease propagation [40,41], employing the MaxEnt model.

In this study, we used the MaxEnt model, combined with climatic factors, terrain
factors, and soil factors, to predict the suitable area for orchardgrass. The four goals of this
study were to: (1) assess the key external variables affecting the distribution of orchardgrass;
(2) investigate the distribution of suitable areas for orchardgrass under present and future
climate scenarios; (3) predict potential distribution shifts of orchardgrass; (4) pinpoint areas
of habitat expansion and degradation for orchardgrass.

2. Materials and Methods
2.1. Data on Species Occurrence

To collect extensive data on the global natural distribution of orchardgrass, we
searched multiple databases, including the Global Biodiversity Information Facility (GBIF;
https://www.gbif.org/ (accessed on 13 May 2023)) and the Chinese Virtual Herbarium
(CVH; https://www.cvh.ac.cn/ (accessed on 13 May 2023)) [42]. Furthermore, the scientific
names of our target species (Dactylis glomerata) were used as search terms in a Web of Science
(WOS; https://www.webofscience.com (accessed on 13 May 2023)) database search, and
we recorded all the distribution sites that were mentioned in the literature. We conducted
searches in the Chinese National Knowledge Infrastructure (CNKI; https://www.cnki.net/
(accessed on 13 May 2023)) database using the Chinese and scientific names of the target
species [42]. This database is one of the most comprehensive databases in the Chinese
scientific field and also records the distribution points of the target species. By utilizing
these resources, we compiled a comprehensive list of orchardgrass occurrence records and
a distribution map. (Figure 1; Table S1).

https://www.gbif.org/
https://www.cvh.ac.cn/
https://www.webofscience.com
https://www.cnki.net/
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Figure 1. Records points of orchardgrass occurrence created in ESRI ArcMap 10.4.1. 

The distribution data of our target species (orchardgrass) underwent several pro-
cessing steps. Firstly, we convert the longitude and latitude values from sexagesimal to 
decimal. Secondly, we individually verified whether the reported latitudes and longitudes 
matched the corresponding collecting locations. In cases where the records did not match, 
we removed them from the dataset. We then implemented the ENMTools.pl version 1.0.4 
software (https://github.com/danlwarren/ENMTools (accessed on 13 May 2023)) to reduce 
the impact of sampling bias by trimming the occurrence points to retain only one obser-
vation per 5 arc-min grid cell. The environmental data are the same for each grid cell [43]. 
In doing so, we obtained 522 orchardgrass occurrence points. 

2.2. Environmental Variables 
Climate data and terrain data for this study were obtained from the WorldClim da-

tabase (https://www.worldclim.org/ (accessed on 13 May 2023)) and soil data were ob-
tained from the Harmonised World Soil Database (https://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/harmified-world-soil-database-v12/ (accessed on 13 
May 2023)) [44]. In total, 19 bioclimatic variables, 10 soil variables, and 1 terrain variable 
(Table 1) were used as candidates for constructing the MaxEnt model. The climatic data 
from the years 1970 to 2000 were used to depict the current climate, while the predicted 
future climate data came from the most recent WorldClim version 2.1 
(https://www.worldclim.org/ (accessed on 13 May 2023)). Under the BCC-CSM2-MR cli-
mate model, we forecast alterations in suitable areas for the time periods 2041–2060 and 
2081–2100 using the average values of three Shared Socio-economic Pathways (SSPs) [45]. 
The SSPs, which are anticipated to represent various ranges of GHG emission levels, in-
cluded SSP126 (low GHG emissions), SSP370 (mid-GHG emissions), and SSP585 (high 
GHG emissions). In all, this study used 30 different environmental factors, such as soil 
type, altitude, and climate. We used the SDMtools resampling and transformation tool in 
ArcGIS (version 10.4.1) to resample the environmental data. The data was converted to a 

Figure 1. Records points of orchardgrass occurrence created in ESRI ArcMap 10.4.1.

The distribution data of our target species (orchardgrass) underwent several pro-
cessing steps. Firstly, we convert the longitude and latitude values from sexagesimal to
decimal. Secondly, we individually verified whether the reported latitudes and longitudes
matched the corresponding collecting locations. In cases where the records did not match,
we removed them from the dataset. We then implemented the ENMTools.pl version 1.0.4
software (https://github.com/danlwarren/ENMTools (accessed on 13 May 2023)) to re-
duce the impact of sampling bias by trimming the occurrence points to retain only one
observation per 5 arc-min grid cell. The environmental data are the same for each grid
cell [43]. In doing so, we obtained 522 orchardgrass occurrence points.

2.2. Environmental Variables

Climate data and terrain data for this study were obtained from the WorldClim
database (https://www.worldclim.org/ (accessed on 13 May 2023)) and soil data were
obtained from the Harmonised World Soil Database (https://www.fao.org/soils-portal/
soil-survey/soil-maps-and-databases/harmified-world-soil-database-v12/ (accessed on
13 May 2023)) [44]. In total, 19 bioclimatic variables, 10 soil variables, and 1 terrain variable
(Table 1) were used as candidates for constructing the MaxEnt model. The climatic data
from the years 1970 to 2000 were used to depict the current climate, while the predicted
future climate data came from the most recent WorldClim version 2.1 (https://www.
worldclim.org/ (accessed on 13 May 2023)). Under the BCC-CSM2-MR climate model, we
forecast alterations in suitable areas for the time periods 2041–2060 and 2081–2100 using
the average values of three Shared Socio-economic Pathways (SSPs) [45]. The SSPs, which
are anticipated to represent various ranges of GHG emission levels, included SSP126 (low
GHG emissions), SSP370 (mid-GHG emissions), and SSP585 (high GHG emissions). In all,
this study used 30 different environmental factors, such as soil type, altitude, and climate.
We used the SDMtools resampling and transformation tool in ArcGIS (version 10.4.1) to
resample the environmental data. The data was converted to a 5’ resolution and saved in

https://github.com/danlwarren/ENMTools
https://www.worldclim.org/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmified-world-soil-database-v12/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmified-world-soil-database-v12/
https://www.worldclim.org/
https://www.worldclim.org/
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.asc format [46]. The resampling technique employed was nearest neighbor resampling,
where the nearest pixel value from the original data was selected as the new pixel value to
ensure data quality and accuracy.

Table 1. Meaning and units of environment variables used in this study. The variables in bold are the
sixteen variables remaining after an iterative variable reduction process and are the variables used in
the final climate envelope model.

Index Variable Source Description Unit

Bioclimatic
variables

BIO1

Worldclim

Annual Mean Temperature ◦C

BIO2 Mean diurnal range (mean of monthly (max temp–min
temp))

◦C

BIO3 Isothermality (BIO2/BIO7) (×100) %
BIO4 Temperature seasonality (standard deviation × 100) ◦C
BIO5 Max temperature of the warmest month ◦C
BIO6 Min temperature of the coldest month ◦C
BIO7 Temperature annual range (BIO5–BIO6) ◦C
BIO8 Mean temperature of wettest quarter ◦C
BIO9 Mean temperature of driest quarter ◦C

BIO10 Mean temperature of warmest quarter ◦C
BIO11 Mean temperature of coldest quarter ◦C
BIO12 Annual precipitation mm
BIO13 Precipitation of wettest month mm
BIO14 Precipitation of the driest month mm
BIO15 Precipitation seasonality (coefficient of variation) mm
BIO16 Precipitation of the wettest quarter mm
BIO17 Precipitation of the driest quarter mm
BIO18 Precipitation of the warmest quarter mm
BIO19 Precipitation of the coldest quarter mm

Terrain
variables Elevation Worldclim Elevation m

Soil variables

ESP Harmonised World Soil
Database Exchangeable sodium percentage —

Gravel Volume percentage of gravel —
OC Percentage of organic carbon —
PH Soil reaction mol·L−1

AWC Available water capacity g/kg
Bulk Cation exchange capacity cmol (+)/kg
Clay Percentage of clay —

Drainage Soil drainage class —
CECS Cation exchange capacity of the clay fraction —
Sand Percentage of sand —

ENMTools.pl was utilized to examine the correlation between the candidate variables
(19 bioclimatic variables, 1 terrain variable, and 10 soil variables) in order to prevent multi-
collinearity among the variable inputs. The threshold of Pearson correlation coefficient was
set at 0.75, and the correlated variables were removed accordingly [47]. Finally, we chose
BIO2 (mean diurnal range), BIO4 (temperature seasonality), BIO5 (max temperature of the
warmest month), BIO15 (precipitation seasonality), BIO16 (precipitation of wettest quar-
ter), BIO17 (precipitation of driest quarter), BIO19 (precipitation of coldest quarter), ESP
(Exchangeable sodium percentage), Gravel (Volume percentage of gravel), OC (percentage
of organic carbon), AWC (available water capacity), Bulk (cation exchange capacity), Clay
(percentage of clay), Drainage (soil drainage class), elevation, and PH, as the environmental
factors to construct the model of species distribution (Figure 2, Table S2).
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2.3. Optimization of Model Parameters

We optimized the regularization multiplier and feature class parameters in R version
3.6.3 [48] using the Kuenm package (https://github.com/marlonecobos/kuenm (accessed
on 13 May 2023)). This package is a prerequisite for building the species distribution
model with MaxEnt version 3.4.4 (https://biodiversityinformatics.amnh.org/open_source/
maxent/ (accessed on 13 May 2023)). The training set consisted of 75% of the data, which
comprised of 392 occurrence points. It was determined that 1160 candidate models could
be tested, representing all possible combinations of the 29 feature class combinations and
the 40 regularization multiplier settings (0.1 to 4 with an interval of 0.1). The model’s
statistical significance, predictive performance, and complexity were evaluated in a se-
quential manner, with the partial ROC being assessed first, followed by the omission rates,
and finally the AICc values. The statistical significance of the candidate models was the
initial criterion for screening them. Second, to narrow the pool of models, omission rate
requirements (i.e., 5% where feasible) were applied. In the final round of model selection,
we chose models that had the lowest delta AICc values (<2) and met both the criteria of
statistical significance and low omission rates.

https://github.com/marlonecobos/kuenm
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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2.4. Species Distribution Model

Construct species distribution models with MaxEnt 3.4.4 utilizing the above 16 envi-
ronmental layers. Notably, the majority of earlier studies have concentrated on predicting
suitable habitats in countries such as China and Pakistan using models that essentially
use the standard parameters, leading to subpar model accuracy [49,50]. Therefore, to
improve the accuracy of the model data, we employed the reg_mult function from the
Kuenm package (https://github.com/marlonecobos/kuenm (accessed on 13 May 2023)).
for model performance screening in our study. In addition to simulating regularization
multipliers ranging from 0.1 to 4, the models with five types of feature categories (Hinge,
Threshold, Linear, Quadratic, Product, and Threshold) also optimized their respective
parameters [48,51]. Ten replicates were conducted for our analysis, with a maximum of
5000 iterations and 10,000 background points, encompassing the sixteen environmental lay-
ers mentioned earlier. The area under the receiver operating characteristic curve (AUC) was
used to evaluate the model’s performance [52]. An AUC value of 0.9–1.0 indicates a perfect
prediction and a value of < 0.5 represents a random prediction [44]. Using the Jackknife
test, we evaluated the relative contributions of each environmental variable [22]. Each grid
cell has a probability of the model’s output value being between 0 and 1, which can be read
as a measure of relative suitability. The model outputs were categorized using the MTSPS
(maximum test sensitivity plus specificity) threshold: grid cells with suitabilities above the
MTSPS threshold were classified as potentially suitable habitat, while others were classified
as unsuitable habitat [53]. We employed ArcGIS version 10.4.1 to create distribution maps,
compute the percentage of potentially appropriate areas, and determine the average output
of the BCC-CSM2-MR global model for the same SSP and identical period. The present
study mainly summarizes the predicted mean results of the BCC-CSM2-MR global model
under the different GHG emission scenarios in 2041–2060 and 2081–2100. The proportions
of contracted and extended potentially suitable areas in orchardgrass, as well as changes in
the potentially suitable areas of their centroids, were examined using SDMtoolbox version
2.4 software [54–56].

2.5. Estimation of Orchardgrass Distribution Area

In this study, we retrieved global land area data from the Food and Agriculture
Organization of the United Nations (FAO) website (https://www.fao.org/ (accessed on
13 May 2023)) and used ArcGIS version 10.4.1 to divide it into suitable and unsuitable areas
using the MTSPS method. By calculating the percentage of suitable and unsuitable grid
cells out of the total grid cells and multiplying it by the corresponding area of each region,
we can determine the area of suitable and unsuitable areas.

3. Results
3.1. Modeling of Species Distribution

The assessment revealed that the MaxEnt model with QPH (quadratic, product, and
hinge) feature type parameters and a regularization multiplier of 2.6 was the most effective
one that was used to proceed with further analysis. Under the current scenario, test AUC
values from the final models’ tenfold cross-validation are 0.919 (Figure 3), while the MaxEnt
model’s forecasts for potential orchardgrass habitats delivered positive outcomes, with a
range of AUC values from 0.914 to 0.922 (Figure S1).

Internal jackknife testing of the MaxEnt model showed that temperature seasonality
(Bio4, 34.9% of contribution), mean diurnal range (Bio2, 22.9% of contribution), the max tem-
perature of the warmest month (Bio5, 7.8% of contribution), precipitation of coldest quarter
(Bio19, 6.6% of contribution), contributed most to the Maxent model for orchardgrass, with
an overall contribution of 72.2% (Table 2). Precipitation of wettest quarter (Bio16), PH, pre-
cipitation seasonality (Bio15), and other indicators made up 27.8% of the total contribution.
Ecological thresholds for important environmental factors are known from environmental
factor response curves (Figure S2): temperature seasonality (411.50–1034.37 ◦C), mean

https://github.com/marlonecobos/kuenm
https://www.fao.org/


Agronomy 2023, 13, 1985 7 of 17

diurnal range (−0.88–10.69 ◦C), precipitation of the coldest quarter (116.56–825.40 mm),
and max temperature of the warmest month (17.08–40.84 ◦C).
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Table 2. Environmental factors contributing to the current suitable habitat for orchardgrass and
their thresholds in MaxEnt models. Only the top four contributing environmental factors out of 16
are listed.

Code Environmental Factor Percent Contribution (%) Suitable Threshold Units

Bio4 temperature seasonality 34.9 411.50–1034.37 ◦C
Bio2 mean diurnal range 22.9 −0.88–10.69 ◦C

Bio5 max temperature of the warmest
month 7.8 17.08–40.84 ◦C

Bio19 precipitation of the coldest quarter 6.6 116.56–825.40 mm

3.2. Current Suitable Distribution for Orchardgrass

Habitats for orchardgrass (Figure 4a) were widely distributed over three continents,
primarily in western and southern North America, Europe, southwestern and southeastern
Asia, and a few in southern South America, northern Africa, and southeastern Oceania, but
not in Antarctica. The total appropriate habitat area was 2133.01 × 104 km2, accounting for
14.19% of the world’s land area.

Six continents had different suitable habitat distributions for orchardgrass (Figure 4b).
Europe had the largest total area of appropriate habitat (754.79 × 104 km2), covering most
of the continent. Asia had the second biggest area, with a total appropriate habitat area
of 597.64 × 104 km2, largely in China, Turkey, and Iran. The appropriate habitat area for
orchardgrass in North America was 247.80 × 104 km2, largely found in coastal areas of
the United States and Canada. Oceania has the smallest amount of suitable habitat for
orchardgrass out of all the continents, with only 70.21 × 104 km2 concentrated in the coastal
areas of New Zealand and southeastern Australia. These findings support the current
distribution pattern of orchardgrass and demonstrate the accuracy of using MaxEnt to
predict species distribution patterns.
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The study investigates the potential redistribution of orchardgrass habitats in the
twenty-first century in response to climate change under three different scenarios. Based on
a comparison of the present appropriate habitats (Figure 4a) with the predicted appropriate
habitats for 2041–2060 and 2081–2100, we examined several tendencies that appeared under
various climatic scenarios. (Figure 5). Total suitable habitat expanded from 75.91 × 104 km2
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varied from 182.04 × 104 km2 (ssp126, 2041–2060) to 378.50 × 104 km2(ssp585, 2081–2100).
Overall, the findings demonstrated that rising GHG emissions were significantly associated
with a global shrinkage in the extent of appropriate habitats for orchardgrass. During
the second half of the twenty-first century, the southern hemisphere, more notably South
America, Central Africa, and Oceania had a particularly dramatic decline. The shrinking
of Asia and South America is the most noteworthy at the end of the twenty-first century,
owing to increasing GHG emissions.
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and ssp585 scenarios compared to the current distribution.

Significant expansion and contraction of suitable orchardgrass habitat towards the
northwest were noted in all future climate scenarios, with significant differences between
continents (Figure 6a, Table S3). Interestingly, appropriate growth regions in Asia, Europe,
and North America stretch to high latitudes, with Asian habitat expansion ranging from
20.49 × 104 km2 (ssp126, 2081–2100) to 38.13 × 104 km2 (ss585, 2041–2060). European
habitat expansion ranged from 6.24 × 104 km2 (ssp245, 2041–2060) to 61.94 × 104 km2
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(ssp585, 2081–2100). In contrast, the size of the habitats in North America ranged from
33.58 × 104 km2 (ssp245, 2041–2060) to 160.60 × 104 km2 (ssp585, 2081–2100) (Table S4).
North America has the largest area of suitable expansion. We observed that habitat ex-
pansion in Asia has occurred mainly in eastern Russia, eastern Kazakhstan, and east-
ern Afghanistan. The European habitat extension regions were mostly in western Rus-
sia, Finland, and Sweden, comparatively, the majority of the North American habitat
extension regions were in the US and Canada. The study showed that the southern
hemisphere’s orchardgrass habitat is rapidly shrinking, with South American habitat
areas declining by 16.74 × 104 km2 (ssp126, 2041–2060) to 36.20 × 104 km2 (ssp585,
2081–2100), which was 14.29 to 48.43 times the extent of expansion (4.04 × 103 km 2

[ssp126, 2041–2060] to 2.53 × 103 km2 [ssp585, 2081–2100]). On the other hand, Oceania
contracted by 14.70 × 104 km2 (ssp124, 2041–2060) to 28.22 × 104 km2 (ssp245, 2081–2100),
which was 4.01 to 24.29 times the extent of expansion (1.16 × 104 km2 [ssp245,2081–2100]
to 3.94 × 104 km2 [ssp126, 2081–2100]). African habitat areas contracted by 24.90 × 104 km2

(ssp126, 2041–2060) to 33.57 × 104 km2 (ssp126, 2081–2100), which was 0.80 to 5.70 times the
extent of expansion (4.37 × 104 [ssp126, 2041–2060] to 72.78 × 104 km2 [ssp585, 2081–2100])
(Table S4). The majority of the contracted regions were in Congo, Morocco, and Libya
in Africa, Argentina and Chile in South America, and southeastern Australia and New
Zealand in Oceania.
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4. Discussion
4.1. MaxEnt Modeling

MaxEnt, unlike other software programmes, can evaluate model performance using
the under-the-curve (AUC) value of the receiver operating characteristic (ROC) curve [57],
correct the sample deviation when obtaining data from a known distribution [58,59], and
lessen spatial biases for the global distribution of species in the GBIF database [60]. AUC
values for orchardgrass in this study, which were greater than the random AUC value of
0.50 and close to 1.00, demonstrated the reliability of the built-in model. Therefore, our
model is able to accurately calculate the global distribution of orchardgrass habitat based
on its performance.

Although the MaxEnt model possesses higher predictive performance and is widely
used for predicting species distribution changes, it still has limitations such as high com-
putational complexity, limited explanatory power, and susceptibility to the influence of
low-resolution environmental data [61]. While climate and soil conditions are taken into
account by the MaxEnt model, additional factors including adaptive ability, interspecific
relationships, human development, and land utilization may also influence species dis-
tribution. In assessing model performance, AUC is sometimes not sufficient to assess
model performance, and other metrics such as the Kappa coefficient and TSS are also
important [62]. It is suggested that future studies may consider using more metrics to
assess model performance. As a result, when all relevant factors are taken into account, we
anticipate that orchardgrass suitable habitat will decline even more as a result of future
global warming, and the reduction in habitat area may be more dramatic. However, the
ensuing simulations might not always be more accurate if all variables are included in the
model, because the impact of important variables might be reduced. Therefore, scientific
selection of variables is needed to make the model more accurate and the results more
meaningful.
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4.2. Suitable Habitat Distribution Patterns of Orchardgrass under the Current Environment

Orchardgrass has a complicated distribution and diversity, most of which may be
explained by its recent evolutionary, genomic histories, and migratory [63]. In general, re-
sponse curves can be used to correlate species occurrence probability with major ecological
factors. If a species is likely to have a probability of occurrence greater than 60%, the related
ecological factor thresholds are appropriate for the existence of this species [26,64,65]. Ac-
cording to MaxEnt results and environmental factor response curves, the key environmental
factors influencing distribution for orchardgrass in this study were temperature seasonality,
mean diurnal range, maximum temperature of the warmest month, and precipitation of
the coldest quarter. Findings from this study are consistent with those from previous
studies [66,67].

According to our research, orchardgrass has a total suitable habitat area of 2133.01 ×
104 km2, with the majority of these areas being in Europe (including the Eastern European
Plain, the Central European Plain, and the Western European Plain), Asia (including the
Sichuan Basin, Yunnan-Guizhou Plateau, Northeast Plain, Middle and Lower Yangtze Plain,
the North China Plain, and Japan), and North America (including the Cascade Mountain).
This is consistent with the field distribution site of orchardgrass [68]. Since high-suitability
locations are more beneficial to preserving orchardgrass variety than low-suitability areas,
breeding, cultivation, and ex-situ conservation of orchardgrass species should be carried
out in these locations.

4.3. Response of Suitable Habitats for Orchardgrass to Future Climate Change

Climate change, particularly worldwide warming, alters the pattern of precipitation
distribution in addition to changing local temperatures. The distribution of these climatic
factors will shift when the change is near to or over the adaptation threshold of the present
plant development [69]. Our research demonstrates that different climate scenarios have
different areas and distributions of orchardgrass suitable habitats, suggesting that the
distribution of these habitats was impacted by climate change in spatially particular ways.

Among the 16 environmental variables adopted in the model, temperature seasonality
and mean diurnal range made the greatest contributions to the distribution model for
orchardgrass compared to other variables, indicating that these factors play important
roles in its distribution. The probability of orchardgrass distribution increases and then
decreases with the increase in temperature seasonality and mean diurnal range.

This result is supported by the fact that the climatic characteristics of an area act as key
elements for population regeneration [70]. Orchardgrass is widely distributed in temperate
and tropical regions of central and western Asia, temperate regions of southwestern Europe,
and the Canary Islands of northern and western Africa [71]. Temperature seasonality refers
to the magnitude of the temperature change between seasons [72]. In temperate and
tropical regions of central and western Asia, where winters are cold and summers are hot,
this temperature variation affects orchardgrass growth and dormancy cycles [73]. In the
temperate regions of south-west Europe, where winters are warm and humid and summers
are hot and dry, orchardgrass is well adapted to such environmental conditions [74,75]. This
may explain the large values of temperature seasonality in orchardgrass. In contrast, in the
Canary Islands in northern and western Africa, temperature seasonality is relatively small,
and the warm and stable climate allows orchardgrass to grow and reproduce continuously.
These connections help us better understand the ecological characteristics of orchardgrass
and their interactions with the environment.

There is a certain relationship between plant growth and development and mean
diurnal range [76]. The diurnal range is the difference between the daily maximum and
minimum temperatures and is often used to describe the change in temperature between
day and night [77]. Temperature regimes with a 5–15 ◦C amplitude enhanced seed germina-
tion percentages of orchardgrass, indicating that the conditional dormancy was released by
these temperature regimes. Seeds germinated more rapidly under alternating temperatures
than under constant temperatures. The dual effects of temperature on dormancy breaking
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and germination were accounted for by thermal time models based on alternating temper-
ature regimes [78]. The impact of different diurnal temperature ranges on the growth of
orchardgrass varies. Orchardgrass grown in the 21 ◦C day/13 ◦C night environment pro-
duced more aerial dry matter and had a larger leaf area compared to orchardgrass grown
in the 29 ◦C day/31 ◦C night environment [79]. Under warm conditions (32 ◦C day/24 ◦C
night), orchardgrass produces fewer flowering stems, while under cool or temperate condi-
tions (18 ◦C day/10 ◦C night), it produces a higher number of flowering stems. Additionally,
under these temperature conditions, orchardgrass exhibits the highest levels of growth
rate, yield, tillering, leaf area, and dry matter allocation [80]. Therefore, the growth and
adaptability of orchardgrass may be influenced by the diurnal temperature range in its
surrounding environment. Understanding this relationship helps to gain deeper insights
into the ecological adaptability of goosegrass under different environmental conditions
and can provide valuable references and guidance for agricultural applications.

Our findings suggest suitable habitats for orchardgrass will experience considerable
expansion and contraction across continents according to future climate scenarios. Orchard-
grass is highly resistant to cold but shows cessation of growth at extreme temperatures [66].
With global warming, some high latitudes in the northern hemisphere may become suitable
habitats for orchardgrass due to increased temperatures, whereas some low latitudes may
face extended periods of extreme heat or dryness, posing a threat to the survival of or-
chardgrass. orchardgrass distribution continually changes north-westward, with European
areas at its center, under future climatic circumstances. As the temperature goes up, the
orchardgrass distribution area shifts farther away. The offset distances under different
GHG emission scenarios in 2041–2060 are smaller than those in 2081–2100, and they reach
a maximum of 1143.49 km under the high concentration emission scenario in 2081–2100
(Figure 6b). As a result, it is already evident that places at high latitudes are becoming more
appropriate for orchardgrass, but as global warming progresses, orchardgrass habitats will
generally decrease. Due to projected global warming, the southern hemisphere may no
longer be suitable for orchardgrass, including South Africa and Angola in Africa, Chile
and Argentina in South America, and southern Australia and New Zealand in Oceania.
Surveys and collection of orchardgrass germplasms in these places are required to con-
serve the genetic variety of this plant, and some exceptional or unusual germplasm can
be maintained in vitro for future use by asexual propagation. Areas such as Europe, the
hilly and mountainous regions in southwest China and the Yangtze River Basin, as well as
the northeast region of China and the Cascade Mountain Range, and Pacific Coast Ranges,
which are mostly unaffected by climate change can serve as a base for future large-scale
orchardgrass cultivation and usage, the preservation of local genetic resources, and other
agricultural activities.

5. Conclusions

A MaxEnt model was successfully developed to represent the currently suitable areas
for orchardgrass and predict the potential distribution of orchardgrass under future climate
scenarios. The temperature seasonality and mean diurnal range were determined in this
study as the ecological thresholds for the important environmental variables. Based on
the results of the study, there are important implications for governmental departments to
formulate relevant policies: firstly, protection and management, through the establishment
of nature reserves, prohibiting destructive development and other measures to protect the
ecological environment of orchardgrass; secondly, promotion of large-scale production,
through financial support, technical training and other means to help farmers to carry out
sustainable production of orchardgrass; thirdly, the formulation of policies and standards,
including land-use planning, environmental protection regulations; Thirdly, to formulate
policies and standards, including land use planning and environmental protection regula-
tions, to protect and utilize orchardgrass; and lastly, to support research and monitoring,
and to provide a scientific basis for policy adjustments and preventive measures by funding
scientific research and monitoring work. These insights will help to balance economic
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development and ecological conservation goals to ensure the sustainable development of
orchardgrass and the integrity of the ecosystem.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13081985/s1, Table S1: The occurrence records of orchard-
grass in the world; Table S2: Pearson correlation coefficient of environmental variables; Table S3: Pro-
jected potential suitable areas for orchardgrass under current and future climate scenarios; Table S4:
The area change of suitable habitat of orchardgrass under different future climate scenarios on differ-
ent continents; Figure S1: Receiver operating characteristic under future climate conditions; Figure S2:
Response curves of the main predictors of orchardgrass citri occurrence probability. Curves show
the mean response over ten replicate Maxent runs (red) and the mean ± 1 SD (blue, two shades for
categorical variables).
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