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Abstract: Plant N concentration (PNC) has been commonly used to guide farmers in assessing
maize (Zea mays L.) N status and making in-season N fertilization decisions. However, PNC varies
based on the development stage. Therefore, a relationship between biomass and N concentration is
needed (i.e., critical N dilution curve; CNDC) to better understand when plants are N deficient. A few
CNDCs have been developed and used for plant N status diagnoses but have not been tested in the US
Midwest. The objective of this study was to evaluate under highly diverse soil and weather conditions
in the US Midwest the performance of CNDCs developed in France and China for assessing maize
N status. Maize N rate response trials were conducted across eight US Midwest states over three
years. This analysis utilized plant and soil measurements at V9 and VT development stages and
final grain yield. Results showed that the French CNDC (y = 34.0x−0.37, where y is critical PNC,
and x is aboveground biomass) was better with a 91% N status classification accuracy compared
to only 62% with the Chinese CNDC (y = 36.5x−0.48). The N nutrition index (NNI), which is the
quotient of the measured PNC and the calculated critical N concentration (Nc) based on the French
CNDC was significantly related to soil nitrate-N content (R2 = 0.38–0.56). Relative grain yield on
average reached a plateau at NNI values of 1.36 at V9 and 1.21 at VT but for individual sites ranging
from 0.80 to 1.41 at V9 and from 0.62 to 1.75 at VT. The NNI threshold values or ranges optimal for
crop biomass production may not be optimal for grain yield production. It is concluded that the
CNDC developed in France is suitable as a general diagnostic tool for assessing maize N status in
US Midwest. However, the threshold values of NNI for diagnosing maize N status and guiding N
applications vary significantly across the region, making it challenging to guide specific on-farm N
management. More studies are needed to determine how to effectively use CNDC to make in-season
N recommendations in the US Midwest.

Agronomy 2023, 13, 1948. https://doi.org/10.3390/agronomy13071948 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13071948
https://doi.org/10.3390/agronomy13071948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-8419-6511
https://orcid.org/0000-0002-9539-0050
https://orcid.org/0000-0002-6677-854X
https://doi.org/10.3390/agronomy13071948
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13071948?type=check_update&version=1


Agronomy 2023, 13, 1948 2 of 13

Keywords: critical nitrogen dilution curve; nitrogen nutrition index; soil nitrate-N content; crop
nitrogen status diagnosis; precision nitrogen management

1. Introduction

Precision nitrogen (N) management can improve N use efficiency by synchronizing N
supply and crop N demand in space and time, which can minimize negative environmental
impacts and maintain or increase crop yield [1]. To determine crop N demands, farmers
need to accurately diagnose crop N status at key development stages. Historically, N
diagnosis techniques for maize (Zea mays L.) have focused either on soil N availability via
soil nitrate sampling or plant N concentration (PNC) via plant tissue analysis, which is
compared to a standardized critical soil or plant N concentration to determine if and how
much additional N fertilizer is needed [2,3]. Sampling for PNC can provide a better assess-
ment of N needs compared to soil sampling as plants integrate many factors influencing N
availability [2–4]. But many have found PNC alone unreliable for predicting grain yield
and in-season N fertilizer needs [2,4–6].

One difficulty of using PNC as a diagnostic tool is the critical N concentration changes
throughout maize development as PNC becomes diluted with greater above-ground
biomass (AGB) [7,8]. To overcome this difficulty for maize, critical N concentrations
have been used to relate AGB using a negative power function, termed ‘critical N dilution
curve’ (CNDC; Nc = aW−b) [7], where Nc is the critical N concentration for N sufficient
maize in g kg−1, and W is the shoot biomass expressed in Mg ha−1 [9]. The a and b terms
are estimated parameters, where a represents the Nc at 1 Mg ha−1 of total shoot biomass,
and b describes the decreasing relationship between Nc and AGB [7]. The concern of
growth-stage dependency with PNC is, thus, resolved by dividing the measured PNC by
an established Nc at a specific AGB, creating an easy-to-interpret N nutrition index (NNI)
of plant N status. Crop N status is optimal when NNI is 1, while NNI > 1 indicates surplus,
and NNI < 1 indicates deficiency [7]. For practical applications, different threshold ranges
have been proposed for optimal crop N status {e.g., 0.9 < NNI ≤ 1.1 [10]; 0.95 < NNI ≤
1.05 [11]; 1.00 ≤ NNI ≤ 1.25 [12]}.

While CNDC might be useful to manage in-season N applications, as with most
diagnostic tools, CNDC is crop-specific [13–18]. For maize, a CNDC for long-season
hybrids originated in France and was reported [14] and validated by others in Canada [19]
and the Shandong Province of China [20]. But researchers in Northeast China, where
shorter-season hybrids are typically grown, found this CNDC unsuitable for N status
diagnosis [21–23], and a new CNDC was developed [21]. Failure for one CNDC to work
across regions and hybrids supports the need for region-specific curves. Further, it is
well established that many factors influence plant N status, including genotypes [24], soil
texture [25,26], crop rotation [25,27], tillage [28], and weather [29].

The US is the world’s largest producer and exporter of maize, with over 80% of its
production in the Midwest region [30]. A series of environmental problems has been linked
to maize production in this region, and there is a great need to improve maize N management
for sustainable development in the US Midwest [31–34]. The CNDCs developed elsewhere
have not been tested extensively in the US Midwest for their suitability in assessing maize N
status. Therefore, the objective of this study was to evaluate under highly diverse soil and
weather conditions in the US Midwest the performance of CNDCs developed in France and
China for assessing maize N status. A secondary objective was to determine the relationship
of the NNIs from the US Midwest with relative grain yield and soil nitrate.

2. Materials and Methods
2.1. Research Sites and Treatment

A total of 49 maize N rate response trials were conducted from 2014 to 2016 in eight
US Midwestern States (Illinois, Indiana, Iowa, Minnesota, Missouri, Nebraska, North
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Dakota, and Wisconsin) as part of a public–industry partnership, and the details of these
experiments can be found in [35]. Briefly, eight N application treatments, including 0, 45,
90, 135, 180, 225, 270, and 315 kg N ha−1, were arranged in a randomized complete block
design with four replications at each site. N was applied 100% at planting with a single
source of ammonium nitrate.

2.2. Sampling and Laboratory Procedures

Plant sampling and PNC analysis were conducted at the V9 ± 1 development stage [36]
for 13 locations (2015–2016) and at the VT developmental stage for 47 locations (2014–2016).
Plant samples were collected by cutting six representative plants at ground level. Sam-
ples were oven-dried at 60 to 70 ◦C to a constant weight, then ground to pass through
a <1 mm sieve and sent to Agvise Laboratories Inc. (Northwood, ND, USA) to deter-
mine PNC via combustion analysis (Dumas Combustion method with an Elementary
Rapid N Cube Nitrogen Analyzer; Elementar Analysensyteme GmbH Landgenselbold,
Langenselbold, Germany).

Soil samples were also collected for each N application treatment at the same time as
plant sampling by taking a composite of six cores with a hand probe to a depth of 30 cm.
The soil samples were air dried, ground, passed through a 2 mm sieve, and analyzed for
soil nitrate-N concentration using a cadmium reduction method [37] at Agvise Laboratories
Inc. Additional details regarding the plant and soil measurement and analysis protocols
can be found in [35].

Grain yield was determined by hand or combine harvesting of the middle two or four
rows (depending on plot length and width) of each plot. Grain moisture was adjusted to
15.5 g kg−1.

2.3. Data Analysis

The data with AGB ≥ 1 Mg ha−1 and the corresponding PNC were compared using
an analysis of variance (ANOVA; SPSS 18.0, SPSS Inc., Chicago, Illinois, USA). Sites with
no AGB response to N application rates (p > 0.05) were excluded from evaluating the
CNDCs. The data were classified into N-limiting and non-limiting groups according to
criteria from [19,38]. The N-limited maize increased in AGB (p ≤ 0.05) with increasing N
rate, whereas non-limiting maize increased in PNC but not AGB (p ≤ 0.05) with increasing
N rate.

The NNI of maize at each sampling date and N rate was determined by dividing the
PNC by Nc at the same AGB and NNI assessed with the French (Equation (1)) [14] and
Chinese (Equation (2)) CNDCs [21].

Nc = 34.0W−0.37 (1)

Nc = 36.5W−0.48 (2)

where Nc is the critical plant N concentration, and W is the total shoot biomass expressed
in Mg ha−1 based on dry matter weight.

The NNI values were related to soil nitrate measurements collected at the same time as
plant tissue sampling. The NNI values were also compared to relative grain yield (i.e., each
grain yield divided by that site year’s largest grain yield [11]. The relationship between
relative yield and NNI was examined using a linear-plateau function in SAS version 9.4
(SAS Institute, 2015, Cary, NC, USA).

3. Results
3.1. Variability of Plant and Soil N Status Indicators

Both plant and soil N status indicators varied across different N rates, development
stages, and site years (Table 1, Figure 1). Soil nitrate-N content had larger variability
(CV = 59.8–136.6%) than plant N status indicators (CV = 26.1–54.2%) across growth stages.
The well-established fact that average PNC decreases as shoot biomass increases [7] was
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observed as the crop developed from V9 to VT. The CV for PNC and NNI was similar
across growth stages (26.1–29.2%), but it was greater for AGB and plant N uptake at the V9
stage (44.3–54.2% vs. 29.4–37.8% at VT). Greater variability in V9 AGB and PNU may be a
reflection of the sampling protocol since plants were collected between V8 and V10 (V9 ± 1
development stage). All plant and soil N status indicators were significantly affected by
different N application rates, with large variabilities at each N rate (Figure 1). All the N
status indicators increased with N rates, and so were their variabilities in most cases.
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Table 1. Descriptive statistics of plant N concentration, shoot biomass, plant N uptake, nitrogen
nutrition index (NNI), and soil nitrate-N content in the 0–30 cm depth at different growth stages for
maize from N rate response trials conducted in the US Midwest Corn Belt.

Growth Stage V9 (n = 104) VT (n = 112) Across All Stages (n = 600)

Mean Range SD CV Mean Range SD CV Mean Range SD CV

Plant N concentration (g kg−1) 28.0 11.4–43.3 8.2 29.2 16.0 7.5–25.5 4.2 26.5 21.8 7.5–43.3 8.8 40.5
Above-ground biomass (Mg ha−1) 2.4 0.4–6.2 1.3 54.2 8.8 2.5–14.8 2.6 29.4 5.7 0.4–14.8 3.8 66.4

Plant N uptake (kg ha−1) 62.3 9.6–129.1 27.6 44.3 140.9 32.4–264.4 53.3 37.8 103.1 9.6–264.4 58.1 56.4
NNI 1.07 0.42–1.53 0.28 26.1 1.04 0.38–1.76 0.30 29.1 1.05 0.38–1.76 0.29 27.6

Soil nitrate-N content in 0–30 cm
(kg ha−1) 124.1 16.4–320.6 74.3 59.8 38.4 2.2–241.1 52.4 136.6 79.7 2.2–320.6 76.9 96.5

SD: standard deviation of the mean; CV: coefficient of variation (%).
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3.2. Evaluation of the Existing Critical N Dilution Curves

At the V9 stage, both CNDCs had the same accuracy (89%) for classifying N-limiting
and non-limiting conditions (Figure 2, Table 2). At the VT stage, the French CNDC main-
tained similar accuracy for both classifications. In contrast, the Chinese CNDC was only
66% accurate for N-limited maize, though the classification of N non-limiting was nearly
98% accurate (Figure 2, Table 2). Because the French CNDC maintained reasonably good
(88–92%) accuracy over both development stages with this dataset, it was concluded to be
a better match for maize N status diagnosis in the Midwest US Corn Belt. As a result, only
the French CNDC was used for additional analyses.
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Figure 2. Evaluation of critical N dilution curves (CNDC) developed in France (solid line) [14] and
China (dashed line) [21] using shoot biomass and N concentration data from corn grown under
N−limiting and non−limiting conditions in the US Midwest at V9 and VT development growth
stages (a), at V9 only (b) and at VT only (c). Each point represents the value of each replication of a
site-year and N rate treatment.
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Table 2. Evaluation of the critical N dilution curves (CNDC) developed in France [14] and China [21]
for assessing N sufficiency of maize grown in the US Midwest Corn Belt using data from N limiting
and N non-limiting treatments.

Growth Stage
Accuracy of French Critical N Dilution Curve (%) Accuracy of Chinese Critical N Dilution Curve (%)

Total N-Limiting N-Non
Limiting Total N-Limiting N-Non

Limiting

V9 (n = 187) 89.6 87.5 90.3 89.2 87.5 89.7
VT (n = 463) 91.8 89.1 92.9 88.6 66.4 97.7

Across all
stages (n = 650) 90.7 88.3 91.5 61.6 39.0 66.7

3.3. Grain Yield Relative to NNI

Employing the French CNDC, NNI values ranged from 0.29 to 1.70 for V9 and 0.36
to 1.97 for VT development stages (Figure 3). The NNI values greater than 1 indicate
that maize takes up more N than needed for the early season maximum growth [7]. The
relationship between relative grain yield and NNI was described using a linear plateau
model, with R2 of 0.87 at the V9 and VT stages, respectively (Figure 3). Across site years,
the relative grain yield plateaued at an NNI of 1.36 at the V9 development stage and 1.21 at
the VT development stage. The NNI threshold values when relative yield reached a plateau
for a specific site year varied from 0.80 to 1.41 at V9 and from 0.62 to 1.75 at VT (Figure 4).
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3.4. NNI and Soil Properties

Across N rates and site years, NNI was significantly related to soil nitrate-N content
by a second-order polynomial at V9 (R2 = 0.38) and VT (R2 = 0.56) development stages
(Figure 5). At V9, NNIs at most site years increased with soil nitrate-N content until
~200 kg N ha−1, peaking at 1.37 (data not shown). NNI increased more rapidly with
increased soil nitrate-N content at VT than at V9, increasing to 1.6 at soil nitrate-N of
~150 kg N ha −1 (Figure 5).
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Relative grain yield increased with soil nitrate-N content and reached a plateau at
about 100 kg ha−1 at the V9 stage (Figure 6 left). At the VT stage, relative grain yield
reached the plateau at nitrate-N content less than 50 kg ha−1, and most site years had very
high yield at soil nitrate-N content close to 0 kg ha−1(Figure 6).
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Relationships between N fertilization rate and NNI differed among soil textural groups
at V9 and VT development stages (Figure 7). For both stages, increasing the N rate increased
NNI for all textural groups except fine sand at VT. The fine sand group had lower NNI
than the loam groups at N rates > 0 kg N ha−1. These results suggest NNI threshold could
be improved by accounting for soil texture.
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4. Discussion
4.1. Evaluation of Published Critical N Dilution Curves

Using data from a wide range of growing conditions in the US Midwest, it was
identified that of the two CNDCs evaluated, the French CNDC [14] best predicted when
maize plants were N deficient or sufficient compared to the Chinese CNDC [21]. This
French CNDC was also moderately related to both grain yield and soil nitrate content,
further validating that this approach could be a guide for recommending N rates in-season.

The generalized CNDC equation Nc = aW−b is mainly centered on the relationship
between PNC and AGB, which is closely related to the ratio of metabolic (e.g., leaves)
to structural (i.e., roots and shoots) plant parts. Both PNC and AGB can be affected by
plant density [39,40], soil texture [41–43], weather conditions [43,44], as well as other soil-
landscape properties (i.e., topography, soil organic matter content, and water-holding
capacity, etc.) [43,45]. Variations in the CNDC of early and late rice (Oryza sativa L.) [46],
summer (shorter season variety), and spring (longer season variety) maize [23], and ex-
perimental sites [38] have been reported. So, while universal CNDCs are sought, a wide
range of factors should be considered when they are developed, evaluated, and applied in
production agriculture.

In order to develop a CNDC model with broad applicability for maize across a large
region, such as the US Midwest, it is important to represent multiple maize development
stages, environmental conditions (e.g., soils, weather, management), and hybrids. While
the evaluation in this study was rich with varied environmental conditions, it was limited
to only two crop development stages and a limited number of hybrids, which limits the
utility of developing a CNDC for the US Midwest. However, using a large dataset like this
study to evaluate other published CNDCs is appropriate and valuable.

Compared with the Chinese CNDC, the French CNDC has a higher a value and a
lower b value, which indicates a higher Nc per Mg ha−1 of AGB. Physiologically, it means a
more rapidly decreasing Nc with increasing AGB. The French CNDC was developed based
on irrigated maize under higher planting densities (90,000 plants ha−1) [14], while the
CNDC in China was developed under rainfed and lower planting densities (60,000 plants
ha−1) [21]. The dataset for this analysis came from planting densities ranging from about
67,500 to 96,000 plants ha−1. Though dominated by rainfed sites (~85%), this research
also included irrigated sites. This study included both short-season hybrids used in North
Dakota, Minnesota, and Wisconsin and longer-season hybrids in other states. Both CNDCs
performed similarly at the V9 development stage, which is the stage important for in-
season N status diagnosis and N recommendations, so both CNDCs could be used at this
development stage. The French CNDC performed slightly better at the VT stage, which is
generally too late for in-season N management decisions, although it can still be important
in irrigated maize fields with fertigation capability. The validity of the French CNDC has
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also been confirmed for maize N status diagnosis in eastern Canada across different soil
textures and hybrids [19]. As a general relationship of the two CNDCs evaluated, the
French CNDC appears to be more suitable for the US Midwest corn N status diagnosis [14].

4.2. Determining Threshold Values of Nitrogen Nutrition Index for Nitrogen Status Diagnosis

The findings here support a linear–plateau relationship between NNI and relative
yield (Figure 3). The relatively good relationship found at V9 (Figure 3) is encouraging
because it is sufficiently early in the growing season to take corrective measures with
in-season N application, and both CNDCs can be used at this stage in the Midwest. The
NNI values at earlier development stages than evaluated in this study were found to have
poor correlations with grain yield due to variations of soil N supply after sampling for
NNI [7].

Reliable NNI threshold values are needed for crop N status diagnosis. While collec-
tively, NNI related well to relative grain yield (Figure 3), NNI threshold values of each
site year examined independently varied widely (Figure 4), with ranges beyond what has
been previously reported (e.g., 0.95–1.05, or 0.90–1.10) [10,11]. The Nc is defined as the
minimum PNC required to maximize AGB production; this value may differ from the
PNC required to maximize grain yield [38]. Biomass at different development stages can
have unique relationships with final grain yield. Further, final grain yield can also be
influenced by many factors other than N status [47]. As a result, although NNI around 1
is optimal for biomass production at different development stages, different NNI levels
may be needed for optimal grain yield production. This makes it challenging to make
in-season N recommendations only using NNI. Further, the low precision due to the wide
range in NNI when used across a wide range of conditions highlights the limited utility of
this measurement as a universal management tool, though it could be used as a general
diagnostic tool.

Values of NNI were also significantly varied across soil texture (Figure 7). The NNI
values were the lowest for fine-sand sites compared with other soil texture sites across all
N application rates. This could be due to high leaching losses in sandy soil. Also, organic
matter is generally lower in sandy soils and, thus, typically contributes less plant-available
N via mineralization [43]. There may be other factors limiting maize growth and N updates,
like water stress or other nutrient deficiencies [48]. It has been found that critical crop N
concentration under water deficit conditions was lower than well-watered conditions due
to an intrinsic reduction in crop N demand [49]. As a result, the NNI threshold values in
sandy soil would be lower than in less coarse-textured soils. That said, the sandy soil sites
of this research were all irrigated, and stress from water deficiency was not considered
a limiting factor for growth. However, irrigation in sandy soils, especially in this region,
where there is also unpredictable precipitation, can increase nitrate-N leaching, leading to
lower NNI values.

The composite of these varied results between NNI and yield indicates that the
determination of one suitable NNI threshold value from a single universal CNDC is
impractical for guiding in-season N diagnosis and fertilization across diverse environmental
conditions. A large crop-growing region like the US Midwest is complicated and, generally,
requires site-specific conditions to be incorporated into diagnostic tools [50].

4.3. Implications for Practical Application

After CNDC validation and generating NNI threshold values defined for a region,
NNI can be utilized to diagnose crop N status as N deficient, optimal, and surplus con-
ditions [10,11]. Based on the N status, side-dress N application rates can be adjusted
accordingly. Using NNI principles, several NNI-based N recommendation algorithms have
been proposed or developed. One simple approach is to apply a fixed rate of N fertilizers
when NNI is lower than the predefined threshold value or range or not apply any fertilizer
if NNI is above a predefined threshold value or range. Another approach is to calculate crit-
ical plant N uptake as the product of AGB and Nc. The difference between measured plant
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N uptake and critical plant N uptake can then be calculated, and the planned in-season N
application rate can be adjusted [51]. This difference can also be divided by a presumed N
use efficiency value to calculate the N requirement [52]. For example, they developed a
model to predict in-season rice N requirement using days after transplanting, NNI, and N
recovery efficiency [53].

Since NNI determination needs destructive and time-consuming plant sampling and
lab analysis, it is generally not considered practical for large-scale applications in precision
N management. In lieu, methods and technologies for direct or indirect predictions of NNI
have been developed using multiple sensing technologies, such as chlorophyll meters [54],
smartphone apps [55], proximal active and passive canopy sensors [11,56–59], unmanned
aerial vehicle-based remote sensing [12,60], aerial remote sensing [10], satellite remote sens-
ing [51,61] or a combination of satellite remote sensing and smartphone Apps [62]. Recent
studies indicated that crop NNI could be well predicted using a data fusion approach
combining crop sensing data with genetics, environmental, and management information
using statistical or machine learning models [50,63]. In addition, proximal and remote
sensing technologies have also been used to develop NNI-based in-season N recommen-
dation technologies [10,64–66]. These and future diagnostic tools should be grounded
in plant physiology and the underlying principles of CNDC and NNI and be flexible to
accommodate site-specific conditions.

5. Conclusions

This study evaluated two previously published CNDCs based on the data from 49 site
years of N rate trials conducted in eight US Midwest states. The results indicated that
both CNDCs developed in France and Northeast China were suitable for maize N status
diagnosis in the US Midwest Corn Belt at the V9 stage, but the French CNDC was better at
the VT stage. The NNI values based on the French CNDC were significantly related to soil
nitrate-N content across site years at V9 (R2 = 0.38) and VT (R2 = 0.56) stages. However,
the threshold values of NNI for relative grain yield (average values across site years were
1.36 and 1.21 at V9 and VT, respectively) were different from those regarded optimal for
biomass production (~1) and varied significantly from site year to site year (0.80 to 1.41 at
V9 and from 0.62 to 1.75 at VT). Regional threshold values need to be developed for NNI to
be useful for reliable in-season crop N status diagnosis. In addition, NNI-based in-season
N recommendation strategies are needed to guide farmers to adjust their N application
rates according to plant N status. Proximal and remote sensing-based non-destructive
NNI prediction and in-season N recommendation methods also need to be developed for
precision N management under diverse soil, weather, and management conditions across
the US Midwest.
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