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Abstract: Smart agriculture relies on accurate yield maps as a crucial tool for decision-making. Many
yield maps, however, suffer from spatial errors that can compromise the quality of their data, while
several approaches have been proposed to address some of these errors, detecting voids or holes in
the maps remains challenging. Additionally, the quality of yield datasets is typically evaluated based
on root mean squared errors after interpolation. This evaluation method relies on weighbridge data,
which can occasionally be inaccurate, impacting the quality of decisions made using the datasets.
This paper introduces a novel algorithm designed to identify voids in yield maps. Furthermore, it
maps three types of spatial errors (GPS errors, yield surges, and voids) to two standard data quality
dimensions (accuracy and completeness). Doing so provides a quality score that can be utilized to
assess the quality of yield datasets, eliminating the need for weighbridge data. The paper carries
out three types of evaluations: (1) evaluating the algorithm’s efficacy by applying it to a dataset
containing fields with and without voids; (2) assessing the benefits of integrating void detection and
other spatial error identification techniques into the yield data processing chain; and (3) examining the
correlation between root mean squared error and the proposed quality score before and after filtering
out spatial errors. The results of the evaluations demonstrate that the proposed algorithm achieves a
100% sensitivity, 91% specificity, and 82% accuracy in identifying yield maps with voids. Additionally,
there is a decrease in the root mean squared error when various spatial errors, including voids after
applying the proposed data pre-processing chain. The inverse correlation observed between the root
mean squared error and the proposed quality score (−0.577 and −0.793, before and after filtering
spatial errors, respectively) indicates that the quality score can effectively assess the quality of yield
datasets. This assessment enables seamless integration into real-time big data quality assessment
solutions based on various data quality dimensions.

Keywords: spatial data quality; smart agriculture; data quality assessment; data quality dimensions;
interpolation; classification

1. Introduction

Technological advancements have revolutionized the agricultural industry and have
significantly improved agricultural practices. The use of information and communication
technologies in agriculture is collectively referred to as smart or precision agriculture [1].
Technology has been integrated into various domains of the agricultural ecosystem, and
examples include automated irrigation systems that use sensors to monitor soil moisture
levels and weather patterns [2] and the use of robotics to perform tasks such as harvest-
ing crops, planting seeds, and weeding fields [3]. These technological innovations have
increased efficiency, reduced labour costs, and minimized the impact of farming on the
environment [3].
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Yield mapping is the other such example that has gained widespread adoption due
to advancements in harvesting equipment. The combine harvester is equipped with a
data acquisition system that enables the collection of crop yield data during the harvest-
ing process, including location, grain flow, and area [4]. Data from yield maps usually
contain thousands of data points which have to be interpolated to create continuous yield
maps that can be used for decision-making, diagnosing production issues, and optimizing
management practices, as well as in research applications [4].

Data from combines, however, often contain errors arising from systematic and oper-
ator actions. Previous research [5,6] has identified several of such errors, including yield
map smoothing errors, unknown crop width entering the header during harvest, time lag
of grain through the threshing mechanism, positional errors, surging grain through the
combine transport system, and voids/holes. As yield is important for decision-making, it
is important to devise a means to mitigate the negative effects of such errors. To this end,
several approaches have been defined.

Numerous solutions have been proposed to address the spatial errors [4,7,8], with
some focused on a single error while others aimed to tackle multiple issues. Nonetheless, a
solution for identifying and filtering voids/holes in yield maps remains yet to be defined.
Voids typically result from topographical features such as waterlogging, rendering it
impossible to till and consequently leaving no data points for such areas. Currently,
interpolation is utilized to fill voids by incorporating neighbouring data points. However,
this method is prone to errors as voids increase in size. Identifying voids in yield maps could
significantly enhance the performance of downstream processes, such as interpolation.

The other limitation is that, currently, data quality of yield datasets in based the
calculation of root mean square error after interpolation. This requires weighbridge data
which can sometimes be unavailable, and in some cases unreliable [9]. This can affect the
quality of decisions made from such unreliable data. This paper proposes a mapping of
spatial errors to form data quality dimensions (DQDs), which can be used to assess the
quality of yield data without the need for a gold standard (weighbridge data). DQDs
provide an acceptable way to measure data quality [10]. DQDs have been used in many
fields to standardise the description of quality errors so that quality improvements processes
can be evaluated on a comparative basis [11]. As data from multiple sources is increasingly
being integrated for decision-making, mapping spatial errors to DQDs would allow for a
unified data quality assessment framework that is based on similar metrics across multiple
data sources.

This paper, therefore, implements a solution to achieve two main objectives, namely:
(1) To develop a novel algorithm to identify voids in yield maps. This uses yield data
(location and yield) and field boundary data. (2) Create a mapping of three spatial errors,
including GPS errors, yield surges, and voids, to two common DQDs of accuracy and
completeness. This allows the use of DQDs as a means to assess the quality of yield
datasets without the need of a gold standard and also enable seamless integration with
other IoT applications that are based on DQDs. Inverse distance weighting was used as an
example, as it is one of the most common downstream process for yield map data.

The rest of the paper is structured as follows; Section 2 provides an in-depth analysis of
spatial errors commonly observed in yield datasets, including GPS errors, yield surges, and
voids. Section 3 outlines the approach to map data quality dimensions, specifically accuracy
and completeness, to the spatial errors discussed in the preceding section. Section 4 offers a
detailed discussion of the novel void detection and correction algorithm. It also elucidates
the mathematical implementation of the evaluation and data quality scoring strategies.
Section 5 presents the results obtained and extensively discusses their practical implications
and potential applications. Finally, in Section 6, a comprehensive summary and conclusion
are presented.
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2. Spatial Error Processing

Yield map datasets are a vital tool for site-specific and paddock management-based
decision-making systems [5,6,12]. These datasets, however, usually contain many errors
arising from different sources. Previous research [8] has identified several of these errors,
including unknown crop width, the time lag of the grain, inappropriate GPS recording,
yield surges, and voids. For the purposes of this research, only GPS errors, yield surges,
and voids were considered. These are highlighted in the next section.

2.1. GPS Errors

This paper discusses two types of GPS errors: those occurring while the combine is
stationary but still recording data because the header has not been lifted, and those arising
from recording data outside the field boundary. To identify the first type of GPS error,
the research employs an approach proposed by [8], which uses Pythagoras’ theorem to
calculate the distance between consecutive points. Any points with zero travel distance
are deemed erroneous. For the second type of GPS error, field boundary data is used. Any
points on the yield map that lie outside the field boundary are considered erroneous.

2.2. Yield Surges

Yield surges refers to the difference between the actual yield measurement and the
measurements obtained from the combine. According to Beck et al. [4], yield surges are
rapid changes in indicated yield over a short distance, typically resulting from operator
actions such as a sudden decrease in forward speed during a period of high grain flow [4].
In contrast, Robinson et al. [8] suggest a statistical method that utilizes a moving average
mean and standard deviation to detect erroneous yield surges. However, this paper
employs a distinct approach that uses absolute median deviation, as significant outliers
can adversely affect the mean.

2.3. Voids Errors

Fields typically have areas or sections that cannot be planted due to their topographical
features, such as waterlogging or hills, making them unsuitable for tilling. Therefore,
farmers usually plant around such areas, resulting in the combine harvester not producing
any data for those sections during harvesting, resulting in voids or holes in the yield map.
Without GPS or yield data, these voids can be challenging to identify.

To generate contour maps and high-resolution yield maps, interpolation techniques
are employed to fill the voids with nearby data points. However, the accuracy of the
interpolation is impacted as the size of the void increases. Therefore, voids must be
identified and treated as unique cases. Figure 1 shows a yield map with a void, with the
white portion in the centre representing the void. This paper introduces a novel approach
for identifying and addressing voids, which is highlighted in Section 4.1.
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Figure 1. Example yield maps with a void/hole.
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3. Data Quality Mapping

Data quality control for yield data is currently based on spatial errors. After spatial
interpolation, the RMSE score is calculated as a quality indicator. If the score is small, this
indicates good quality yield data. If the score is big, however, this means that the yield data
is of poor quality. To calculate the RMSE score, interpolated values have to be compared to
values from the weighbridge.

The data from the weighbridge, however, can suffer inaccuracies. This can be caused
by several factors, including noise as the machine vibrates and errors from other foreign
bodies that enter the system [9]. Weighbridge data is not available for the vast majority
of the fields. This leaves most fields without a reference point from which to evaluate
yield quality and mapping, and, therefore, it is difficult to determine the trustworthiness
of data used to make decisions. Establishing a quality score which can be determined
independently from weighbridge data is imperative.

Moreover, as precision agriculture expands, different data sources and data types are
being integrated and used simultaneously. Data are from weather stations, soil sensors,
and many other IoT-based data collection methods. Data quality control for this kind of
data is based on data quality dimensions, and indeed this is the standard for data quality
assurance in IoT [10]. Integrating quality assurance for yield datasets with other existing
IoT sources to support organizational level decision-making that is based on quality data
requires streamlining all quality assurance processes into a single pipeline that uses the
same standard metrics.

Data quality dimensions offer a way to assess data quality using associated metrics
likes accuracy and completeness. Previous research [13] has built and tested an end-to-end
data quality assessment framework that uses DQDs to assess data quality in real-time with
no need for a gold standard (weighbridge data). This is ideal for cases where weighbridge
data is not present, or has inaccuracies. This quality assurance process can also integrate
with other IoT data sources for a holistic end-to-end data quality assessment.

To achieve this, this paper creates a mapping between spatial errors and DQDs. The
definitions of spatial errors and relationships between them are informed by previous
research [14]. The presence, or lack, of spatial errors leads to a deterministic change in
quality evaluation metrics and RMSE. This relationship can be used to determine a quality
score for the data, which can be used to assess the trustworthiness of the yield datasets
and how much credence the data should be used for decision-making. Figure 2 shows the
mapping flow between spatial errors and DQDs.

Accuracy
GPS errors

Yield surges

Voids/holes Completeness

Spatial errors Spatial

Data Quality Dimesions

Data quality assessment

Framework

Figure 2. Mapping spatial errors to data quality dimensions.
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3.1. Geospatial Data Quality Dimensions

The measure of quality is subjective and largely depends on the context in which it is
applied. In manufacturing, for example, quality is often evaluated based on the product’s
physical attributes [14]. However, when it comes to data quality, it can be challenging to
define as data lacks physical attributes. Instead, data quality is determined by intangible
properties such as accuracy and completeness, which are collectively referred to as data
quality dimensions (DQDs). Using DQDs provides an effective way to measure data quality,
and several authors have proposed different DQDs and associated metrics to assess it [10].

Unlike other datasets, geospatial data describe phenomena in multiple dimensions,
including spatial, temporal, and thematic components [14]. Therefore, DQDs for geospatial
datasets have to be defined similarly. The paper defines spatial and thematic components
for accuracy, while only the thematic component was used for completeness. This is due to
the unavailability of time data for many farms. The mathematical definitions used here are
informed by previous research in [5,8,14].

3.1.1. Accuracy

1. Spatial accuracy (positional accuracy) is applied to the spatial component of a geospa-
tial dataset. Metrics are well defined for point entities, but widely accepted metrics for
lines and area are yet to be developed [14]. We define area errors as the points (spatial
coordinates that are outside a defined field of interest. These are inappropriate GPS
recordings. There are two distinctions, which are points outside the field boundary
and outlier points recorded while the machine is stationary.

Spatial accuracy(As) = 1−
√

∑n
i (spatial errors)2

n
(1)

where n is the number of points outside the defined boundary, and spatial error is
the distance a given point is from the defined boundary. To define spatial errors, this
paper used the same approach defined in [8];

2. Thematic accuracy (or attribute accuracy) varies with a measurement scale. The
attribute, in this case, is the yield. Beck et al. [4] define this as yield surges. There
have been other techniques that have been used to eliminate this kind of error. For
example, ref. [8] used a statistical identifier based on moving average mean and
standard deviation. This paper uses median absolute deviation to filter out yield
surges as the mean can be affected by outliers, Therefore:

Thematic accuarcy(At) = 1− Ge

n
(2)

where Ge is the number of outlier points in a given field, and n is the total number of
points in the field.

To calculate Ge, a statistical method that employs median absolute deviations (MAD)
is utilized. Absolute deviation from the median has long been utilized to filter outliers [15].
The median is a measure of central tendency, and is preferable to the mean as it is less
susceptible to the presence of outliers, which can have a disproportionate impact. MAD
was calculated using the formula defined by Huber et al. [16].

MAD = αMi(|xi −Mj(xj)|) (3)

where xj is the original observations, Mj is the median of the series, and α is data normaliza-
tion constant defined by [17]. It is defined as α = 1

Q(0.75) , where Q(0.75) is the 0.75 quantile
of that underlying distribution. The normalisation step is important because otherwise
MAD would estimate the scale up to a multiplicative constant [16] only.
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Therefore
Resultant Accuracy = w1 ∗ As + w2 ∗ At (4)

3.1.2. Completeness

1. Thematic completeness is based on voids/holes in the yield maps. Voids are a well-
known problem that affects the quality of yield maps and, subsequently, the accuracy
of any interpolation technique [18,19]. Currently, there is no defined method to
identify and mitigate the effects of voids. Current approaches aim to fill voids. This
affects not only the accuracy of the interpolation methods, but also downstream
processes like yield prediction that might be based on such erroneous data. This paper
implements a novel approach to identifying voids. This is discussed in Section 4.1.
Thematic completeness is therefore given by

Thematic completeness(At) = 1− GridCount
n

(5)

where GridCount is the number of grids that form the void and n is total number of
grids for a given yield map.

4. Implementation

The system implementation was divided into two stages. The initial stage involves
identifying and classifying spatial errors. Three spatial errors were used in this implemen-
tation. The other stage involves mapping the defined spatial error to DQDs and assessing
the impact of DQDs on the spatial interpolation. Spatial interpolation was used as an
assessment example because its one of the most common pre-processing techniques used
to construct usable yield maps [20,21]. Each of these stages is highlighted in detail in the
following sections. Figure 3 shows the end-to-end system flow of the implementation,
showing void identification and correction in stage one and data quality mapping in stage
two.

Accuracy

Completeness
IDW

Krigging

Interpolation stage

Data quality control

Create new boundary with void

Classifying maps

Maps with voids

Complete maps

Figure 3. End-to-end process flow of the void identification, correction, and data quality mapping
framework.
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4.1. Void Error Correction

Yield map errors can be attributed to several causes. Prior research has identified some
of these errors [8]. This paper focuses on three types of errors, namely GPS errors, yield
surges, and voids. Unlike GPS errors and yield surges, no established methods exist to
identify yield maps with voids. Thus, this section presents a novel approach to detecting
voids in yield maps.

Two inputs are required to interpolate yield maps spatially: yield map data consisting
of GPS points with corresponding yield measurements, and field boundaries defined by a
set of GPS points delineating the field’s limits. The latter is used to restrict the interpolation
process to within the field.

Figure 4 illustrates the importance of restricting yield map interpolation to the limits
of the field, as shown by the green boundary line. Without such restriction, interpolation
would continue indefinitely beyond the field boundary. When dealing with yield maps
that contain voids, however, an additional inner boundary exists (artefact A) that is not
accounted for in the original boundary file. As a result, interpolation will continue until
the void is filled. This can significantly impact the accuracy of interpolation methods and
downstream processes, such as yield prediction, that rely on such data. Therefore, it is
crucial to identify yield maps with voids and reconstruct the boundary files to reflect these
physical features.
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Figure 4. (i) Field boundary map; artefact A represents the outline of the void that is missing in the
boundary map. (ii) Corresponding yield map with field boundary overlaid in green and the void
highlighted in red.

Various approaches can help identify voids in yield maps, such as computer vision,
image processing, and artificial-intelligence-based solutions, while these methods can
achieve positive results, they face challenges such as the need for a considerable amount of
data to train and test and high computational costs.

To identify and correct voids, the proposed approach performs the following steps.
(1) The boundary map is used to generate a fixed-size grid structure encompassing the
entire area of the boundary map. This is illustrated in Figures 5i and 6i. (2) For each set of
grid coordinates, search the yield map data to determine if such coordinates overlap with
the yield map data. (3) Determine any grids whose coordinates do not overlap with the
corresponding yield map to constitute a void. The concept is that if a yield map is complete,
each small grid in the field boundary map should be contained in the yield map. Otherwise,
the grids within the field boundary map, but not within the yield map, constitute part of
the void. (4) Finally, a new boundary map is constructed that includes the void.



Agronomy 2023, 13, 1943 8 of 15

An example of the process is shown in Figures 5 and 6. When a yield map has no
void, the coordinates of each grid in the boundary map have a one-to-one mapping to the
yield map. For example, for each grid highlighted in green in the boundary map (artefact
A in Figure 5i), there is a corresponding one in the yield map (artefact A in Figure 5ii).
For yield maps with a void, however, grids exist in the boundary map without mapping
to the yield map. For example, in Figure 6, the green highlights (artefact A in Figure 6i)
have corresponding ones to the yield map (artefact A in Figure 6ii). Grids in (artefact
B in Figure 6i), however, have no mapping to the yield map because the void has no
corresponding GPS data.

The initial size of the each grid was set to 10 m. This was chosen as the lower limit
because the harvest line in the field have the same size. Lowering this value could increase
false positives. Different size were tested to determine the optimal grid size that maximises
true positive rate. The proposed method is highly computationally efficient and ideal for
real-time applications. Unlike computer vision-based techniques that require converting
spatial data to images (pixels), which can lead to loss of information, the proposed approach
works directly with GPS coordinates, ensuring no information is lost.
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Figure 5. Field boundary map converted into grid with the corresponding yield map for a case with
no void.

4.2. Data Quality Scoring

The data quality scoring technique used in this paper is based on previous research [13]
that uses trust and DQDs to evaluate the quality of heterogeneous IoT data streams in
real-time. Trust is a well-established metric that has been used to validate the reliability of
unknown sources [22]. To this end, therefore, given a yield map dataset, the quality score
will be given by

Qualityscore = w1 · Accuracy + w2 · Completeness + e (6)
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Figure 6. Field boundary map converted into grid with the corresponding yield map for a case with
a void.

The weights w1 and w2 are determined by each use case. The goal is for each use
case to be able to customise its own quality score. The metric e is the experience metric. It
ensures that a past quality score and current quality score of the same dataset contribute to
the overall score of the dataset. Detailed description and implementation of these can be
found in our previous research [11,13,22].

4.3. Evaluation Strategy Using Spatial Interpolation

Using yield maps for decision-making requires high-resolution maps [23]. To this end,
several spatial interpolation techniques exist, for example, linear interpolation, inverse
distance weighting (IDW), and Kriging [24]. These work by taking known values (yield) and
predicting unknown values in the neighbourhood. This process results in improved maps
with clear boundaries showing the variation in yield output of the different field sections.

To evaluate the effectiveness of using DQDs for real-time quality assessment of yield
maps, this paper uses IDW as an application example. Any interpolation technique,
however, can be used without any changes to the downstream processes.

Inverse Distance Weighting (IDW)

IDW interpolation is a deterministic spatial interpolation method that uses known val-
ues with corresponding weights to estimate an unknown value at a particular location [25].
One IDW method, sometimes referred to as Shepard’s method [26], is given by the
following equation

ẑ(x) = ∑n
i wizi

∑n
i=1 wi

(7)

where z is the estimate at point x, n is the number of surrounding points, and w is given by:

w = |x− xi|−β (8)

where β ≥ 0 and |·| correspond to the Euclidean distance. Typically values β = 1 are β = 2
usually used; however, in this paper, grid search was used to obtain the optimal values.

To evaluate the performance of IDW, the root mean squared error (RMSE) was used.
This is given by the following equation:

RMSE =

√
∑n

i ‖ αi − βi ‖2

n
(9)
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where n is the number of data points and αi, βi are actual and predicated values, respec-
tively.

5. Evaluation

The system implementation is divided into two stages. In the first stage, spatial
errors are classified, and in the second stage, the impact of data quality issues (DQDs) on
spatial interpolation is assessed. To evaluate the system’s performance, two experiments
were conducted.

The first experiment aims to evaluate the benefits of adding void detection to the
spatial error processing data pipeline using a grid approach. The effectiveness of the
proposed algorithm is evaluated using a dataset containing fields with and without voids.
The algorithm creates a grid of cells from the field boundary map and compares each cell
to the yield map. As the grid size affects the algorithm’s performance, a range of grid sizes
are compared using accuracy, sensitivity, and specificity as performance metrics.

The second experiment aims to evaluate the efficacy of using a quality score calculated
using DQDs that are mapped from spatial errors as a means to assess the quality of yield
map datasets. The dataset described in the next section was used. The advantage of using
the proposed quality score is that it is not based on a gold standard (weighbridge data).
The RMSE of the yield dataset and quality score are calculated before and after filtering
spatial errors. The mean of scores of RMSE and quality score for each year are compared.

5.1. Dataset Description

The dataset consists of 524 yield maps collected from 267 fields across 20 farms in the
United Kingdom. The biggest field spans over 56.0 hectares; the smallest is approximately
0.1 hectares. The data was collected from 2013 to 2019 and consists of three crops: winter
barley, spring barley, and winter wheat. The dataset also includes weighbridge data
corresponding to each field. This is used as the true measure of yield per year. A total
of 21% of all the yield maps used had voids, and of these, 50% had a high (greater than
two tones/per hectare) discrepancy between the measured yield output from the combine
and the actual output from the weighbridge. Figure 7 summarises the dataset with the
distribution of crops across fields for each year and the void distribution across fields.
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Figure 7. Crop distribution across fields for each year and void distribution across fields per year.

5.2. Results and Discussion

This section is structured into three main parts. The first two sections detail results
related to a novel void detection and correction algorithm. Furthermore, they examine the
influence of these enhancements on downstream processes, particularly interpolation. The
third part evaluates the effectiveness of the data quality dimensions (DQDs) in filtering
spatial errors, utilizing spatial interpolation as the evaluation method.
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5.2.1. Void Identification

Figure 8 shows the results of the classification algorithm. This is a binary classification
problem with yield maps with voids given as positive examples and those without voids
considered as negative examples. Yield maps usually contain other kinds of gaps, for
example harvest lines (gap between two harvest line) and other anomalies which are not
voids, and should not be misclassified as such. Choosing an optimal grid size is important
to avoid false positives. Typically the gap between two harvest lines is usually about 10 m.
For this reason grid size values below 10 m were not used to avoid this miss identification.
Grid sizes above 25 m had the highest score of 100%, 91%, and 82% for sensitivity, specificity,
and accuracy, respectively. The main objective of the experiment was to minimise false
positives, as this would affect downstream processes. These are defined as below:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(10)

Speci f icity =
TN

(TN + FP)
(11)

Sensitivity =
TP

(TP + FN)
(12)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
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Figure 8. Performance (accuracy, specificity, and sensitivity) of the classification algorithm for
different grid size values.

5.2.2. Effects of Void Correction and Other Spatial Errors on RMSE

Figure 9 shows the effects of the presence of voids and other spatial errors on the
interpolation process. To assess this effect, the RMSE score after interpolation is used.
The RMSE was computed by comparing the interpolated values with the actual yield
values from the weighbridge. The lower the RMSE value, the better the interpolation
performance, and vice versa. The study compared different search radii values, which also
affect interpolation performance. Obtaining an optimal value is critical. Values ranging
from 5 to 10 m were used, although there was no significant difference. As shown in
Figure 9, after filtering spatial errors, there was a very significant improvement in the
overall RMSE score.



Agronomy 2023, 13, 1943 12 of 15

5 6 7 8 9 10
Search radius

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RM
SE

Original yield data
Yield data after filtering other spatial errors
Yield data after filtering voids and other spatial errors

Figure 9. Performance of IDW and the effects of correction of void and other spatial errors under
different values of search radius.

Figure 10i displays the original yield map before interpolation. Figure 10ii,iii explores
the effects of not considering and considering spatial errors on the interpolation process,
respectively. Figure 10ii (artefact A) demonstrates that conventional approaches that do not
account for voids and other spatial errors can result in inaccuracies. This can compromise
downstream processes such as yield prediction that rely on this data. Additionally, the
interpolation process can also impact regions outside of the void, leading to incorrect yield
representations and potentially erroneous decision-making, such as in the case of automated
fertilizer applications. On the other hand, Figure 10iii takes into account the presence of
voids and other spatial errors, and, therefore, effectively addresses these shortcomings.
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Figure 10. (i) Original yield map before interpolation, (ii) yield map interpolated without consid-
ering spatial DQDs, and (iii) yield map interpolated after considering the proposed mapping of
spatial DQDs.

5.2.3. Using DQDs as a Score for Yield Data Quality

Figure 11a,b illustrates the yield data’s average RMSE and quality score for different
years, both before and after filtering out spatial errors. Pearson’s correlation coefficient was
used to analyse the relationship between the RMSE and the quality score. The comparison
was made between the RMSE values before and after filtering and their respective quality
scores. An inverse relationship was observed between the RMSE and the proposed quality
score. This behaviour is expected since, as the yield data quality improves, the RMSE is
anticipated to decrease while the quality score would increase, and vice versa.
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The correlation coefficient before filtering out spatial errors was lower than the corre-
lation coefficient after the filtering process. This discrepancy can be attributed to outliers,
affecting most interpolation methods and consequently impacting the resulting RMSE
score. The stronger correlation observed after filtering out spatial errors suggests that
the proposed quality score can be employed as an effective means of assessing yield data
quality without requiring a gold standard. The correlation results are summarized in
Tables 1 and 2. These are based on the RMSE score presented in Figure 11.
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Figure 11. Comparing the RMSE and quality score before and after interpolation of yield data for
various years. (a) RMSE before and after filter spatial errors. (b) Quality score before and after filter
spatial errors.

Table 1. Pearson correlation between quality score and RMSE before filtering spatial errors

QualityScoreBefore RMSEBefore

QualityScoreBefore 1 −0.577

RMSEBefore −0.577 1

Table 2. Pearson correlation between quality score and RMSE after filtering spatial errors

QualityScoreAfter RMSEAfter

QualityScoreAfter 1 −0.793

RMSEAfter −0.793 1

6. Conclusions

Technological advancements in agriculture have revolutionized farming practices by
implementing precision agriculture. This approach leverages data from various processes
to make informed decisions and optimize agricultural practices. However, it is essential
to acknowledge that data collected from combines can often contain errors resulting from
systematic and operator actions, significantly impacting the decision-making process. To
address this challenge, several approaches, such as filtering and interpolation methods,
have been proposed to mitigate these errors. Nevertheless, finding a comprehensive
solution to identify and filter voids or holes in yield maps remains a persistent challenge.

This paper introduces a novel algorithm specifically designed to identify voids in
yield maps. The algorithm effectively maps three types of spatial errors, namely GPS errors,
yield surges, and voids, to two commonly used data quality dimensions (DQDs): accuracy
and completeness. To the best of our knowledge, no existing solution currently employs
this approach. The effectiveness of DQDs in filtering spatial errors was evaluated using
spatial interpolation techniques. This work has the potential to significantly enhance the
performance of downstream processes for yield map data and establish a unified data
quality assessment framework based on consistent metrics across multiple data sources.
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While this study focused on addressing three specific spatial errors, namely GPS errors,
yield surges, and voids, and two common DQDs of accuracy and completeness, our future
work will involve the integration of additional spatial errors and DQDs. We will explore the
overall impact on the root mean square error (RMSE). Additionally, future research efforts
will aim to incorporate larger zones within farms, different crops, and various harvest
combines, as these factors can influence the quality of yield maps. Furthermore, most yield
maps contain a single void, but there are instances where this number can increase to two
or even three and, as the number of voids increases, the algorithm’s accuracy is impacted.
Future work will also aim to address this challenge.
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