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According to the International Energy Agency (IEA) [1], deploying renewable energy
technologies is crucial for achieving the net-zero emissions target by 2050. Moreover,
using renewable energy is essential in order to reduce global greenhouse gas emissions
and attain the target of limiting global warming to 2 to 4 degrees by 2100 [2]. Among
these technologies, solar energy is the most promising renewable energy source. In recent
years, photovoltaic (PV) technology has developed rapidly, continuously improving PV
efficiency. The electricity generation efficiency of commercial PV modules has increased
from about 15% in 2010 to about 23% today [3]. In addition, the production cost of PV
modules has significantly decreased, with the price per watt dropping from 5 CNY/watt
in 2012 to 1.8 CNY/watt in 2022 [4]. However, two significant bottlenecks hinder the
large-scale deployment of PV solar energy in an attempt to replace traditional energy:
energy storage and the availability of land for installing PV panels. Although countries
such as China and the United States have vast, sparsely populated areas with abundant
solar resources, there are technical difficulties and increased costs in transmitting PV
electricity to densely populated and industrially developed areas through ultra-high voltage
transmission systems. Therefore, using agricultural land for PV installation in densely
populated areas is becoming increasingly common. In 2021, the global installed capacity of
agricultural PV (APV) reached approximately 14 GWp [5]. APV can help to avoid drought
stress and maintain higher soil moisture, thus improving plant growth [6].

Compared to rooftop PV, building PV power plants on farmland has certain advan-
tages, such as the following: a single project can cover a larger area, and the unit cost of
electricity generation is lower. In China, ground-mounted PV power plants’ per watt cost
has been reduced to as low as 4.13 CNY/watt [4] in 2022. The biggest challenge faced by
APV is ensuring sufficient crop yield under the PV panels. Theoretically, the shaded area
underneath the PV panels receives only 20% of the solar energy during a clear day [7]. This
level of solar radiation energy is usually insufficient for most crops, resulting in significant
reductions in yield.

However, many people believe that implementing APV may be the wrong course of
action; in fact, the solar radiation intensity between 11:00 a.m. and 2:00 p.m. during spring,
summer, and autumn is excessively strong and may even harm crop growth in many
Northern Hemisphere regions. Photosynthesis increases with increasing light intensity,
but when light intensity reaches a certain maximum, light saturation is reached, and
photosynthetic efficiency ceases to increase, and it can even decrease even if light intensity
rises again. The effect of strong light on photoinhibition is obvious, with the strongest
sunlight at midday and a significant decrease in photosynthetic rate in the corresponding
C3 plants, such as soybean and rice [8].

It is worth noting that while sunlight is crucial for robust plant growth, too much
sunlight can have the opposite effect. Therefore, using APV may help minimize the
damaging effects of excessive solar radiation on crops. By reducing the amount of direct
sunlight that reaches plants during the hottest part of the day, farmers can create a more
favorable growing environment, which may increase their crop yield. While APV may not
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be a panacea for all agricultural challenges, it is a viable choice for farmers facing high
solar radiation levels and seeking to increase their yield. In essence, the core of APV is to
manage light while considering the unique conditions of crops, enabling farmers to create a
more sustainable and productive cultivation environment and then use excess solar energy
for PV electricity generation.

There are already two early solutions to address the problem of insufficient light
under PV panels. The first involves using mosaic-structured PV panels that allow some
light to pass through [9]. APV using this design has already demonstrated successful crop
cultivation, as evidenced by the high yield and quality of different fruits in German PV
orchards [5]. However, this approach may not be fit for widespread implementation due
to the relatively high cost of these panels, which could double the price of PV electricity
generation per watt (assuming a transmittance rate of 50%). The second solution utilizes
thin-film solar cell technology, particularly semi-transparent thin-film solar cells such
as amorphous silicon and cadmium telluride. PV integration in greenhouses has been
extensively studied and documented in the scientific literature. Some publications partly
describe using solar panels to cover greenhouse roofs [10,11].

The crop cultivation performance of APV-utilizing cells such as amorphous silicon
and cadmium telluride is suboptimal because the light transmission spectrum of thin-film
solar cells is not aligned with the range required for crop photosynthesis. Therefore, they
have not been widely adopted.

A research team at the University of Science and Technology of China recently pro-
posed two innovative solutions to the challenge of realizing crop photosynthesis and PV
power generation on the same farmland. The first solution is Spectrum Splitting and
Concentrated APV (SCAPV) [12], which uses spectral splitting to selectively transmit red,
blue, and far-red light from sunlight to plants for photosynthesis. The remaining sunlight is
concentrated and directly generates electricity for the PV panels. The critical aspect of this
solution is to design a cost-effective multi-passband filter that separates sunlight [13,14].
SCAPV represents one of the two main strategies for mitigating the shading problem in
APV [15]. The second solution is Even-lighting APV (EAPV) [16,17], which aims to improve
the structural design of APV by placing grooved glass plates between two PV panels. These
plates allow sunlight to be transmitted and distributed evenly, providing even lighting
and sufficient light intensity for plant photosynthesis. The conventional method involves
the sunlight hitting the top of the PV panels between the grooved glass plates to generate
electricity. These two solutions demonstrate the promise of APV and could revolutionize
the way we use solar energy, the application of which could help improve plant and crop
growth, quality, and yield [17,18]. Moreover, these two solutions significantly reduced
water evaporation [19]. By combining the strengths of solar energy and agriculture, we can
create a sustainable and efficient system that meets the growing demand for renewable
energy and food production.

Our Special Issue focuses on integrating agriculture and PV, covering light and water
management, growing in low-light environments, and maximizing economic benefit from
land use. Five papers are presented in this Special Issue. These papers explore the potential
benefits of APV in addressing various challenges in agriculture, including food security,
economic growth, and energy sustainability. In addition, diverse applications of APV
are demonstrated, such as using APV to improve crop yield and quality, reduce water
consumption, and minimize land use conflicts.

The first paper, authored by Nakata H and Ogata S [20], discusses the benefits of an
APV installation model that is compatible with the regional population and attempts to
gain social acceptance by considering the area’s unique characteristics. A case study and
economic analysis were conducted in rural Japan to demonstrate the potential of APV
in improving land use efficiency and stimulating the local economy. The study suggests
that APV could generate 215% of the annual electricity demand in the area (equivalent
to 17.8 GWh) and produce 108.9% (EUR 47.8 million) of economic ripple effects in the
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region. These quantifiable and applicable results indicate the enormous potential of APV
in addressing food-related issues, as well as economic and energy issues, in rural areas.

The second paper, written by Wagner M et al. [21], found that installing overhead APV
on agricultural land has positive ecological outcomes; the study also demonstrated that,
under certain conditions, APV can promote the expansion of renewable energy production
resources without reducing food production resources.

The third paper, authored by Chae S et al. [22], presents a study analyzing the yield,
antioxidant capacity, and secondary metabolites of broccoli in three cultivation periods.
This study identified the potential benefits of APV in broccoli cultivation. The results
showed that APV could produce green broccoli that is preferable to consumers while
maintaining yield and antioxidant capacity.

The fourth paper, written by Ali Abaker Omer A et al. [23], includes experimental
research on sunlight’s ability to partially reduce water evaporation. The study found that,
under polymer multilayers, water evaporation could be significantly reduced, and the
polymer multilayers could reflect and concentrate most of the sunlight that is not needed for
crop cultivation for PV electricity generation. This research provides a promising solution
for reducing agricultural water evaporation using low-cost polymer multilayers.

Lastly, the fifth paper, provided by Tao Z et al. [24], presents a study discussing how
cultivation and farming techniques can improve crop heat tolerance by regulating ABA.
These techniques include adjusting sowing time; applying plant growth regulators and
fertilizers; and using irrigation, deep tillage, and heat acclimation.

These five papers highlight the potential benefits of APV in improving land use
efficiency, reducing environmental impacts, generating renewable energy, and improving
crop quality and yield. They also address critical issues in agriculture, such as water scarcity,
climate change, and food and energy security. These papers provide valuable insights into
the practical and economic feasibility of APV in promoting sustainable agriculture as well
as other technologies. They also indicate the need for further research and development to
address the challenges of implementing these solutions and make their implementation
easier for farmers. These papers contribute to the ongoing efforts to transform agricultural
PV into a more sustainable and resilient technology that meets the growing demands
for food and energy while developing green energy, protecting the environment, and
supporting local communities.
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