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Abstract: To solve the problem that the parameters of the multiple-input multiple-output (MIMO)
irrigation system are difficult to control accurately, an on-demand irrigation control experimental
device was developed. The main input parameters of the device are the opening degree of the main
pipe valve, the opening frequency of and the pump station, the opening degree of the branch pipeline
valve with the different combinations of different opening degrees. Based on these input parameters,
four types of experimental methods were designed, and a total of 1695 groups of experiments were
designed. The results show that the different opening degree combinations of the branch electric valve
cannot significantly affect the flow of the branch pipeline but also significantly affect the pressure
of the main pipeline. The prediction error of the operating frequency of the pump station and the
opening degree of the branch valve were regarded as the objective function. Six intelligent prediction
models were constructed, which are Back Propagation (BP), support vector regression (SVR) Linear,
SVR-RBF, SVR-Poly, random forest (RF) and eXtreme Gradient Boosting (XGBoost), respectively. The
results show that the XGBoost is the best model among the six models. For the opening degree of
three branch valves, the mean absolute error (MAE) between the predicted value and actual value is
less than 3.3%, the mean square deviation (RMSE) between the predicted values and actual values is
less than 4.5%, and the R2 of between the predicted values and actual values is greater than 0.990.
The control models and system can meet the needs of an on-demand irrigation system.

Keywords: pressure and flow; machine learning; control system; Raspberry Pi

1. Introduction

Traditional irrigation distributes water according to some rotation to guarantee the
proportional and fair distribution of water resources among all beneficiaries. Such systems
provide a minimum level of reliability and flexibility, and it is quite likely that farmers
cannot irrigate crops at critical times [1]. For on-demand irrigation networks, the time,
duration and frequency of using the hydrant for different farmers are different, which leads
to a significant pattern variation of the open hydrants, both in time and space [2]. With the
increasing number of irrigation water users, the necessity of larger and more complicated
water supply systems and distribution networks is crucial [3]. Different algorithms and
software have been developed to control on-mand WDN. Ayad presents a GIS-based
model for water pipeline network data integration and analysis named Integrated Water
Distribution network design and Calibration Utility (IWDCU) [4].

Better irrigation practices, smart irrigation management in agriculture is essential
for increasing crop yield. A closed-loop irrigation system for sugarcane farms using the
Internet of Things was developed. The solution seeks to improve irrigation management
by seamlessly integrating the WiSA automated irrigation system with the IrriWeb irrigation
decision support tool [5]. To extend the findings of previous studies investigating the
proper positioning of water content sensors, the representativeness of soil water content
sensors’ readings and the existence of Time Stable Representative Positions are investigated
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using a specially developed mathematical model [6]. Salima evaluated differences between
six mixtures of C3–C4 turfgrass grown under two water regimes (limited and high irriga-
tion), and the regression and conceptual model using remote sensing parameters revealed
the most adequate criteria to detect turfgrass variability under each growing condition [7].
To evaluate turfgrass performance, temporal and spatial soil moisture, and salinity dynam-
ics, four irrigation scheduling approaches were compared. The results provide essential
information to guide adopting data-driven approaches to irrigation scheduling [8].

Considering the crop distribution in an irrigation area, Lima has developed a tool
for simulating an on-demand irrigation network. This tool is helpful as a decision sup-
port system tool to manage on-demand collective irrigable areas with minimum energy
costs at the pump station and perform an irrigation schedule to guarantee crop water
requirements [9,10]. A methodology to obtain the optimal characteristic and efficiency
curves of pumping stations is present, which can provide the irrigation pump’s theoretical
characteristic and efficiency curves and the number of frequency speed drives for spe-
cial demands [11]. Campos presents a new methodology for the recording of irrigation
scheduling, incorporating the constraint of daily volume requests for each hydrant, and the
methodology is capable of minimizing the cost of energy while maximizing pressure at the
critical hydrants [12].

Pardo developed a computer application in MATLAB containing a genetic algorithm
to find the best moment to open and close valves to minimize an objective function which
measures the differences between the objective and the real injected flows [13]. Even
though many water distribution network problems have been extensively investigated
in the scientific literature, the on-demand WDN is a rather complex problem challenging
operation, maintenance, and management issues [14,15]. Irrigation pumping stations are
one of the main elements of irrigation systems, fine adjustment of the impeller, changing the
rotation frequency of the impeller, and switch control through the pump unit are the main
control methods for irrigation pumping stations. At the same time, the Ball Valve also is an
important control component in the irrigation system. The main research contents include
the flow coefficient characteristics, resistance coefficient characteristics, pressure drop, and
internal flow distribution. In recent years, with the development of computational fluid
dynamics and artificial intelligence technology, the joint control technology of irrigation
pumps and ball valves has been extensively studied. Moreno has developed a tool to
improve energy efficiency in water user associations, and the tools were also utilized
to propose measures to improve energy use [16]. To improve the energy and hydraulic
performance of large-scale pressurized irrigation, Khadra has developed a management-
oriented multistep methodology that integrates different existing models into a sector
system according to the pressure requirements of the hydrants [17]. For the centrifugal
pumps of type “D” in the Republic of Uzbekistan, Kan presents the method of fine-tuning
the central impeller, changing the rotating frequency of the impeller and switching the
pump unit [18]. Utilizing the UDF technology and computational fluid dynamics, the
transient numerical simulation of the ball valve under different opening degrees has also
been carried out [19]. The EPANet program was used to simulate the pressure distribution
of WDN, the WDN was used as a black box feasibility determination, and a novel stochastic
partitioning algorithm was applied to regulate water pumps [20]. Corcoles has developed
a methodology and optimum regulation of pumping stations tool to estimate the pressure
head at all nodes of a WDN [21]. To study the influence of valve opening degree on
WDN, the model for the pipeline, gate valve and the controller for valve opening were
developed, and a series of comparative model parameters were established based on the
Flowmaster software, the variation of pipeline resistance coefficient under different valve
opening degrees was emphasized [22]. For the pipeline system, flow rate and pressure
affect each other. It is difficult to control them separately, and slow response speed of
traditional flow and pressure control. To solve those problems, a flow-pressure coupling
adjustment method. For multi-user water distribution in the head of the irrigation system,
based on generalized regression neural network was proposed [23]. The pump stations
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and ball valves are two essential control parameters of the on-demand WDN, and they
jointly determine whether the control system can meet the demand for the hydrants [24].
To meet the water demand for hydrants, it is still necessary to further study the theory and
technology of on-demand WDN.

Considering the frequency of the head pump and the opening degree of the ball
valve in the main and branch pipelines, the main objective of this paper is to explore
the relationship between the flow rate and pressure of different branch pipelines and
the corresponding pump impeller speed and valve opening degree. The corresponding
control system is a multi-input and MIMO system. An experimental device for the on-
demand WDN was built, the pipeline of this device includes one main pipeline and three
branch pipelines, and the control system included functions such as detection, control, data
storage, and query, and the Raspberry Pi 4B was used as the controller. The prediction
error of pressure in the main pipeline and three branch pipelines were used as the objective
function, an intelligent control model was constructed by using multiobjective optimization
neural network based on experimental data, and the super parameters of the neural
network model were optimized, finally, a control model suitable for the on-demand WDN
was established.

This paper aims to design and develop an intelligent control technology and system
using a hardware platform connected to pressure and flow sensors to monitor and control
irrigation pump stations. And additionally, determine the opening degree of valves in the
pipeline and the frequency of the pump station using multiobjective optimization.

Highlights:
On-demand irrigation control technologies are needed to optimize crop production.
The opening degree of valves and frequency of the pump station are used to control

the pressure and flow.
Machine learning and multiobjective optimization methods optimize the on-demand

MIMO control system.
This paper is organized into material and methods, system hardware design, control

system software, multiobjective optimization method, experimental design, and multiobjec-
tive optimization method based on machine learning were given. The result and analysis
of the optimized forecasting model were given, and we compared six models under four
types of experimental tests. In conclusion, we conclude this paper with future work.

2. Materials and Methods
2.1. System Hardware Design

The control system of on-demand WDN should meet the following requirements:
(1) The system can automatically and real-time detect the pressure and flow of the main
pipeline; (2) The system can automatically and real-time detect the pressure and flow of
three branch pipelines; (3) The system can control the speed of the water pump impeller
and the opening degree of branch electric valve; (4) The system should have the functions
of detection, control and multiobjective optimization, which can achieve the display and
optimization process of pressure and flow.

According to the above requirements, the structure of the experimental device is
shown in Figure 1, which is mainly composed of executive components, monitor, and
control components. The executive components include the centrifugal pump station
and its frequency converter, the electric ball valve and three branch electric valves. The
head pump is a vertical centrifugal pump (CDMF20-10FSWSC, South Pump Industry,
Taizhou city, China), with a rated flow of 30 mh−1, head of 119 m, power of 11 kW and
rotating speed of 2900 r/min. The frequency converter for controlling the pump station
is ABBACS510-10. The diameter of the main pipeline is 90 mm, and the diameters of
the three branch pipelines connected with the main pipeline are 75 mm. The electric ball
valves (TQ911F-10S), pressure sensors (U-MIK-P300-M) and electromagnetic flow sensors
(L-MABB) were installed on the main pipeline and the three branches, respectively. The
monitor and control components include Raspberry Pi 4B, display screen, digital to analog
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conversion module (DA), RS485 data communication module, pressure and flow sensors,
and the experimental device also includes a water tank, surge tank, manual ball valve,
drainage valve, power supply and distribution box.
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Monitoring data and control signals during the experimental process use the MODBUS
master-slave communication protocol. Raspberry Pi 4B receives the sensor monitoring
data using this protocol. At the same time, the Raspberry Pi writes data into the register
to control the electric ball valve. According to the data in the register, the opening degree
of the electric ball valve was changed. The frequency of the frequency converter was
controlled by the digital amount transmitted by Raspberry Pi to the DA module, and then
the speed of the pump station would be controlled.

2.2. Control System Software

To improve the visualization and operability of control system, the Python editing
language, the PyCharm integrated development environment (IDE), Qt Designer interactive
visual design tool, and SSH (Secure shell) remote communication security protocol [25]
were used developing an on-demand WDN control system software, as shown in Figure 2,
the functions of this software are control parameters optimization, irrigation schedule,
monitor the status of key nodes in pipeline, and control performance tests, respectively.
Among them, the control parameters optimization was developed based on the optimized
model, and the best opening degree of the electric valve can be obtained. The irrigation
schedule includes water demand data for crops at different growth stages. They monitor
the status of key nodes in the pipeline, which can display the data of pressure and flow
in real time, as well as the opening degree of all-electric valves in the pipe network. The
control performance test controls the system using the input box of the pump station
impeller speed and the opening degree of electric ball valves. The software also includes
the functions of querying historical data and clearing data. This software has both manual
and automatic control modes.
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The MODBUS protocol is used for data transmission between sensors, electric valves,
and controllers, and the data transmitted by the protocol is a hexadecimal byte string the
Raspberry Pi cannot directly recognize. Therefore, a program for converting hexadecimal
byte strings to decimal physical quantities has been developed for pressure sensors and flow
meters, and a program for converting decimal valves o hexadecimal byte strings has been
developed for the opening degree of electric ball valves. Due to the limitations of Raspberry
Pi’s computing power memory read and write speed, a single-threaded controller has
lower program efficiency when monitoring and converting data from the pressure sensors,
the display control of the control system software may encounter errors, and the control
software is unable to handle other tasks. To solve this problem, a multithreaded running
program was developed using the signal and slot mechanism, which improved the response
speed of the control system program and ensured the normal operation of the system.

2.3. Multiobjective Optimization Method
2.3.1. Mathematical Description of Multiobjective Optimization

The multiobjective optimization problem is composed of multiple objective functions,
related equations and inequality constraints [26], and the related formulas are as follows:

Min f 1 (x1, x2, · · · , xn) (1)

Min f r (x1, x2, · · · , xn) (2)

Min f r+1 (x1, x2, · · · , xn) (3)

Min f m (x1, x2, · · · , xn) (4)

Subject to: gi(x) ≥ 0, i = 1, 2, · · · , p

hj(x) ≥ 0, j = 1, 2, · · · , q

where: fi(x), {i = 1, 2, 3, · · · , m} are called objective functions, gi(x) and hj(x) are called
constraint functions, and x = {x1, x2, · · · , xn}T is n-dimensional design variable, and all
a set of design variables satisfying the constraint functions are called a feasible solution.
The above multiobjective optimization problem is transformed into a minimized objective
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function, and a standard multiobjective optimization model can be obtained by using all
inequalities as constraints [27]:

Min F(X) = [f 1(x), f 2(x), · · · , f m(x)]T (5)

subject to: gi(x) ≤ 0, i = 1,2, · · · , p
All the objective functions f 1(x), f 2(x), · · · , f m(x) constitute the objective function vector

F(X) of the multiobjective optimization problem, and the objective function corresponds to
a mapping from the N-dimensional design variable space to the M-dimensional objective
function space.

2.3.2. Multiobjective Optimization Model of on-Demand WDN

Through extensive literature and research [26,28–31], it can be known that the hy-
drant’s pressure and flow demand can be determined by crop irrigation system, pipe
network layout and other factors. In the process of on-demand irrigation water distribution,
the pressure and flow demand of most hydrants of on-demand irrigation changes randomly,
and the control input parameters of on-demand irrigation systems cannot be obtained
using rotation irrigation control technology.

In this paper, it is proposed to adjust the speed of the pump station impeller and the
opening degree of the electric valves to meet the pressure and flow demand of hydrants.
There are five input parameters for the on-demand irrigation control system, the operating
frequency of the pump (impeller speed), the opening degree of the electric valve in the
main pipeline, and three opening degrees of the electric valve in the branch pipeline,
respectively. While the output parameters of the control system are the flow and pressure
of the three branches pipeline, the flow of the main pipeline and two pressure before and
after the electric valve in the main pipeline. The control system belongs to a multi-input
and multi-output system. Because there are five input parameters for the control system,
these input parameters were taken as target variables. This paper proposes to optimize
the control target variables using the multiobjective optimization method. The constraint
conditions are the pressure-bearing capacity of the pipeline, and the related parameters are
not negative.

The first objective function is the average absolute error value of the opening degree
for the electric valve controlled in the main pipeline and three branch pipelines:

fF =
1
4 ∑4

i=1
|Fi − Foi|

Foi
(6)

where: Foi is the expected opening degree of the electric valve, %; Fi is the opening degree
of the electric valve optimized by the control system, %.

The second objective function is the absolute error value of control frequency for the
pump station:

f H = (|H − Ho|)/Ho (7)

where: Ho is the expected frequency of the pump station, Hz; H is the operating frequency
of the pump station in the control system, Hz.

The multiobjective optimization function is the extreme value of the sum of the first
objective function and the second objective function, as shown in Formula (8):

Min fF + f H (8)

Constraints are:
0 ≤ F1 + F2 + F3+ F4 ≤ 400

0 ≤ Fo1 + Fo2 + Fo3 + Fo4 ≤ 400
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25 ≤ H ≤ 50

25 ≤ Ho ≤ 50

fF ≥ 0

f H ≥ 0

2.4. Experimental Design

To study the control performance of the system under different working conditions,
four experimental schemes were designed in this paper. As shown in Table 1, in experiment:

(1) the frequency of the pump station is set to 50 Hz, and the opening degree of the
electric ball valves in the three branch pipelines is set to 100%. The opening degree
of the electric valve in the main pipeline was gradually reduced from 100% to 25%
by 5%.

(2) the opening degree of the electric valve in the main pipeline is set to 25%, and the
opening degree of the electric ball valves in the three branch pipelines are all 100%.
The operating frequency of the pump station is gradually reduced from 50 Hz to
20 Hz.

(3) the operating frequency of the pump station is set to 50 Hz, the opening degree of
the electric valve in the main pipeline is set to 100%, and the opening degree of the
electric valves in the three branch pipelines is gradually reduced from 100% to 15%.

(4) the operating frequency of the pump station is set to 50 Hz, the opening degree of
the electric valve in the main pipeline is set to 100%, and the sum of the opening
degree of the three branch electric ball valves is gradually reduced from 300% to 50%.
The opening degree of a single branch valve is reduced in sequence by permutation
and combination.

Table 1. The input parameters of four types of experiments.

Test Pump Frequency (Hz)
Opening Degree of Valve (%)

Main Pipeline Branch Pipeline 1# Branch Pipeline 2# Branch Pipeline 3#

1 50 {25, 30, · · · , 100} 100 100 100
2 {21, 22, · · · , 50} 25 100 100 100
3 50 100 {100, 95, · · · , 15} {100, 95, · · · , 15} {100, 95, · · · , 15}
4 50 100 {300, 290, · · · , 50}

2.5. Multiobjective Optimization Method Based on Machine Learning

The control system of the on-demand irrigation system belongs to a multi-input and
multi-output system. The machine learning algorithm is very suitable for constructing
multi-input and multi-output nonlinear system models, with differences in the principles
of different types of machine learning leading to differences in model performance. This
paper selects four kinds of machine learning models with good performance, including BP,
SVR, RF and XG Boost [32–35].

(1) The training of the BP neural network is the forward propagation of input and the
backward propagation of error. The network consists of an input layer, hidden
layer and output layer, and the number of hidden layers (N_hidden layer), iteration
times (N_estimators) and learning rate is the main superparameters that affect the
model performance.

(2) For MIMO systems, the SVR uses the transformation function ϕ to map variables to
high-dimensional feature space and introduce a kernel function to make the linear
algorithm have nonlinear characteristics. When the kernel function types are linear
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kernel function (linear) and radial basis function (RBF), stop fitting tolerance (Tol)
and regularization coefficient (C) are the main parameters that affect the model
performance. When the kernel function is polynomial (Ploy), degree, the constant
term (Coef0), stop fitting tolerance (Tol), and regularization coefficient (C) of the
polynomial function are the main superparameters that affect the performance of
the model.

(3) RF is an integrated learning algorithm based on Bagging. Its data and feature sampling
are random, and it has the advantage of fast training. The number of submodels (N-
estimators), the maximum tree depth (Max_depth), the minimum number of samples
required for splitting (Min_samples_split) and the minimum number of samples of
leaf nodes (Min_samples_leaf) affect the model performance.

(4) XGBoost has added a regularization part, which can perform quadratic Taylor ex-
pansion on the error part of the loss function and has good performance. Maxi-
mum tree depth (Max_depth), Learning rate (learning rate), number of sub-models
(N_estimators) and proportion of randomly sampled columns (Colsample_bytree).

Referring to domestic and foreign literatures and related materials [34,36–39], this
paper selects four types of neural network superparameters and their range of values. It
counts the number of each neural network training model, as shown in Table 2.

Table 2. The range of hyperparameters of four models and the number of training models.

Model Hyperparameters Parameter Value Number

BP
N_hidden layer {1, 2, · · · , 100}

5000N_estimators {100, 300, · · · , 1900}
Learning rate {1 × 10−5, 1 × 10−4, · · · , 1 × 10−1}

SVR-Linear
Tol {1 × 10−4, 1 × 10−3, · · · , 1 × 10−1}

72C {1 × 10−9, 1 × 10−8, · · · , 1 × 108}

SVR-RBF
Tol {1 × 10−4, 1 × 10−3, · · · , 1 × 10−1}

72C {1 × 10−9, 1 × 10−8, · · · , 1 × 108}

SVR-Poly

Degree {1, 2, · · · , 9}

1764
Coef0 {1 × 10−4, 1 × 10−3, · · · , 1 × 102}

Tol {1 × 10−4, 1 × 10−3, · · · , 1 × 10−1}
C {1 × 10−4, 1 × 10−3, · · · , 1 × 102}

RF

N-estimators {1, 2, · · · , 200}

100,000
Max_depth {1, 2, · · · , 20}

Min_samples_split {1, 2, · · · , 5}
Max_depth {1, 2, · · · , 10}

XGBoost
Learning rate {1 × 10−4, 1 × 10−3, · · · , 1 × 10−1}

39,800N_estimators {10, 20, · · · , 1990}
Colsample_bytree {0.5, 0.6, · · · , 0.9}

Using experimental data to train neural networks with different hyperparameters,
combined with a multiobjective optimization function, the optimal combination of hyper-
parameters of neural networks is obtained. Random division of experimental data can
reduce the overfitting of the neural network training process. To prevent the over-fitting of
neural network training, this paper randomly divides experimental data into training sets
(75%) and test sets (25%) by using the Holdout cross-validation method.

The development language of neural network program is Python 3.6, and the main
libraries used are Tensorflow, Pandas, Numpy, Sklearn and Keras. The training software
platform is Pycharm 2021.3, the CPU model of the training computer is Inter (R) Core (TM)
i5-8500CPU @ 3.00 GHz, and the RAM is 16.0 GB.
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The trained neural network adopts root mean square error (RMSE), mean absolute
error (MAE) and correlation coefficient (R2) as evaluation indexes, and its calculation
formula is as follows: (9)–(11) [40]:

RMSE =

√
1
N ∑N

i=1(Yi − Xi)
2 (9)

MAE =
1
N ∑N

i=1|Yi − Xi| (10)

R2 =

[
∑N

i=1
(
Xi − X

)(
Yi −Y

)]2

∑N
i=1
(
Xi − X

)2
∑N

i=1
(
Yi −Y

)2 (11)

where: N—total number of samples; Yi—the predicted value of the model; Y—the forecast
average value of the model; Xi—true value; X —the average of true values.

3. Experimental Results and Analysis

The diagram experimental device and control system are shown in Figure 3. The
input parameters of Experiments 1 and 2 are the opening degree of the electric valve in
the main pipeline and the operating frequency of the pump station, respectively, and the
number of tests is 16 and 29, respectively. The input parameter of experiment 3 is the
opening degree of electric valves in three branch pipelines, and the number of tests is 18.
Because there are few control variables in these three experiments, those test processes
are not complicated. In experiment 4, there are many input parameters which need to
be arranged and combined. A total of 1632 groups of experiments were obtained. To
improve the experiment efficiency, this paper developed a program for the automatic
input of parameters and automatic saving of experimental results. During the experiment,
the program read the input parameters stored in the Excel file gradually and stored the
output parameters obtained by feedback in the Excel file, which improved the efficiency of
experiment data analysis and processing.
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For Experiment 1, when the frequency of the pump station is fixed at 50 Hz, and
the opening degree of the electric valve in the main pipeline is gradually reduced from
100% to 25%, the variation amplitude of the flow in the main pipeline is relatively small,
this parameter is stable within the range of 31 mh−1 to 32 mh−1. However, when the
opening degree in the main pipeline increases from 0 to 100, the pressure of the main
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pipeline drops sharply from 300 to 5 kPa, as shown in Figure 4a. As the opening degree
of the valve further increases, the pressure in the main pipeline gradually decreases to
0. The exponential function is used to fit the pressure and flow. The results indicate that
the correlation coefficient of the exponential function is 0.941. These results show that the
opening degree of the electric valve in the main pipeline has little effect on the flow, but it
has a significant impact on the pressure. As shown in Figure 4b, the pressure and flow of
the three branch pipelines changed little during the increase of the valve opening, and the
pressure and flow of the branch one pipeline and branch two pipelines were greater than
the branch three pipelines, respectively.

Agronomy 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

  
(a) (b) 

Figure 4. The change of pressure and flow in experiment 1: (a) The change of pressure and flow in 
the main pipeline; (b) The change of pressure and flow in the branch pipeline. 

For Experiment 2, the main pipeline’s changes in pressure and flow are shown in 
Figure 5a. The opening degree of the electric valve in the main pipeline is set to 25%, and 
the power of the pump station gradually changes from 1943 W to 3301 W. The flow and 
pressure of the main pipeline increase with the increase of the water pump power. The 
pressure of the main pipeline increases from 61 kPa to 233 kPa, and the flow increases 
from 17.8 mh−1 to 27.3 mh−1. As the power of the pump station increase, the pressure and 
flow of the main pipeline show a linear increasing trend. The correlation coefficients 
between pressure, flow and pump power are 0.977 and 0.962, respectively. It can be seen 
that the power of the pump station significantly affects the pressure and flow of the main 
pipeline. The pressure and flow changes of the three branch pipelines are shown in Figure 
5b. As the power of the pump station increases, the flow and pressure of the three branch 
pipelines do not change much. The pressure and flow trends of the three branch pipelines 
are consistent, but the flow of the three branches pipeline shows significant changes in 
some tests. Similar to Experiment 1, the pressure of the Branch 1 pipeline and Branch 2 
pipeline is greater than that of Branch 3. 

  
(a) (b) 

Figure 5. The change of pressure and flow in experiment 2: (a) The change of pressure and flow in 
the main pipeline; (b) The change of pressure and flow in the branch pipeline. 

For Experiment 3, the pressure and flow changes of the main pipeline are shown in 
Figure 6a. While increasing the opening degree of the three branch electric valves from 
15% to 100%, the flow rate of the main pipeline first increases slightly and then maintains 
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For Experiment 2, the main pipeline’s changes in pressure and flow are shown in
Figure 5a. The opening degree of the electric valve in the main pipeline is set to 25%, and
the power of the pump station gradually changes from 1943 W to 3301 W. The flow and
pressure of the main pipeline increase with the increase of the water pump power. The
pressure of the main pipeline increases from 61 kPa to 233 kPa, and the flow increases from
17.8 mh−1 to 27.3 mh−1. As the power of the pump station increase, the pressure and flow
of the main pipeline show a linear increasing trend. The correlation coefficients between
pressure, flow and pump power are 0.977 and 0.962, respectively. It can be seen that the
power of the pump station significantly affects the pressure and flow of the main pipeline.
The pressure and flow changes of the three branch pipelines are shown in Figure 5b. As the
power of the pump station increases, the flow and pressure of the three branch pipelines do
not change much. The pressure and flow trends of the three branch pipelines are consistent,
but the flow of the three branches pipeline shows significant changes in some tests. Similar
to Experiment 1, the pressure of the Branch 1 pipeline and Branch 2 pipeline is greater than
that of Branch 3.

For Experiment 3, the pressure and flow changes of the main pipeline are shown in
Figure 6a. While increasing the opening degree of the three branch electric valves from 15%
to 100%, the flow rate of the main pipeline first increases slightly and then maintains a small
change. The pressure of the main pipeline sharply decreases as the opening degree of the
three branch valves increases until the pressure of the main pipeline gradually approaches
0 kPa. This change is similar to the change in Experiment 1, but the pressure drops faster
in Experiment 3. The exponential function was also used to fit the pressure and flow. The
results indicate that the correlation coefficient of the exponential function is 0.994. The
pressure and flow changes of the three branch pipelines in Experiment 3 are shown in
Figure 6b. It can be seen that the flow of the Branch 1 pipeline, which is closest to the main
pipeline, gradually decreases as the opening degree of the branch valve increases. Under
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the condition of constant total flow, the branch closest to the main pipeline is more prone to
a decrease in flow. The pressure of the three branch pipelines does not change much while
increasing the valve opening degree and is maintained between 5–6 kPa.
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For Experiment 4, the frequency of the pump station was set to 50 Hz, and the opening
degree of the electric valve in the main pipeline was 100%. The sum of the opening degree
of the three branch electric valves decreases from 300% to 50%. There were 1632 sets of
experiments in this complete experiment, and it is difficult to summarize the pressure and
flow rate changes in the main and branch pipelines. The maximum and minimum pressure
values of the main pipeline in this experiment are 346 kPa and 0 kPa, respectively. The
maximum and minimum flow rates of the main pipeline are 31.76 mh−1 and 12.05 mh−1,
respectively. The maximum and minimum flow among the three branch pipelines is
31.489 mh−1 and 0 mh−1, respectively.
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4. Results

To construct an on-demand irrigation water distribution control model, five input
parameters, namely the frequency of the pump station and the opening degree of the
electric valve in the main and branch pipelines, require a large number of experiments. To
simplify the complexity of the optimization model, it is necessary to compare and analyze
the results of different input parameters. Experiments 1 and 3 show that the opening degree
of the valve in the main pipeline significantly affects the pressure of the main pipeline but
has no significant impact on the flow of the main pipeline and the pressure of the three
branches. The opening degree of the valve in three branch pipelines also has a significant
impact on the pressure in the main pipeline. Still, it has little effect on the pressure in the
three branch pipelines and the flow in the main pipeline. From Experiment 4, it can be seen
that the opening degree of the valve in the branch pipeline has a significant impact on the
flow of the three branch pipelines. Therefore, the opening degree of the electric valve in the
branch pipeline can not only significantly affect the flow in the branch pipeline, but also
significantly affect the pressure of the main pipeline. The flow rate of the three branch lines
and the flow rate of the main line are key parameters in the irrigation process.

Meanwhile, from Experiment 2, it can be seen that the operating frequency of the
pump station is positively correlated with the pressure and flow in the main pipeline.
Therefore, this article proposes to set the working frequency of the head pump to 50 Hz,
mainly considering the influence of the opening degree of the three branch valves on the
pressure of the main pipeline and the flow of the branch pipeline. Using the data from
Experiment 4, a multiobjective optimization control model for stochastic irrigation water
distribution is constructed.

Six different machine learning models with all hyperparameter combinations have
been trained using the multiobjective optimization function. The best hyperparameter
set of each model was obtained. The corresponding best model was used to predict the
opening degree of the three branch electric valves. The best hyperparameter and prediction
performance of the model is shown in Table 3. From the table, the performance of six models
from best to worst is XGBoost, RF, SVR, RBF, SVR-Poly, SVR-Linear and BP, respectively.
For the opening degree of three branch valves, the MAE between predicted values of the
XGBoost model and the true valves are less than 3.3%, the RMSE is less than 4.5%, and the
R2 is greater than 0.990, indicating that the predictive performance of this model is good.

Table 3. The optimal hyperparameters of four optimization models.

Model Hyperparameter Best Valve
MAE (%) RMSE (%) R2

1# 2# 3# 1# 2# 3# 1# 2# 3#

BP
N_hidden layer 43

11.704 11.846 12.331 15.436 15.532 16.358 0.864 0.871 0.856N_estimators 1500
Learning rate 0.01

SVR-Linear
Tol 1000

10.735 10.459 11.595 14.058 13.355 14.590 0.890 0.908 0.883C 0.0001

SVR-RBF
Tol 100,000

4.992 4.772 4.819 6.673 6.470 6.328 0.976 0.979 0.979C 0.1

SVR-Poly

Degree 7

5.088 5.009 5.168 6.711 6.948 6.854 0.976 0.976 0.975
Coef0 1

Tol 100
C 0.001

RF

N-estimators 166

3.305 3.193 3.140 4.885 4.863 4.723 0.987 0.988 0.988
Max_depth 15

Min_samples_split 2
Min_samples_leaf 2

XGBoost

Max_depth 8

3.232 3.025 3.074 4.446 4.136 4.300 0.989 0.991 0.990
Learning rate 0.01
N_estimators 1990

Colsample_bytree 0.8
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The residuals of the opening degree of three branch valves between the predicted
value of the XGBoost model and the true value are shown in Figure 7. For the total 408
test set and the three branches, it can be seen that the number of residuals distributed in
the range of [−5, 5] % is 320, 325, and 324, respectively. The number distributed in the
range of [−3, 3] % is 238, 245, and 245, respectively. The number distributed in the range
of [−20, −10] % is 10, 6, and 9, and the number distributed in the range of [10, 20] % is 8, 6,
and 6, respectively. These data indicate that the residual of the XGBoost model in predicting
valve opening degree is mainly concentrated within the range of [−3, 3] %, and the residual
distribution characteristics between the three branches are not significantly different.
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5. Discussion

On-demand irrigation treats each hydrant as an irrigation unit. Each hydrant can
obtain irrigation water from the irrigation pipe network at any time. This irrigation method
can meet the water needs of multiple users to the greatest extent. The pressure and flow
requirements of the hydrants and the irrigation pipeline network and layout are constantly
changing. Therefore, the pressure and flow at the pump station should also be adjusted as
needed. In recent years, many researchers have developed and implemented systems that
control irrigation in real-time for quick management decisions, resulting in adequate yields
while saving significant amounts of water. Increasingly, farmers worldwide are turning to
automated irrigation systems to save them significant time by remotely turning on and off
pumps and valves [41].

Photovoltaic pumping systems (PVPSs) are more competitive for use in irrigation.
Traditional PVPS configurations use a variable-speed drive (VSD). The performance of
this type of configuration was tested both at a pumping test facility and in the field at a
variety of sites. VSDs can thus potentially further improve the economic competitiveness of
a PVPS. The studies show that the VSDs can thus potentially further improve the economic
competitiveness of a PVPS. This study only applies to regulating the operating frequency of
pump stations, and further research is needed for the comprehensive regulation of the pump
station and valves [42]. To improve the management of on-demand irrigation networks,
a system called GreenValve (GVS) was designed by Politecnico di Milano. The GVS can
recover energy from the flow and is a three-step general and replicable methodological
approach for defining installation and operating conditions. At the same time, the study
shows that simple management rules can reduce and even avoid the occurrence of hydrant
failure, creating the conditions for more effective use of the resources [43].

In an actual on-demand irrigation system, the distribution of pipelines, irrigation fre-
quency, and irrigation scheduling will directly affect the performance of the control model.
The on-demand irrigation system is a MIMO system. The real-time energy, the resilience,
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the pressure head at all nodes, and the perturbation of an on-demand irrigation network
were studied and optimized using machine learning, deep learning, multi-objective design,
and simulation method, respectively [12,15,18,21,28,29]. It is undeniable that these studies
have provided new technologies for irrigation systems, and ways to control the pump
station and valves. However, the control parameters of these studies are single, and most
focus on specific irrigation system networks. These control methods may not necessarily
apply to different on-demand irrigation networks. Therefore, further research is needed on
the comprehensive pressure and flow control methods in on-demand irrigation systems.

In this paper, the operating frequency of the pump station, the opening degree of
the main pipeline valve, and the branch pipeline valve are the input parameters, and
the pressure and flow of the main pipe and the branch pipe are the output parameters.
Therefore, conventional rotational irrigation control methods (such as stable flow regulation
and constant pressure water supply) are difficult to meet the needs of on-demand irrigation.

Therefore, further consideration needs to be given to the impact of the pipeline net-
work, irrigation scheduling and management on the on-demand irrigation system in the
future to improve the model’s applicability.

Due to the low irrigation pressure and flow caused by rotational irrigation, high
irrigation uniformity, low power and energy consumption of the head pump, and relatively
low cost and operating expenses of the irrigation control system. Due to the user end’s
high pressure and flow demand, as well as the significant fluctuations, it is difficult to
control the uniformity of the irrigation pipeline effectively. In addition, the power and
energy consumption of the pump station is also high, which correspondingly increases
the cost and operating expenses of the irrigation control system. Therefore, in subsequent
research, objectives such as irrigation uniformity, system cost, and operating cost should
also be comprehensively considered.

6. Conclusions

This paper establishes an on-demand irrigation experimental device using centrifugal
pumps, including a water tank, main pipeline, and three branches (hydrants). Based on the
PyCharm integrated development environment, a visual control system was developed
using Python, Qt Designer, SSH, and other tools. A total of 1695 sets of experimental results
were analyzed. It can be concluded that the opening degree of the electric valve in the
branch pipeline can significantly affect the flow of the branch pipeline and the pressure of
the main pipeline. At the same time, the flow of the branch pipeline and the flow of the
main pipeline are also parameters that users are more concerned about during irrigation.

Six machine learning models for on-demand experimental devices were constructed
using multiobjective algorithm optimization methods. Those models were trained using
experimental data, and it was found that the model based on XGBoost had the best per-
formance. For the opening degree of the three branches, the MAE between the model’s
predicted value and the true value was less than 3.3%, the RMSE was less than 4.5%, and the
R2 was greater than 0.990. The XGBoost model has the best performance. This article pre-
liminarily establishes intelligent control technology for on-demand irrigation. Subsequent
in-depth research needs to combine factors such as irrigation uniformity, user pipeline lay-
out, control system, and operation cost to improve the applicability of multi-user stochastic
control technology.
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