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Abstract: Accurate pear sorting plays a crucial role in ensuring the quality of pears and increasing
the sales of them. In the domain of intelligent pear sorting, precise target detection of pears is im-
perative. However, practical implementation faces challenges in achieving adequate accuracy in
pear target detection due to the limitations of computational resources in embedded devices and
the occurrence of occlusion among pears. To solve this problem, we built an image acquisition sys-
tem based on pear sorting equipment and created a pear dataset containing 34,598 pear images un-
der laboratory conditions. The dataset was meticulously annotated using the Labellmg software,
resulting in a total of 154,688 precise annotations for pears, pear stems, pear calyxes, and pear de-
fects. Furthermore, we propose an Extremely Compressed Lightweight Model for Pear Object De-
tection (ECLPOD) based on YOLOvV7’s pipeline to assist in the pear sorting task. Firstly, the Hierar-
chical Interactive Shrinking Network (HISNet) was proposed, which contributed to efficient feature
extraction with a limited amount of computation and parameters. The Bulk Feature Pyramid (BFP)
module was then proposed to enhance pear contour information extraction during feature fusion.
Finally, the Accuracy Compensation Strategy (ACS) was proposed to improve the detection capa-
bility of the model, especially for identification of the calyces and stalks of pears. The experimental
results indicate that the ECLPOD achieves 90.1% precision (P) and 85.52% mAP> with only 0.58
million parameters and 1.3 GFLOPs of computation in the homemade pear dataset in this paper.
Compared with YOLOv7, the number of parameters and the amount of computation for the
ECLPOD are compressed to 1.5% and 1.3%, respectively. Compared with other mainstream meth-
ods, the ECLPOD achieves an optimal trade-off between accuracy and complexity. This suggests
that the ECLPOD is superior to these existing approaches in the field of object detection for assisting
pear sorting tasks with good potential for embedded device deployment.

Keywords: deep learning; pear part detection; pear sorting assistance; YOLOv?7

1. Introduction

Pears are widely cultivated in Asia, Western Europe, North America, and other re-
gions, with an annual output of nearly 25 million tons [1], making pears one of the five
largest fruit in the world. Brilliant sales of pears mainly depend on the quality (appear-
ance, taste, sweetness, acidity, and moisture) and postharvest commercialization of pears
[2]. The quality of pear varies little, but the postharvest commercialization [3] of pears
varies greatly. From the picking of pears to the postharvest commercialization of pears,
the quality of pears will be affected by the packaging and transportation process. For ex-
ample, bruised and rotten pears will decay untouched pears [4] in the packaging and
transportation process. When pear quality does not meet consumer expectations, the
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demand in the market and sales may decline. This will cause the price of pears to fall, and
farmers and other players in the industrial chain will face the risk of reduced income [5].

In order to ensure the quality of pears and increase sales, it is essential to carry out
pear sorting.

As agriculture embraces modernization and intelligent technologies, deep learning
has emerged as a crucial tool in the realm of fruit sorting. Through the application of deep
learning techniques, researchers have developed neural network models that possess the
ability to autonomously learn and discern the unique characteristics of fruits. During the
sorting process, these models rapidly analyze fruit images, accurately identifying the po-
sition and specific attributes of each fruit. Leveraging this information, automated sys-
tems, such as robotic arms, can execute precise sorting strategies, thereby facilitating a
highly efficient and effective fruit sorting process.

We tried to use YOLOV? for an auxiliary pear sorting task. The network performs
well in simple scenarios. However, in the actual automation-assisted pear sorting process,
there are still the following three problems to be solved. (1) Deep learning models require
a lot of computing resources and are difficult to deploy on low-cost embedded devices.
(2) The pear groups are easy to occlude, as shown in Figure 1A, which leads to a large
deviation between pear position during data collection and the pear position predicted by
the model, resulting in missed detection. (3) Different types of pears have huge differences
in shape, color, and body shape due to their different growth characteristics, as shown in
Figure 1B, which makes it difficult for the model to learn the characteristics of pears and
easily leads to false detection.

(A) Multiple pears block each other (B) Multiple pear categories
Figure 1. Problems in pear recognition.

Aiming at the problem of deep learning models being difficult to deploy on low-cost
embedded devices, Zhang et al. [6] chose the lightweight Light-CSPNet as the backbone
network in the fruit detection task to adapt to the trade-off between model complexity
and deployment. However, Jinpeng et al. [7] chose the Mobilenet-v3 network to replace
CSPDarknet-53 in YOLOv4, which reduced the complexity of the backbone network. Alt-
hough these improvements have achieved better results, the parameters in the network
backbone are still too large. In order to reduce the amount of model parameters and save
computing costs, we propose the Hierarchical Interactive Shrinking Network to solve the
problem of excessive model complexity and difficult deployment. This module uses a hi-
erarchical interactive shrinking mechanism to shrink and interact with features layer by
layer. While maintaining low model complexity, key pear features are extracted.

Aiming at the problem of false detection caused by the mutual occlusion of fruits,
Zheng et al. [8] proposed multi-task learning to solve the problem of mango picking.
Through the joint action of MASK-RCNN and Faster-RCNN, it can effectively detect oc-
cluded mangoes. However, the joint action of the two models will bring a huge amount
of calculation. For this reason, in solving the occlusion problem of camellia oleifera, Chen
et al. [9] introduced a CA with a small amount of parameters by encoding the location
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information into the attention map, allowing the network to access information for a larger
area and improving the network’s attention to the occlusion area. Considering the partic-
ularity of pear group features, we propose the Bulk Feature Pyramid (BFP) module to
solve the occlusion problem in pear groups. The model uses the sparse reward and pun-
ishment mechanism to select the important features of the pear to reduce the interference
of the detection of the pear occlusion pair.

Aiming at the problem of false detection caused by differences in fruit color and
shape, Jia et al. [10] introduced a region of interest network (RPN) to optimize the feature
extraction stage in fruit picking research to improve the model’s ability to adapt to differ-
ences in fruit color and shape. In addition, Wang et al. [11] chose YOLOvV5s as the bench-
mark network in the real-time recognition of apple stems/calyces and used the pre-trained
weights of the COCO dataset to enrich the feature representation of the model. Although
these methods have improved detection accuracy to a certain extent, they have not made
targeted improvements to the characteristics of the detection task. According to the char-
acteristics of pears, this paper proposes a precision compensation strategy. Through iter-
ative transfer learning, we let the model enrich the feature representation of large, me-
dium, and small targets to adapt to the feature changes of pears, thereby reducing the risk
of false detection.

The research contributions of this paper are as follows:

1. For the first time, we have created a large dataset specifically designed for pear sort-
ing. The dataset comprises 34,598 pear images, encompassing both simple and com-
plex scenarios, along with meticulously standardized and accurate pear labels total-
ing 154,688. This dataset aims to address the challenges in pear sorting and provide
valuable data support for researchers in related fields conducting experiments.

2. In order to solve the problem of auxiliary pear sorting, we proposed the ECLPOD
based on YOLOV7’s pipeline. The working flow of the network is shown in Figure 2.

e  We propose the HSINet module to compensate for the complexity of deep learn-
ing models that are difficult to deploy. The module functions in the feature ex-
traction stage and extracts pear feature information efficiently with a small
amount of computing resources.

e  We propose a BFP module to solve the problem of missed detections caused by
pear group occlusion. The module uses sparsity reward and punishment to focus
the model’s learning on the characteristic information of pears to alleviate the
interference of redundant information and occlusion information in pear images.

e  We propose the ACS to compensate for the false detection problem caused by
differences in the color and shape of pears. Iterative transfer learning was used
to enrich the feature information of different scales for pear sorting.

3. In pear detection data, our ECLPOD only uses 0.5 M and 1.3 GFLOPs to reach the
mAP50 of 85.2. Compared with other popular detection methods, our model achieves
a trade-off between accuracy and model complexity and has more potential for prac-
tical deployment.
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Figure 2. Workflow of the ECLPOD.

To facilitate reader comprehension, we have compiled a list of abbreviations and for-
mula symbols used in this paper, as shown in Table 1 and Table 2, respectively.

Table 1. Abbreviations table.

Abbreviation  Explanation

ECLPOD Extremely Compressed Lightweight Model for Pear Object Detection
HISNet Hierarchical Interactive Shrinking Network

BFP Bulk Feature Pyramid

LNBA Learnable Based on Normalized Attention

ACS Accuracy Compensation Strategy

ITL Iterative transfer learning

TTA Test Time Augmentation

Table 2. Symbol explanation table.

Symbol Explanation

V'(py»€) The value at P, of the ¢ channel feature map after deep convolution.
y(p,) The value at position F, in the final output feature map.

R The effective receptive field area of the convolution kernel.

wW(p,,c) The weight of depth convolution.

w(c) The weight of point-by-point convolution.

ocC The computation of ordinary convolution.

DSC The computational amount of depth-separable convolution.

E, The input feature map of the LNBA model.

E., The output feature map of the LNBA model.

BN, A feature normalization of input features.
Weight The normalized BN layer weight.

Ry(a) Value of the information bottleneck.

2. Related Works

Pear sorting plays a crucial role in enhancing the overall quality of pears, boosting
consumer demand, and improving the competitiveness and sustainability of the pear in-
dustry. Currently, there are primarily three methods used for pear sorting: (1) manual
sorting methods or machine sorting methods, (2) integration of machine learning with
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sorting equipment, and (3) utilization of deep learning techniques in conjunction with
sorting equipment.

In order to compensate for the shortcomings of mechanical sorting methods, the in-
dustry introduced computer vision to assist machine sorting in the fruit sorting process.
Zhang et al. [12] proposed a mechanical sorting method based on fruit morphology, in
which a mechanical arm grasps the stems of fruit bunches during the sorting process to
protect fruit from damage. To improve the speed of fruit sorting, Dewi et al. [13] designed
a fruit sorting robot that sorts based on color and size, which classifies fruit categories by
fruit color thresholds and passes the above information to a robotic arm for fruit sorting.
However, with too little fruit information, the RGB image makes it easy to miss the recog-
nition of defects. Unay et al. [14] used multispectral images and computer vision to rec-
ognize defects in fruit. Even though these traditional computer vision methods have good
recognition rates, they depend a lot on extracted features and classifiers. Some of them
even require complex and expensive image acquisition equipment, which is hard to obtain
with industrial inspection. Additionally, the detection speed of traditional visual methods
is too slow to implement.

Recently, advancements in deep learning have introduced innovative approaches for
addressing complex issues, with researchers applying these methods across a variety of
domains, such as agriculture [15,16], industry [17], medicine [18,19], forest safety [20], and
so on. Therefore, the application of deep learning technology to the field of fruit sorting
has also received more and more attention. A summary of the sorting methods based on
deep learning in recent years is shown in Table 3.

Table 3. Overview of deep learning-based sorting methods.

Years Methods Advantages Disadvantages Dataset
. e L. . The accuracy rate of pear . . .
2020 Detection and classmcatlor? of bruises on pears bruise detection reached Equipment is too compli- 4371
based on thermal images [21] cated
99.25%
2021 Deep learning jbased.on residual networks for ~ Accurate summary of ba- Bananas are not targeted 600
automatic sorting of bananas [22] nana quality grades
W: Szer;az)igce;?:;ttf?z?lgaaas:glz;ni:;mesoizng Carrots were graded with an The model is simple and
2021 Y sep 8 does not fully exploit the 878

cessing techniques and improved deep neural ~ accuracy of 93.9 percent

Apple stem/calyx real-time recognition using

characteristics of the data
networks [23]

Adjusting fruit posture
through the fruit calyx and The application scenario is

2022 the YOLOVS5 algorithm for an automatic fruit . . . 7660
Joading system [11] fruit stalk helped achieve an simple
85y accuracy rate of 93.89%
A lity classificati thod f
ppearance quality classification method for . o The three-stage model is

Huangguan pear under complex backgrounds Accurate identification of .
2022 . . . . too complex for practical 5562

based on instance segmentation and semantic diseased Crown pears .

. application
segmentation [24]
An efficient classification process using super- L. . .
. . Lo Real-time identification and Does not consider the oc-
2023 vised deep learning and robot positioning classification of fruits clusion of the fruit 6600
based on embedded PD-FLC [25]
It better solves the decline in
Sorting of fresh tea leaf using deep learning and recognition accuracy caused Only the use of simple
2023 . . . . . 6400
air blowing [26] by the mixed grades of fresh ~  cases is considered
tea leaves
Diagnosis is possible

2023 Application of deep learning diagnoses for mul- through RGB images with- Unable to detect internal 1512

tiple trait sorting in peach fruit [27] out the need for complex defects

equipment
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The above research shows that deep learning technology has excellent performance
in fruit sorting tasks. However, previous studies focused on simple identification and clas-
sification of individual fruits and did not take into account the auxiliary role of fruit sort-
ing in large-scale scenarios. In addition, for deep learning, data are crucial. Too small a
dataset can lead to the risk of overfitting the model. Therefore, in order to cope with the
complex pear sorting task in large-scale scenarios, we created a pear sorting dataset and
selected the excellent YOLOV? target detector as the benchmark network to realize the
auxiliary pear sorting task in large-scale scenarios.

3. Materials and Methods
3.1. The Sample Used in the Experiment

In this paper, 468 common pear samples were purchased from the Red Star Fruit
Wholesale Market in Changsha, China, as experimental samples, among which were 9
total varieties of pear: Sour pear (80), Crystal tribute pear (49), Pyrus pyrifolia (47), Korla
fragrant pears (52), Gong pear (36), Crown pear (50), Dangshan pear (60), Fuchuan pear
(39), and Pyrus nivalis (55). All samples were stored at room temperature (24-26 °C) for
24 h before the experiment. Pears were stored at room temperature after each image ac-
quisition.

3.2. Data Acquisition Systems and Data Types
3.2.1. Data Acquisition Systems

In the field of pear sorting through auxiliary detection based on deep learning, there
is no public pear sorting dataset at present. Therefore, our researchers built a sorting sce-
nario to simulate the pear sorting process and made a large pear sorting dataset. The data
collection equipment was composed of five cameras, including a Canon EOS 40D,
SONYA6000L, SONY a7r3, PENTAXK-70, and Fujifilm HS11. By adjusting the tripod, the
camera position was fixed at a height of 30cm. The focal length of the camera was then
fixed, and the pears were placed at a short distance (0.4 m), a medium distance (1.0 m),
and a long distance (2.0 m). Various complex situations in the sorting process were simu-
lated by changing pear attitude, pear type, pear quantity, and pear position, as shown in
Figure 3E.

3.2.2. Data Acquisition

The dataset collected in this paper was mainly collected on the simulated sorting line.
Considering the different data acquisition equipment on the sorting line, there may be
differences in the collected images (size and clarity). Therefore, we used multiple cameras
of different models to collect data and take pictures of various sizes and clarity. At the
same time, we changed the combination of pear attitude and quantity to simulate complex
situations in the practical application of sorting lines. Illumination conditions are crucial
during data collection, as different light intensities can impact the color and texture fea-
tures of pears in the images. For instance, excessive lighting can result in image distortion,
while insufficient lighting can obscure the distinctiveness of pear features, as shown in
Figure 3D. To mitigate this interference, we simulated scenarios with weak, strong, and
normal lighting conditions.



Agronomy 2023, 13, 1891 7 of 31

Data acquisition

Short distance Medium distance Long distance

(E) Data collection process

Figure 3. Components of experimental data and data collection methods: (A) represents the location
information of a single pear in the near, medium, and far environment. (B) represents the location
information of a small number of pears in the near, medium, and far environment. (C) represents
the location information of multiple pears in near, medium, and far environments. (D) represents
pear position information in a dark environment, an environment with more shade, an environment
with strong light, and an environment with focus deviation. (E) represents the data acquisition pro-
cess for the dataset.
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This dataset is divided into four parts: a single pear location dataset, a pear location
dataset with a limited number of pears, a multiple pear location dataset, and a complex
pear location dataset. The specific types of datasets are shown in Figure 3. The pear images
in this dataset include a variety of sizes, with resolutions of 2736 x 3648, 2656 x 3984, 2000
x 3008, 2048 x 3072, and 2592 x 3888. A total of 34,598 images were obtained, of which
29,195 were used to train and verify the model. Images were randomly divided according
to a ratio of 7:3, and the remaining 5403 pieces were used for robustness analysis of the
model.

For each image, the whole of each pear, the stem of the pear, the calyx of the pear,
and the defects of the pear were marked using labelImg2-master [28]. See Table 4 for the
number of label objects in the dataset.

Table 4. The number of labels in the dataset.

Labels with De-
Dataset Setting Labels with Pears Labels with Peduncle Labels with Calyx abe Sf:;t ® Total Labels Labels per Image
Train set 43,148 31,722 15,376 2087 92,333 4.51
Val set 18,496 13,664 6543 919 39,622 4.52
Robust set 10,937 6333 5049 414 22,733 4.20

3.3. YOLOv7

YOLO is one of the best algorithms in the field of object detection. YOLOv7 [29] adds
an E-ELAN structure compared with the previous YOLO series, which improves the net-
work’s ability to learn and makes it easier to identify pear features without destroying the
original gradient path. In the head layer, the RepVGG style is introduced to transform the
structure of the head network. In the training process, multiple branches can be used to
improve the learning performance of pear features. In the detection process, the structure
can be re-parameterized to accelerate the detection of pear features. In addition, YOLOv7
uses auxiliary head training for deep supervision of the model.

The YOLOv? algorithm ensures the accuracy of pear sorting recognition. However,
in industrial applications, the computing resources required by the model should be as
small as possible. The number of model parameters for YOLOV7 is as high as 37.2M, which
is difficult to achieve in the model deployment process. Therefore, it is necessary to find a
network model suitable for pear detection that strikes a balance between detection perfor-
mance and model complexity.

3.4. ECLPOD for Assisted Pear Sorting

In the detection task of auxiliary pear sorting, the complexity of the model is too
large, which makes it difficult to implement in practical applications. In addition, in the
process of pear detection, the placement of the pear is random and it is easy to block other
pears in the group during data collection, resulting in missed pear detections. At the same
time, the features of different pears are obviously different, which easily causes interfer-
ence in research into pear features and results in the false detection of pears, thus reducing
identification accuracy.

To solve the above problems, a pear recognition and detection method, ECLPOD, is
proposed based on YOLOv7’s pipeline. The network structure is shown in Figure 4. The
network first proposes the use of the HIS module to reduce the computational complexity
of the feature extraction process, and then proposes the use of the BFP module using the
proposed LNBA to capture key pear edge features so as to reduce occlusion interference.
Finally, the ACS was used to improve the model’s recognition accuracy.
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Figure 4. Structure of the ECLPOD: (A) The parameter transfer process of the network’s backbone.
(B) The main structure of the ECLPOD. (C) The structure of the HISNet. (D) The main structure of
the BFP module. (E) The ACS policies are ITL and TTA.

3.4.1. Hierarchical Interactive Shrinking Network

It is required to identify pears quickly and accurately in the process of pear industrial
sorting. However, when restricted to the memory and computing resources of embedded
devices and edge devices, it is necessary to use limited computer resources to accomplish
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efficient feature extraction. The task of object detection relies heavily on feature extraction.
It turns the input image into the deep-seated and high-semantic feature image based on
the backbone of the convolution module. In YOLOvV7, feature extraction uses an E-ELAN
and MP structure with a high number of convolution modules and a large number of
parameters and calculations, which is not suitable for industrial applications. Despite the
superior performance achieved by YOLOV? in assisting pear target detection, its feature
extraction relies on E-ELAN and MP structures, incorporating numerous convolution
modules. This results in a significant number of parameters and computations, which may
hinder its practical deployment in industry.

In order to make the deep learning model more applicable for industrial deployment,
we proposed the Hierarchical Interactive Shrinking Network (HISNet) based on the back-
bone of YOLOv7-tiny (as shown in Figure 4). The structure consists of three parts: the
CBH, DW-Block, and GAD. Among them, the CBH uses 2D convolution to extract the
feature and structure information of pear images and provides rich feature representation
for subsequent layers; the DW-Block uses depth-separable convolution instead of original
convolution to reduce the amount of parameters in the feature extraction process; and the
GAD passes the GAP [30] and the dropout to compress feature information and reduce
the connection of useless hidden layers in the network while using as limited a number of
parameters as possible to identify pear features.

The specific improvements of HISNet are as follows:

1  To achieve a lower number of parameters and computational complexity during the
feature extraction stage, we introduce the use of depthwise separable convolution in
the DW-Block [31]. This approach enables large and complex neural networks to op-
erate effectively with significantly reduced complexity. Depthwise separable convo-
lution divides the convolution process into two steps, resulting in a much smaller
parameter and computational footprint.

The first step involves performing a depthwise convolution on each channel of the
input feature. This step applies a 2D convolution operation individually to each channel.
It aims to extract features from each channel while preserving the same number of chan-
nels. The process can be represented by Equation (1).

V(Pe:©)= D, W(p,.¢)xx(py + P,C) M

P,€R

The next step involves pointwise convolution applied to the information processed
by the depthwise convolution. It employs a 1 x 1 convolutional kernel to merge the fea-
tures from each channel through a standard 3D convolution process. This step performs
spatial convolution operations on the features at each position to capture more compre-
hensive spatial information. The process can be represented by Equation (2).

y(py) = ZW(C) X y'(Py,€) 2)

where x(p,+ p,) is the value of the input feature at (p,+p,), »'(p,,C) represents
the value at P, of the ¢ channel feature map after deep convolution, y(p,) repre-
sents the value at position P, in the final output feature map, R is the effective recep-
tive field area of the convolution kernel, W(p,,c) is the weight of depth convolution,

and W(c) is the weight of point-by-point convolution.

Through the combination of deep convolution and pointwise convolution, depthwise
separable convolution achieves efficient feature extraction with reduced computational
and parameter requirements. To compare the computational costs of regular convolution
and depthwise separable convolution, let us assume that the input feature map has a size
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of S, xS§, and S, xS, channels, with a total of N convolution kernels. The computa-
tional costs for origin convolution (OC) and depthwise separable convolution (DSC) are
given by Equation (3) and (4), as shown below.

OCZSinXSinXCXNXSCXSc (3)

DSC=S§,x8§, xCxS xS +8§, xS, xCxN 4)

After calculation, the calculation ratio of depth separable convolution and ordinary
convolution is

oc §,x8,xCxS xS +8, xS, xCxN

ratio = ()
DSC S, xS, xCxN xS xS,

It is evident that the reduction in computation for depthwise separable convolution
is determined by the size of the two-dimensional convolution kernel and the number of
three-dimensional convolution kernels employed. In practical applications, depthwise
separable convolution commonly employs a 3 x 3 convolution kernel. For instance, if the
number of output channels is set to 64, the computation required for depthwise separable
convolution is only one-tenth of that for regular convolution.

2 Inthe fully connected layer of the network, we propose the GAD module to replace
the fully connected layer, as shown in Figure 4C. The fully connected layer is replaced
by the GAP and the dropout. In the initial stage of the convolutional neural network,
the convolution layer needs one or more fully connected layers after passing through
the maximum pool layer, and Softmax classification is then adopted. However, the
fully connected layer transforms the convolution layer into vectors, subsequently
classifying each feature map. The parameters of the fully connected layer are too
large, which leads to slow training speeds with datasets and models that overfit eas-
ily. Here, the GAP can pool the whole feature map evenly, compress the feature map
into feature points, and classify the feature points. The GAP gives practical class
meaning to each channel, regularizes the network structurally, introduces the drop-
out in network training, and randomly drops some neurons with a certain probabil-
ity, which not only reduces parameters but also avoids overfitting caused by full con-
nection.

In Section 4.5.1, we assess the feature extraction capabilities of the HISNet.

3.4.2. Bulk Feature Pyramid

In the process of pear sorting, the identification of multiple pears simultaneously is
often employed to enhance market competitiveness and improve sorting efficiency. How-
ever, as the number of pears increases, mutual occlusion between pear groups becomes a
common issue. This occlusion poses challenges in localization as the features of the oc-
cluded pears are easily overlooked by the detector.

To alleviate the pear feature occlusion problem, we propose a BFP module, as shown
in Figure 4D. This module consists of three parts: the DW-block, C3-Block, and LNBA in
the HSINet. The following is a description of the functions of these three parts.

DW-Block and C3-Block: These two components are primarily employed to minimize
computational load and parameters in the process of model feature fusion, thereby achiev-
ing models that are lightweight. The DW-Block applies depthwise separable convolution,
wherein the convolution operation is decomposed into depthwise and pointwise convo-
lutions, effectively reducing calculation load. The C3-Block utilizes the CSP bottleneck
structure, enhancing the network’s expressive capabilities through feature transformation
and channel concatenation.

LNBA: This section utilizes a sparse reward and punishment mechanism to deter-
mine the significance of pear features, aiding the network in accurately identifying pear
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features and effectively locating obstructed pears. The human visual attention mechanism
has the ability to concentrate on specific areas with a high level of detail while simultane-
ously processing irrelevant information in the surroundings with reduced clarity. Draw-
ing inspiration from the human visual attention mechanism, LNBA replicates human vis-
ual characteristics and assigns importance to significant pear features, empowering the
network to concentrate on the key aspects of pear features.

As shown in Figure 4D, LNBA first takes the feature map as the initial input and
performs BatchNorm normalization on the feature map according to the complexity of the

feature information. We assume that F;, and F,, are inputand output feature graphs,

respectively, such as in Formula (5).

BN =1 —L_”Ff" +B ©6)

The feature maps are then adjusted according to the scaling factor in BatchNorm.
This rewards important information in pear feature fusion and suppresses irrelevant in-
formation.

Weight =<"—xBN,, 7)

Zj:O}/f

Finally, to constrain the range of feature information, we introduce a learnable sig-
moid function.

F = axsigmoid(Weight + @) 8)

out

where @ and @ are the learning parameters of the affine transformation parameters of
the sigmoid activation functionand A and [ are learning parameters in the BN struc-

ture.

Compared to the traditional sigmoid function, the learnable sigmoid function ex-
tends the range of feature constraints from the original [0, 1] to the range of pear feature
distribution. This constraint idea is inspired by ReacNet [32], which enables the sigmoid
activation function to adjust based on data features and adapt to different feature repre-
sentations. This constraint mechanism effectively expresses pear feature information, al-
lowing the network to better focus on key features and address occlusion between pear
clusters.

By integrating DW-Block, C3-Block, and LNBA, the BFP module is able to effectively
alleviate the occlusion problem in pear detection. It reduces the computational and pa-
rameter complexity of the model, enhances the lightweight nature of the model, and lev-
erages LNBA to focus on the main pear characteristic regions, thus improving occluded
pear detection and localization performance. In order to measure the effectiveness of the
BFP module, we verify the effectiveness of the combination of DW-Block and C3-Block in
Section 4.5.2, and also verify the effectiveness of LNBA.

3.4.3. Accuracy Compensation Strategy

Pears belong to the dicotyledonous family Rosaceae. The fruit is either round or ir-
regularly pear-shaped (thinner at the base and thicker at the tail). Different varieties of
pear also show great changes in peel color, including yellow, green, yellow with green,
green with yellow, and other colors, with some individual varieties even having purple
peel. These differences in shape and color create challenges and distractions for pear target
detection tasks.

In this paper, based on the features of pears themselves, the information bottleneck
theory is applied to the neural network to make up for the deficiency in the lightweight
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network’s feature representation and narrow the information gap between the lightweight
network and YOLOV? so as to eliminate redundant information and efficiently mine the
feature information of pears. The principle of the information bottleneck [33] is directly
related to model compression, and its best assumption is to minimize information gain
and model complexity, as shown in Equation (5).

min: R, (a)=1(Z,Y;a)-pI(Z,X;c) )

where R, () is the information bottleneck, & is the parameter of the network,
I(4,B;a) is the mutual information of input image B and feature information A, and
I(4,C;a) is the mutual information of input image C and feature information A.

The mutual information minimization method based on information bottleneck the-
ory excludes redundant information unrelated to tasks from the compressed model so as
to make full use of the capacity of lightweight models. According to the information bot-
tleneck criterion, we designed two specific precision compensating strategies (iterative
transfer learning and the Accuracy Compensation Strategy) to maximize the mutual in-
formation between the feature mapping of object detection and learning.

»  lterative transfer learning

Due to the large differences in the shapes and colors of different pears, as well as the
small calyces and defects in pears, if the model is directly used for training, the convolu-
tional neural network with randomly initialized weights is not sufficient for the feature
extraction of pears, which easily falls into the local optimal solution and struggles to
achieve better results.

Transfer learning [34] was introduced to transfer the learned knowledge from the
existing domain to the new domain so that the model could better perform the new task.
For example, Wang et al. [11] transferred knowledge from the COCO [35] detection task
to the apple detection task, which significantly improved the performance of apple detec-
tion. However, in the COCO dataset, there are too few features for small targets, and the
model is not strong enough to learn the features of small targets. Therefore, we propose a
new transfer learning method called iterative transfer learning (as shown in Figure 4E).

In the process of iterative transfer learning, we use the AITOD dataset to supplement
small target features so that the model is iteratively trained under the COCO and AITOD
datasets, thus fully learning the features of various targets. The specific process is as fol-
lows:

First, the model was pre-trained in the COCO task to enrich the model’s feature cog-
nition of objects in natural scenes and improve the model’s feature recognition for me-
dium and large targets.

M o0 = Pretrain(COCO) (10)

The model was then further fine-tuned using the AITOD dataset to accommodate
small target features.

M ,.;op r = Finetune(M ..., AITOD) (11)

Subsequently, the model makes a final tweak in the COCO dataset, allowing the
model to review the characteristics of the large and medium targets.

M .oco_r, = Finetune(M ,,,,,,,COCO) (12)
Finally, COCO'’s fine-tuned weights are put into the pear target task for training.
M, .. =Train(M .., ,,PearData) (13)

where M represents the weight information after training. COCO , AITOD , and
PearData are respective proxies for datasets.
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»  Test Time Augmentation

In order to compensate for the accuracy loss caused by making the model light-
weight, the TTA (Test Time Augmentation) strategy [36] is adopted during the detection
process. As shown in Figure 4E, test augmentation is performed on the input data, gener-
ating new images through scale transformation and flipping, with these generated images
then inferred upon. After the inference is completed, the detection results of multiple im-
ages are averaged, effectively compensating for the insufficient recognition of important
features in the original images during the detection process. The pseudo code flowchat
example of TTA is shown below (Algorithm 1).

Algorithm 1 TTA

1 Input: The input is original image [/ during detection

2 Begin:

3 A« flip(1)// flip original image

4 B« scale(] ) /[ Scale the original image

5 D= average(detect(A),detecl(B)) //Detect transformed images and average them
6 Return D

7 Output: The test result after TTAis D

The model’s performance in the pear target detection task can be improved by com-
pensating for the strategy of accuracy, enabling the model to better understand and utilize
the feature information of pears. The corresponding experiment is described in Section
4.5.3.

4. Results

This section evaluates and analyzes the effect of the algorithm from multiple dimen-
sions, such as the ECLPOD’s performance, module effectiveness, ablation experiments,
comparison with algorithms that perform well in the field of object detection, robust ap-
plication tests, and practical application tests, and verifies that the ECLPOD can be used
with effectiveness and superiority in the task of pear object detection.

4.1. Evaluation Indicators

To evaluate the performance of the model in the pear object detection task, we use
precision (P), recall (R), F1score, mAP, FPS, parameter size, and GFLOPs.

The results are divided into two categories: Precision is the proportion of images
correctly detected as positive samples compared to the total amount the model detected,
and Recall is the proportion of images correctly detected as positive samples compared
to total number of true positive samples. The correlation formula is as follows:

Precision = 1 x100% (14)
TP+ FP
Recall =22+ 100% (15)
TP+FN

where 7P is the true positive sample, F'P is the false positive sample, and FN is the
false negative sample.
F,score is used to evaluate the model’s performance, and the formula for £ score

is as follows:

2 x Precisi R
Fscore = x Precision x Recall «100% (16)
Precision + Recall
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mAP is the standard for evaluating the object detection algorithm, which indicates the
overall accuracy of the model. The formula is as follows:

| ]

24P, 17)

num =1

mAP =

AP = J.O] (Precision x Recall)d (Recall) (18)

where ; represents the part category of the pear and num represents the total number
of categories. AP represents the average accuracy of a single category.

FPS serves as a metric for the detection speed of a model, signifying the average count
of images analyzed per second. The formula is as follows:

1
FPS =— (19)
t
The inference time of a single picture is t.
Parameters are used to measure the size of the model, and as the number of parame-
ters increases, the demand for computer memory also escalates. In the following equa-
tions, K denotes the size of the convolution kernel, C,, and C

ou

. represent the number

of input and output channels, and / and O indicate the number of weights for input
and output, respectively.

ParamConv = (K x Qn + 1) x Cout (20)
Param,. =(1+1)x0O (21)
Param,,, = Param,,,, + Param,, (22)

Among them, Param,,,, Paramg.,and Param,,, representthe parameter quanti-

ties of the convolutional layer, the fully connected layer, and the overall model, respec-
tively.

GFLOPs [37] is used to measure the complexity of the model, with higher complexity
indicating a greater demand for computing time. If we suppose that A and B are the width
and height of the input feature map, then

FLOPSCDH\’ = [(Cin X K) + (C'i’1 xK - 1) + 1:| x Ca”’ x Fh x Fw (23)
FLOPs,. =(21-1)x0 (24)
GFLOPs,,,, =(FLOPs,,,, + FLOPs,.)x10” (25)

Among them, FLOPsg,,,, FLOPs,. and GFLOPs

el » TEPTESENt the computational
complexity of the convolutional layer, the fully connected layer, and the overall model,

respectively.

4.2. Environment Settings

To avoid differences in the experimental environment affecting the results, all the
experimental tests in this paper were carried out using the same hardware and software
environment. The experiment was carried out using the Autodl server with Ubuntu
20.04.5 LTS; please see Table 5 for the specific environment version.
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Table 5. Software and hardware environment settings.

32 vCPU Intel(R) Xeon(R)

CPU Platinum 8350C CPU @ 2.60 GHz
comironment RAM 5GB
Video memory 24 GB
GPU NVIDIA GeForce RTX 3090
oS Linux
Miniconda conda3 Python 3.8.10 (ubuntu20.04)
Software Cuda 11.3 Torch 1.9.1 + culll
environment CUDNN 8005 Torchaudio 0.9.1
Torchvision 0.10.1 + culll YOLOAIr-v1.0
MMCV-full 1.6.1 MMdet 2.25.1

4.3. Experimental Settings

Considering the GPU memory size and time overhead, we used the SGD optimizer
and set the batch size to 32; detailed experimental settings are shown in Table 6.

Table 6. Experimental parameter settings.

Parameter Category Parameter Name Parameter Setting
Initial learning rate 0.01
. Weight decay 5x10+
SGD optimizer Momentum 0.937
Learning rate decay 0.005
Size of input images (640,640)

Input data parameters Batch size 32
Training epochs 300
IoU threshold 0.6

To eliminate possible errors in the experiment, we used five repetitions of the exper-
iment to take the median mAP% experimental values and used subscripted results to in-

dicate positive and negative fluctuations.

In object detection tasks, the similar background of training sets leads to poor net-
work generalization, and the detection effect of small targets is worse than that of large
targets. Therefore, this paper adopted MOSIA data enhancement in the training process,
as shown in Figure 5. Four pictures were read each time, and after flipping, scaling, and
gamut transformation of the pictures, pictures and boxes were combined. Through data
enhancement, the background information in the dataset was added and the features of

small targets were enriched.

Figure 5. Data enhancement of pictures during training. The meanings of the numbers in the boxes
in the pictures are as follows: 0 represents pear, 1 represents fruit stalk, 2 represents fruit calyx, and

3 represents defect.
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4.4. ECLPOD Performance Analysis

In this section, we tested the performance of the ECLPOD on verification sets and
analyzed the results in terms of model complexity and accuracy dimensions. Detailed ex-

perimental data are shown in Table 7.

Table 7. Model performance comparison.

Evaluation YOLOvV7-Tiny ECLPOD
ADPpear 99.4.3(-0.02~+0.03) 99.44-0.02-+0.05)
APpeduncle 93.42(-0.02-+0.05) 91.23(-0.08-+0.11)
APealyx 81.11¢-013-+0.11) 78.50(-0.07-+0.14)
AP 87.10(-0.04-+0.08) 83.10(-0.09~+0.15)
AP50:9%5 58.20-0.05-+0.09) 52.72(-0.06-+0.12)
F1 0.84 0.84
FPS 106 112
Params(M) 6.02 0.55

In terms of model complexity, we found that the ECLPOD’s network complexity de-
creased significantly in terms of GFLOPs and parameters. Specifically, compared with
YOLOv7-tiny, the number of parameters in our ECLPOD model was reduced from the
original 6.02 M to 0.55 M, which is 1/11 of the original size. Meanwhile, the calculation
amount was reduced from 13.2 GFLOPs to 1.3 GFLOPs, which is 1/10 of the original size.
The reason for this reduction in parameters is that our proposed ECLPOD designs a light-
weight backbone network (HISNet) for feature extraction. In addition, in terms of accu-
racy, we find that the ECLPOD has no loss in APrexr compared with YOLOv7-tiny. There
was little difference in the accuracy of the models in terms of pears, stalks, and calyces.
Because the BFP uses the LNBA attention mechanism, the overall information of the pear
is preserved in the case of a severe reduction in model parameters, thereby minimizing
the loss of pear details.

We then compared the differences between the two models in the training and veri-
fication process, and the change curves of the loss rate are shown in Figure 6. As shown
in the figure, the convergence trend of the ECLPOD model and YOLOvV7-tiny is similar.
When training reaches 300 rounds, the loss of the model on the training set and verifica-
tion set tends to be stable and the model converges. This indicates that when the ECLPOD
parameters are significantly reduced, the convergence rate of the model is not significantly
affected.

Yolov7-tiny ECLPOD
0.1 0.1
lminhm train,
0.09 train 0.09 train
obj obj
train N train )
0.08 e 0.08 ol
"™ Valoox
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2 Z
5 0.05 £ 0.05
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\ St T —— ] A N— T
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Figure 6. Loss changes during training and verification.
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Since the neural network is a black box model, we used visual feature maps and ther-
mal maps to explore the differences between YOLOv7-tiny and the ECLPOD in the pear
feature learning process, and the results are shown in Table 8.

Table 8. Visual comparison of the networks.

Evaluation YOLOV7-Tiny ECLPOD

Input layer 1 of the network

The last layer of the backbone

The last layer of the neck

The last layer of the head

In the feature maps provided as output from the input layer of YOLOv7-tiny and the
ECLPOD, it is found that the pear features extracted by the network are similar, indicating
that there is no difference in learning in the shallow layer of the network. With the deep-
ening of the network structure, a small amount of noise appears in the background of
ECLPOD feature maps, while images with YOLOvV7-tiny tend to be smooth. However, in
the head layer, both the ECLPOD and YOLOV7-tiny can accurately identify the pear fruit.
Additionally, the thermal feature area of pears in the ECLPOD is larger than that of
YOLOV7-tiny. For one thing, the ECLPOD brings a small amount of noise interference in
the process of model compression. For another, in the BFP, a learnable sparse reward and
punishment mechanism is used to filter noise interference, and the feature is marked so
that the ECLPOD can capture more pear feature information.

The above experiments show that the ECLPOD achieves better balance between com-
plexity and performance than YOLOv7-tiny and is thus more suitable for pear detection
tasks in practical applications.

4.5. Analysis of the Effectiveness of Modules

In this section, we will analyze the effectiveness of three key ECLPOD modules, in-
cluding the HISNet for lightweight feature extraction, the BFP module for improving the



Agronomy 2023, 13, 1891 19 of 31

recognition of fruit pear occlusion, and the ACS for compensating for the precision loss
caused by making the model lightweight.

4.5.1. Analysis of the Effect of HISNet

To prove the effectiveness of HISNet for feature extraction with limited computing
resources, we used the popular lightweight backbones MobileNet-V3 and ShuffleNet-V2
based on YOLOV7-tiny for comparison. The effect of HISNet on feature extraction was
investigated, and the experimental results are shown in Table 9.

Table 9. Comparing the HISNet with other lightweight networks.

Method Param GFLOPs mAP50 APpear
YOLOV7-tiny 621 M 13.20 87.10(-0.04~+0.08) 99.43(-0.01~+0.01)
+Mobilenetv3-InvertedResidual [38] 482M 8.11 80.90(-0.13-+0.11) 99.42(-0.03-+0.02)
+ShuffleNet V2 [39] 5.39 M 9.74 77.90(-0.17+0.12) 99.23-0.02-+0.04)
+HISNet 4.01 M 7.82 82.10¢-0.08-+0.15) 99.51(-0.01-+0.02)

According to the data in the table, the HISNet performed best. Compared with
YOLOv7-tiny, model parameters decreased by 36.1%, GFLOPs decreased by 39.8%, and
mAPrer increased by 0.08% when using the HISNet. These results prove that the HISNet
is the best model to balance precision and complexity in the feature extraction stage.

4.5.2. Analysis of the Effect of the BFP Module

The BFP is mainly composed of the combination of the DW-Block, C3, and LNBA.
The function of the BFP is to efficiently and accurately transmit the location feature of
pears to the prediction layer. To verify the effectiveness of the BFP, we analyzed the effec-
tiveness of DW-Block+C3 and LNBA, the components of the BFP module.

To verify the effectiveness of DW-Block+C3, DW-Block and Conv were selected to
conduct experiments with BottleneckCSP, C3, and C3TR (a transformer improvement
module for C3) using the ECLPOD. The experimental results are shown in Figure 7.
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0.590M
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o N
X o X ) 0 B
c® = A\ QA QA
qx?)o >
¥ o

Figure 7. Analysis of the effectiveness of DW block and C3.
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According to the experimental results, we found that DW-Block+C3 is the best in
terms of parameter quantity. Compared with Conv+C3 with the highest accuracy, DW-
Block+C3 reduced parameters by 3.96% and mAP* by 0.2%. This is because DW-Block+C3
uses the DW structure of the HISNet, which reduces interference from redundant infor-
mation.

We then verified the recognition ability of the LNBA module for pear occlusion. We
inserted CA and CBAM, currently mainstream attention mechanisms, at the final layer of
the ECLPOD’s neck to compare the effectiveness of LNBA. The experimental results are
shown in Table 10.

Table 10. Comparison of the effect of attention.

Method F1 Param GFLOPs mAPS5°
Without Attention 0.84 0.557 M 1.3 82.5(-0.07~+0.11)
+CA [40] 0.83 0.562 M 1.3 80.7(-0.13~+0.12)
+CBAM [41] 0.83 0.562 M 1.3 81.9(-0.11~+0.09)
+LNBA 0.84 0.558 M 1.3 83.2(-0.09~+0.07)

Experimental results show that the attention mechanism adds a small number of pa-
rameters, but the computational complexity remains almost the same. In the pear detec-
tion task, CA and CBAM did not achieve good results. While LNBA added a few param-
eters and network layers, the detection effect was significantly improved, and the model’s
mAP*® increased by 0.7%. In addition, LNBA introduced learnable strategies to find the
optimal activation function to fit the pear detection model. Therefore, we choose LNBA to
filter network interference information.

4.5.3. Analysis of the Effect of the ACS

To verify whether the ACS strategy proposed by us is effective in improving the ac-
curacy of pear recognition, the ECLPOD was trained with different transfer learning
methods and TTA on the pear detection dataset. These other transfer learning methods
are single-stage transfer learning (transfer learning only in the COCO dataset), two-stage
transfer learning (fine-tuning using the AITOD dataset on a single-stage basis), and itera-
tive transfer learning (further fine-tuning using the COCO dataset on a two-stage transfer
learning basis). Figure 8 shows the precision, recall, and mAP results of different learning
strategies after 300 rounds of training.

I No transfer learning
09 :No transfer learning+TTA
[——ISingle-stage transfer learning
[——JSingle-stage transfer learning+TTA

0.88 | I Two-stage transfer learning
I 1'wo-stage transfer learning+1TA
Il [terative transfer learning
0.86 I terative transfer learning+TTA
0.84

0.82

0.8

0.78

0.76

0.74

R mAP50 F1

Figure 8. Comparison of different learning strategies.
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The various indicators of the model with a transfer learning strategy were improved
compared with those without one. This is because transfer learning improves the feature
learning ability of the network, which makes the model perform better in the pear detec-
tion task. With the TTA strategy, the model improved in precision, recall, mAP%, and other
indicators, among which recall and mAP% increased the most. This is because TTA scales
the input images, which improves the ability of the model to detect errors and omissions.
In addition, to demonstrate the training results under different learning strategies in de-
tail, the results of the model with the verification set are shown in Table 11.

Table 11. Training results for different learning strategies.

Method P R F1 mAP50
No transfer learning 81.20 74.80 77.00 75.70(-0.27~+0.19)
No transfer learning (+TTA) 82.50 75.00 78.00 78.01(-0.24~+0.15)
Single-stage transfer learning 88.10 79.30 83.00 82.10(-0.16~+0.06)
Single-stage transfer learning (+TTA) 89.20 80.50 84.60 83.24(-0.14~+0.04)
Two-stage transfer learning 88.60 77.90 83.00 81.00(-0.18~+0.11)
Two-stage transfer learning (+TTA) 88.90 81.10 82.80 83.02(-0.11~+0.15)
Iterative transfer learning 88.60 81.42 82.00 83.20(-0.09~+0.15)
Iterative transfer learning (+TTA) 90.10 82.90 83.10 85.20(-0.07~+0.14)

Compared to the original strategy, iterative transfer learning performs the best, with
precision increased by 7.4%, recall increased by 5.1%, mAP% increased by 6.9%, and F1
score increased by 7%. This is because iterative transfer learning contains the feature of
various targets, which helps the ECLPOD learn the color and shape differences of pears.
In addition, compared with the single-stage transfer learning model, the two-stage trans-
fer learning model showed a 1.4% reduction in recall, a 1.1% reduction in mAP%, and a
0.5% increase in precision. This is because when the network learns the features of small
target data, it forgets the features of medium and large data. The sizes of pears and stalks
in the dataset are medium and large. Therefore, it is necessary to carry out feature relearn-
ing. The experimental results fully demonstrate that iterative transfer learning can effec-
tively help networks learn pear features.

4.6. Ablation Experiment

To verify the effectiveness of the ECLPOD, an ablation experiment of the proposed
ECLPOD was conducted on the pear dataset, and HIS, BFP, and ACS were gradually in-
troduced based on YOLOvV7-tiny. By contrasting the variations in detection accuracy, the
number of parameters, and the computational load, the effectiveness of each module was
examined. The total ablation experiment is shown in Figure 9.
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Figure 9. ECLPOD single ablation experiment: group A is the experimental result of YOLOV7-tiny;
groups B (A + HISNet), C (A + BFP), and D (A + ACS) are the unidirectional ablation results; groups
E (B + BFP), F (B + ACS), and G (C + ACS) are the bidirectional ablation results; and group H is the
experimental result of the ECLPOD.

When comparing group G and group H, the difference between them is that group
H uses the HISNet, while group G uses the backbone of YOLOv7-tiny. It can be found that
in the process of feature extraction, using the HISNet as the backbone can greatly reduce
the number of parameters and computational complexity. The difference between group
F and group H is that group H adopts the BFP module while group F does not. We can
find that using the BFP as a neck can also significantly reduce the number of parameters
and computational complexity.

Table 12 shows the specific results of ablation experiments in each group. When com-
paring group A with group H (group H is the ECLPOD, group A is the original YOLOv?7-
tiny), the GFLOPs of the ECLPOD decreased by 11.9, which is only 9% of YOLOv7-tiny;
the parameter number decreased by 5.67 M, which is only 8% of YOLOv7-tiny, and m AP
decreased by 1.6%. The above eight sets of experimental results show that the HISNet and
BFP can effectively reduce the number of model parameters, and the ACS can effectively
compensate for the loss of model accuracy during model compression. Compared with
YOLOvV7-tiny, the ECLPOD achieves a better balance between accuracy and model size.
Therefore, the ECLPOD is more suitable for the pear stalk/calyx detection tasks.

Table 12. ECLPOD single ablation experiment.

Group Method F1 Params GFLOPs mAP>
A YOLOV7-tiny 0.84 6.22 13.20 87.11(-0.06~+0.11)
B +HIS 0.79 4.01 7.94 82.17(-0.13~+0.16)
C +BFP 0.77 2.96 8.94 83.41(-0.15~+0.22)
D +ACS 0.85 6.21 13.20 89.22(-0.04~+0.14)
E +HIS+BFP 0.82 0.56 1.30 83.21(-0.06~+0.08)
F +HIS+ACS 0.82 4.03 7.94 83.32(-0.06~+0.13)
G +BFP+ACS 0.81 2.96 8.94 84.83(-0.09~+0.12)
H +HIS+BFP+ACS 0.83 0.55 1.30 85.20(-0.07~+0.19)
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4.7. Comparison with Excellent Performance Methods in the Field of Object Detection
4.7.1. Comparison with Different Models

In order to verify the detection performance of the ECLPOD model, we compared it
to excellent models such as Faster R-CNN [42], RetinalNet [43], Mask R-CNN [44], Cas-
cade R-CNN [45], LibraFaster R-CNN [46], YOLOv3 [47], YOLOv4 [48], YOLOV5 [49],
YOLOX [50], YOLOV6 [51], YOLOvV7 [29], the Swin transformer [52], and PVT [53] in the
field of object detection, with the proposed ECLPOD in the same test environment and
using the same test dataset. The experimental results are shown in Table 13.

Table 13. Comparison of different models.

Method Backbone Precision Param(M) GFLOPs mAP50
General Two-Stage Detection
Faster R-CNN ResNet-50 81.1 40.54 156.04 72.61(-031~+0.21)
Faster R-CNN ResNet-101 79.5 60.52 283.14 71.32(-0.29~+0.26)
Cascade R-CNN ResNet-50 83.4 68.94 234.47 78.81(-0.25-+0.17)
Cascade R-CNN ResNet-101 74.7 87.93 310.55 63.41(-0.43~+0.56)
Mask R-CNN ResNet-50 88.9 43.76 258.22 85.85(-0.18~+0.11)
Mask R-CNN ResNet-101 80.2 62.65 329.54 74.84-024~+031)
LibraFaster R-CNN ResNet-50 82.0 41.1 207.73 75.82(-022~+0.19)
LibraFaster R-CNN ResNet-101 81.5 60.39 283.8 75.57(-0.18~+0.26)
General One-Stage Detection
RetinaNet ResNet-18 60.3 19.68 155.11 57.89(-1.31-+0.87)
YOLOV3 DarkNet-53 89.3 8.67 12.90 81.91(-0.15-+0.13)
YOLOv4 CSPDarknet-53 89.9 52.51 119.70 85.32(-0.11+0.04)
YOLOV5-s CSPDarknet-53 91.7 7.02 15.80 89.24(-0.07~+0.04)
YOLOX-s CSPDarknet 89.9 8.05 21.80 86.36(-0.08~+0.14)
YOLOvV6-s Efficientrep 90.8 18.4 45.10 88.37(-0.12~+0.03)
YOLOv7 E-E1IAN 91.9 37.2 105.20 88.87(-0.04+0.08)
YOLOv7-tiny E-E1IAN 91.2 6.01 13.00 87.12(-0.07~+0.11)
Lightweight model
Faster R-CNN Swim 85.2 4.22 9.12 78.10(-03~+0.04)
Faster R-CNN PVTv2 84.3 6.8 142.89 77.41(-0.15~+0.18)
YOLOv5-n CSPDarknet-53 89.4 1.76 4.10 85.17(-0.11~+0.03)
YOLOX-n CSPDarknet 89.7 2.02 5.70 85.22(-0.08~+0.11)
YOLOvV7-tiny Mobilenetv3-bench  81.2 1.4 2.40 75.71(-021~+0.16)
. Mobilenetv3-Invert-
YOLOv7-tiny edResidual 88.3 1.9 2.80 80.91(-0.13~+0.11)
Ours
ECLPOD HISNet 90.1 0.55 1.30 85.20(-0.07~+0.14)

To ensure that the model achieved the best results for each method, we chose the
default best parameters for training. Specifically, for the Faster R-CNN, RetinalNet, Mask
R-CNN, Cascade R-CNN, LibraFaster R-CNN, Swin transformer, and PVT methods, we
set up training rounds of 12 epochs, while the YOLO series of methods were trained using
300 epochs.

As we all know, the model size and complexity of the one-stage detector is lower than
that of the two-stage detector, so it has more potential in the practical application of fruit
pear recognition. For advanced two-stage detectors, although they show good accuracy,
they perform poorly in terms of model size and computational complexity. For one-stage
detectors, such as YOLOX, YOLOv5, YOLOv6, and YOLOV7, although they have higher
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accuracy and smaller model sizes than two-stage detection, they are still too large for prac-
tical industrial deployment. Therefore, we chose YOLOv7-tiny with the best balance be-
tween accuracy and model size among one-stage detectors as our benchmark network.
The overall experimental results show that the ECLPOD is far better than other networks
in terms of parameter number and computational complexity, with only 0.55 million pa-
rameters and 1.3 GFLOPs of computation. Compared with other lightweight networks,
the ECLPOD and YOLOX-n have the highest accuracy; however, the number of parame-
ters in the ECLPOD is about one-fourth that of YOLOX-n, and the computational com-
plexity is about one-fifth that of YOLOX-n.

In addition, we also visualized the model sizes of different networks and mAP5, as
shown in Figure 10.

90

85 |- - ECLPOD

80 |- |
87 General Two-Stage Detection
% = General One-Stage Detection
g 70 Lightweight model

®  QOurs
65 [~
60 - o
0

200

B

60
40 20

0 400
GFLOPs Params

Figure 10. Comparison between different models and the ECLPOD. Network interpretation: FRC
stands for Faster R-CNN, MRC stands for Mask R-CNN, CRC stands for Cascade R-CNN, LFRC
stands for LibraFaster R-CNN, RetinaNet stands for RetinaNet; and v3, v4, v5, v6, v7, and x repre-
sent YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOV7, and YOLO-X, respectively. Backbone de-
scription: R50, R101, PVT, swin, Mv3IR, respectively represent ResNet-50, ResNet-101, the pyramid
vision transformer, Swin transformer, and MobileNetv3.

As shown in the figure above, the two-stage detection model is the most complex
with the largest number of parameters, located on the figure’s left side. The one-stage de-
tection model is in the middle of the figure with moderate size and complexity. The light-
weight model is located on the right side of the figure with the smallest size and complex-
ity. The ECLPOD model we propose is located in the upper right corner of the figure with
the smallest complexity and parameter quantity among lightweight models. This shows
that our model is the one that achieves the best model complexity and accuracy.

To sum up, compared with mainstream and traditional networks, the ECLPOD
model we propose for the pear detection problem is a better model for the pear target
detection task.

4.7.2. Visual Comparative Analysis

Three representative images from the pear dataset were selected for visualization,
which proved that the ECLPOD was competent for the challenging task of auxiliary pear
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sorting. In image A, the pears are at a close distance and in a scattered arrangement, and
the pear features are obvious, thus constituting a simple picture. In image B, the pears are
at a long distance and in a compact arrangement, with features belonging to small target
features thus constituting a medium difficulty image. In image C, the pears are at the mid-
dle distance, and the pear groups shade each other. In addition, YOLOv5-n, YOLOX-n,
and YOLOv7-tiny (the backbone was MobileNetv3), which perform well in the light-
weight model, are selected for comparison with the ECLPOD. Table 14 shows the results
of the comparative experiment.

Table 14. Comparison of test results.
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In the case of the simple task (group A), both the lightweight model and the ECLPOD
are capable of accurately recognizing various parts of the pears, with the ECLPOD exhib-
iting the highest confidence in identifying these parts. This can be attributed to the
ECLPOD’s utilization of the lightweight HISNet as the backbone network, allowing for
the extraction of more useful features within limited parameters.

In the medium difficulty task (group B), YOLOv7-tiny (Mobilenetv3) and YOLOX-n
can only recognize the main features of the pears and fail to detect the pear handle fea-
tures. Although YOLOv5-n can recognize the main features, it can only capture a small
amount of pear stalk information. In contrast, the ECLPOD can identify more detailed
information. This is because the ECLPOD employs iterative transfer learning to fully learn
the features of small targets during the feature learning process.

In the complex task (group C), both the lightweight model and the ECLPOD can
identify the pear targets, though YOLOv5 and ECLPOD can more accurately recognize



Agronomy 2023, 13, 1891

26 of 31

the features of obstructed pears. The ECLPOD performs better in identifying specific parts
of the pear. This is because the ECLPOD utilizes LNBA to effectively leverage weak fea-
tures and resist interference information.

Overall, the ECLPOD demonstrates excellent performance in the auxiliary pear sort-
ing task. By employing the lightweight HISNet and iterative transfer learning, the
ECLPOD effectively learns the features of pears and achieves outstanding detection re-
sults in tasks of varying difficulty levels. Compared to other lightweight models, the
ECLPOD has an advantage in precise feature recognition and resistance to interference.

4.8. Robustness Testing

When the network model is applied in industry, the recognition effect of the model
is biased due to interference from the environment, equipment, humans, counterattacks,
and other factors. For example, in the pear target detection task, there is a big difference
between the actual collected pictures and the model training pictures due to the blurred
camera, the insufficient illumination, over exposure, noise, and mapping attacks, which
leads to the model exhibiting decreased accuracy and even security problems. Therefore,
it is necessary to test the model’s robustness to reduce security risks that are not yet
known.

We interfered with the robustness test set and used such means as color difference,
maps, blur, and noise to automatically generate test samples. As shown in Figure 11, the
detection box, category, and confidence are displayed on the detection result graph.

Drak Bright Map attack Salt noise Compress

- . ' n

ECLPOD

Yolov7-tiny

peor 0.95
colyx 0AZpeor 0.94

() (d) © (@ (e)

Figure 11. Anti-jamming comparison of the models. To facilitate the display of test results, the anal-
ysis results are enlarged. Among them, (a) is a dark environment, (b) is a light environment, (c) is
subjected to texture attacks, (d) is a salt and pepper noise environment, and (e) is an image com-
pression environment.

The experimental results show that the ECLPOD can maintain high detection accu-
racy and stability in the face of insufficient illumination, overexposure, and map attacks.
This is because the ECLPOD uses the efficient HISNet as a feature extraction module and
YOLOV7’s architectural design, which can overcome the challenges brought by these en-
vironmental interference factors and accurately detect pear targets.
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Camera

Pear image capture module

Further analysis of the experimental results shows that in the face of salt noise inter-
ference, the ECLPOD showed strong anti-noise ability, while YOLOv7-tiny was affected
by obvious interference, resulting in detection failures. This shows that the ECLPOD
model has better stability and robustness when dealing with image noise.

In addition, for the pear calyx detection task, when the image was damaged, the
ECLPOD could accurately detect various features of the pears, while the YOLOv7-tiny
model missed certain detections. Although the confidence of the ECLPOD is slightly lower
than that of YOLOv7-tiny, the ECLPOD can still successfully detect objects in the presence
of noise and image corruption, showing higher robustness and reliability.

4.9. Practical Application Test

To verify the generalization of the model, we tested the auxiliary pear sorting method
based on the ECLPOD in the Red Star Fruit Wholesale Market from 10 September 2022 to
15 January 2023. As shown in Figure 12, the ECLPOD was able to identify most of the stalk
and calyx features of pears.

ECLPOD

R

Figure 12. Generalization Performance Analysis.

4.10. Statistical Stability Analysis

In order to mitigate the influence of random fluctuations, we conducted one-way
analysis of variance (ANOVA) on the data from Table 9-13. Initially, the null hypothesis
(HO) was set to state that there were no significant differences among the variables being
studied, with a significance level of 0.05. The specific experimental results can be found in
Table 15 After analyzing the experimental results, it was found that the null hypothesis
was rejected for each individual experimental group. Consequently, we can conclude that
the experimental data exhibit significant differences. This demonstrates the statistical re-
liability of the experimental results, indicating that the observed discrepancies are not due
to random chance but rather stem from genuine variations in the experimental conditions
and methodologies.

Table 15. Experimental results of one-way ANOVA.

No F p-Value F Crit
Table 9 1747.94 4.15x 101 3.490295
Table 10 23,482.59 7.16 x 10 3.490295
Table 11 9.996736 0.00012 2.946685
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Table 12
Table 13

1619.505 9.87 x 10 3.4668
8.679324 4.17 x =10 2.708186

Inconspicuous
Characteristics

Obvious
Characteristics

5. Discussion

We tested the ECLPOD for different cases of pear defects, where obvious pear defects
included problems caused by external pressure or bacterial infection during the picking,
storage, or transportation of pears, such as mold, rot, and breakage, while non-obvious
pear defects included problems caused by the pear suffering from slight extrusion or sub-
tle scratches during the same process, such as bruises or subtle scratches.

The test results are shown in Figure 13, and we find that for obvious pear defects, the
network performs well and can detect them accurately. However, for some of the non-
obvious pear defects, it was not able to detect them accurately. This may be because the
inconspicuous pear defects may be very similar to the normal appearance of pears, and it
is difficult to distinguish them from normal pears. Moreover, inconspicuous pear defects
usually have small visual transformations and texture differences, and the deep learning
model cannot effectively capture these features, which in turn leads to inaccurate detec-
tion. To effectively detect inconspicuous pear defects and prevent them from contaminat-
ing other healthy pears, Lee et al. [54] used hyperspectral imaging equipment to deeply
examine pear bruises, while Yan et al. [55] introduced a GAN to enhance the recognition
of pear defects. In our future work, we plan to improve the image acquisition equipment
to accurately capture the inconspicuous defects of pears. Also, we will combine the tech-
nique of generative adversarial networks (GANs) [56] to enhance the pear defect samples
to achieve more accurate detection of pear bruise defects.

pear 0.92

Figure 13. Detection of different defect situations.

6. Conclusions

In this paper, we made a large dataset for pear sorting and proposed the ECLPOD
model based on YOLOvV7’s pipeline for lightweight auxiliary pear sorting tasks. In the
design of the ECLPOD, we first proposed the HISNet module to reduce the impact of
model complexity on actual deployment. Second, we proposed a BFP module to comple-
ment the feature recognition of the model for pear occlusion. Finally, we also proposed
the ACS to improve the learning of the model for complex pear categories. The experi-
mental results show that compared with the current popular methods, our model only
uses 0.55 M parameters and 1.3 GFLOPs of computation, achieving an mAP50 value of
85.2%. Our model has better practicability and achieved the best balance between
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detection performance and model complexity, demonstrating that it can thus be effec-
tively applied to auxiliary pear sorting tasks to improve the economic value of pears.

In future research, we intend to deploy the ECLPOD model on embedded devices
and edge detection systems with the aim of providing technological support for the mod-
ern pear industry and enhancing the automation level of commercial pear processing. In
addition, we also hope to apply the ECLPOD model to other detection fields, such as road
crack detection and remote sensing image analysis, and contribute to the development of
these fields.
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