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Abstract: Precise fertilizer application in agriculture requires accurate and dependable measurements
of the soil total nitrogen (TN) concentration. Henan Province is one of the most important grain-
producing areas in China. In order to promote the development of precision agriculture in Henan
Province, this study took the high-standard basic farmland construction area in central Henan
Province as the research area. Using single-phase images acquired from the ZY1-02D satellite
hyperspectral sensor on 28 January 2021 (with a spatial resolution of 30 m × 30 m, a spectral range
that covered 400–2500 nm, and a revisit period of 3 days) for spectral reflectance transformation
and feature spectral band extraction. Based on multiple representation models, such as multiple
linear regression, partial least squares regression, and support vector machine (SVM), all bands,
feature bands, feature band combinations, and differential evolution (DE) algorithms were used
to extract the secondary characteristic variables of the combination of characteristic bands, which
were used as model inputs to estimate the content of TN in the study area. It was found that (1) the
spectral reflectance transformation could help to improve the accuracy of prediction by reducing
the interference from noise in the model, but the optimal spectral transformation method differed
between different models and even between the training and test sets of the same model; (2) the
estimation accuracy of the TN content model based on the minimum shrinkage and feature selection
operator of the feature band was usually better than that of the full band, the feature combination
band contained more effective information related to the TN content, and the combination of the DE
algorithm and the SVM model achieved a better estimation accuracy for secondary feature extraction
and TN content estimation of the feature combination band; and (3) ZY1-02D hyperspectral satellite
data have the potential for the dynamic and non-destructive monitoring of regional TN content.

Keywords: soil total nitrogen; ZY1-02D/AHSI hyperspectral; feature selection; model estimation

1. Introduction

Soil total nitrogen (TN) is a fundamental indicator of soil fertility and a critical factor in
plant growth and development [1,2]. The soil’s abundance of or deficiency in nitrogen will
directly impact crop growth and yield [3]. Therefore, the dynamic, large-scale, and accurate
estimation of TN content is a significant measure that can be used to guide agricultural
field fertilization schemes and crop growth status monitoring [4].

The traditional method for determining TN is to gather soil samples from different
sites for laboratory chemical analysis, after which the TN distribution is obtained using
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spatial interpolation. In order to guarantee the precision of the interpolation results, this
method frequently calls for collecting numerous soil samples, which is time-consuming and
invasive [5,6]. Recent research has demonstrated that satellite-based hyperspectral images
offer excellent spectral and spatial resolution, enabling dynamic, effective, and precise
predictions of soil components [7–9]. The ZY1-02D satellite carries the Advanced Hyper
Spectral Imager (AHSI), which can acquire 166 bands of different wavelengths between
400 and 2500 nm (covering visible to shortwave infrared), with an image strip width of
60 km [10]. Recent research has demonstrated that the ZY1-02D/AHSI satellite, China’s
first hyperspectral satellite for civil usage, has promising application possibilities, and
images obtained using the AHSI sensor can be used to estimate the component composition
of the soil [11,12].

Hyperspectral data are rich in spectral information that may be used to identify
changes in soil characteristics and offer precise estimations of the elemental content in
the soil [9,12,13]. However, there are several problems with using hyperspectral data to
estimate soil nutrient contents, such as the fact that unprocessed original hyperspectral
data typically contain a lot of redundant spectral information because they have a lot of
spectral channels with high spectral resolution [14]. The recent research on hyperspectral-
based soil content estimation has mainly included the processing of spectral data through
reflectance transformation, spectrum feature selection, and the formulation of estimation
models. Reflectance transformation processing can enhance feature bands and facilitate
the rejection of noise [15]. Therefore, choosing an appropriate reflectance transformation
technique is crucial in guaranteeing the model’s precision [16].

Studies have shown that spectral data transformation methods, such as the inverse
reflectance [17], natural logarithm of the reflectance [18], and first-order derivative re-
flectance [19], can enhance the characteristic bands and improve model accuracy [20,21].
In addition, some scholars have studied spectral information and found that the selection
of an appropriate spectral feature band can reduce data redundancy, simplify the model,
improve model accuracy, and lead to better estimation results [22,23]. Spectral feature
extraction has been carried out using methods such as the differential evolutionary (DE)
technique and the least absolute shrinkage and selection operator (LASSO) [4,24]. However,
most studies on the extraction of characteristic bands of soil composition information are
based on original spectral data or single spectral transformation data without considering
the application potential of characteristic spectral combination data in soil composition
information model estimation. Currently, machine learning models, such as support vec-
tor machines (SVMs), back propagation neural networks, and random forests [25–28], as
well as linear models, such as multiple linear regression (MLR) and partial least squares
regression (PLSR) [29–31], are commonly used to estimate the soil component content.
Scholars demonstrated that SVM models produce more precise predictions than the RF
and PLSR models [32], and the SVM model has good stability and versatility in solving
nonlinear problems.

However, the current hyperspectral data used for TN content estimation are mainly
based on hyperspectral data obtained by laboratories and ground platforms [33], and there
is still a lack of research on TN content estimation methods based on satellite platform
hyperspectral data, especially the new ZY1-02D hyperspectral data. Summarizing the pre-
vious research results, this study established a set of TN content estimation processes and
methods based on ZY1-02D hyperspectral remote sensing data from spectral reflectance
transformation processing, spectral band selection, and model construction methods. In
order to make full use of the computational spectral data obtained by spectral reflectance
transformation and feature selection, this study also proposed the use of characteristic
spectral combination data for the estimation of TN content. Additionally, this study aimed
to tackle the problem of possible redundant information in the characteristic spectral
combination data, and proposed performing secondary feature selection on the character-
istic spectral combination data to remove invalid variables and improve the accuracy of
model estimation.
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In this work, by comparing previous studies, the ZY1-02D hyperspectral data were
transformed using four widely used techniques: the original reflectance, the inverse re-
flectance, the natural logarithm of the reflectance, and the first-order derivative reflectance.
The LASSO technique was used to extract the primary spectral characteristics for individual
spectral reflectance transform data, and a first attempt was made at secondary feature
extraction using the DE algorithm for LASSO feature spectral band combination data.
Finally, based on the chosen characteristics, the MLR, PLSR, and SVM models were used
to estimate the TN content based on the selected characteristics, and the best model was
selected to map the TN content. These were the key goals: (1) to investigate the best spectral
reflectance transformation methods for different models; (2) to compare the estimation of
all bands of a single spectral reflectance transformation with the LASSO feature bands;
and (3) to investigate the model estimate capabilities of secondary feature selection for a
combination of LASSO feature bands using the DE technique.

2. Materials and Methods
2.1. Study Area

In this study, the construction area of high-standard basic farmland in central Henan
Province, China, which is located between 34◦16′ and 34◦40′ N and 113◦20′ and 113◦54′ E
(Figure 1), was used as the study area. The terrain is relatively elevated in the east, with
hills in the center and mountains in the west, and with elevations ranging from 78 to 787 m.
The area is one of the major grain-producing areas in Henan Province, with an average
annual temperature of 14.4 ◦C and a mild monsoon environment. The primary crops grown
there are soybeans, maize, and wheat.

2.2. Soil Sample Acquisition and TN Content Determination

Using the five-point sampling technique (collect soil samples at the center and four
corners of a rectangular area of 30 m × 30 m and mix the five samples evenly as the
final collected soil sample), 595 soil samples were gathered at depths of 0–20 cm in the
research area in March 2021 and their positions were recorded (Figure 1c). The soil samples
were sieved to remove crop roots, gravel, and other contaminants and allowed to dry in
a chamber, and then the total nitrogen content of the soil samples was determined using
an automatic Kjeldahl nitrogen analyzer [34]. At the same time, the amounts of heavy
metals (cadmium, mercury, arsenic, lead, chromium, copper, nickel, and zinc) and other
soil nutrients (organic matter, total phosphorus, total potassium, and pH value) in the soil
samples were also determined.

2.3. ZY1-02D/AHSI Remote Sensing Image Collection and Pre-Processing

Soil sampling was conducted in March 2021, which is when winter wheat was the
dominant crop in the study area. This is the time when young winter wheat seedlings
turn green and begin to grow. Considering the influence of the soil sampling time and
clouds on the image quality, hyperspectral remote sensing images acquired by the ZY1-
02D/AHSI sensor on 28 January 2021 (Figure 1c) were the closest high-quality images to
the soil sampling time, and they were taken at a time when wheat and other crops were
growing slowly in winter and the plants were short and did not cover the ground. The
soil surface reflectance obtained with hyperspectral satellites during this period was less
affected by crops and was similar to the spectral reflectance of bare soil; therefore, this
study was based on the images from this period for the estimation of TN content in the
study area. The ZY1-02D/AHSI sensor’s parameters are listed in Table 1. The satellite
operated in a Sun-synchronous orbit and acquired hyperspectral images in 166 spectral
channels over a swath width of 60 km. The spectrum range covered was between 400 and
2500 nm. The resulting images comprised 90 channels between 1055 and 2500 nm with
a resolution of 20 nm and 76 spectral channels between 400 and 1040 nm with a spectral
resolution of 10 nm.
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Figure 1. Maps of the research site. (a) Map of China, where the blue area is Henan Province;
(b) map of Henan Province; (c) hyperspectral ZY1-02D/AHSI image of the research area, together
with the locations of the soil sampling sites (in this study, only the reflectance data of satellite images
in cultivated areas were extracted for experimentation, excluding buildings and other areas).

Table 1. Device parameters of ZY1-02D/AHSI.

Items Parameters

Date of launch 12 September 2019
Spectral bands 76 (VNIR), 90 (SWIR)

Spectral range (nm) 400–2500
Spectral resolution (nm) 10 (VNIR), 20 (SWIR)

Spatial resolution (m) 30
Swath width (km) 60
Revisit cycle (d) 3

The images were pre-processed to improve their quality and reduce the effects caused
by weather and atmospheric factors. The images were radiometrically and atmospherically
corrected and orthorectified using ENVI v5.3. Subsequently, to determine the reflectance
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value of the hyperspectral pictures corresponding to the coordinates of the soil sampling
location, ArcGIS v10.5 was utilized. In this study, three spectral bands that overlap with
VNIR and SWIR and four bands near 1400 nm and 1900 nm that are strongly influenced by
atmospheric water absorption (two bands near 1400 nm: B100 and B101 at 1391.65 nm and
1408.49 nm, and two bands near 1900 nm: B130 and B131 at 1896.11 nm and 1912.97 nm)
were used, for a total of 159 experimental spectral bands.

2.4. Methodology

In this study, the TN estimation using satellite hyperspectral imagery consisted of the
following three main steps: (1) data acquisition and pre-processing, as well as preparation
of soil sampling points and remote sensing image data (as described in Sections 2.2 and 2.3
above); (2) data processing, spectral reflectance transformation, and feature extraction;
(3) and TN content model estimation and mapping. The experimental approach for this
investigation is shown in a flow chart in Figure 2.
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2.4.1. Spectral Reflectance Transformation

To identify the sensitive links between TN content and spectral reflectance and em-
phasize distinctive spectral bands, it is crucial to transform the spectral data. In this study,
the inverse reflectance (IR), the natural logarithm of the reflectance (NLR), and the first-
order derivative reflectance (FDR) were used to transform the original reflectance (OR)
values. Spectral transformation processing can increase spectral sensitivity and aid in
increasing models’ predictive ability [35]. The equations for the different transformations
are shown below:

IR(λi) =
1
λi

(1)

NLR(λi)= LnR(λi) (2)

FDR(λi) =
R(λi+1)− R(λi−1)

2∆λ
(3)

where λi−1, λi, and λi+1 are the wavelengths of band i and its adjacent bands; ∆λ indicates
the interval between two adjacent wavelengths; IR(λi) is the inverse reflectance of wave-
length λi; NLR(λi) is the natural logarithmic reflectance of wavelength λi; and FDR(λi) is
the first-order derivative reflectance of wavelength λi.

2.4.2. Selection of Spectral Feature Variables

According to previous research, the identification of distinctive spectral characteristics
is one of the key techniques for estimating the concentration of soil components using
hyperspectral data [36,37]. It is essential to choose the proper feature variables in order to
ensure the precision of the model estimation. TN content and spectral reflectance values
have a complicated, non-linear relationship. Thus, in this work, the TN content feature
bands were selected using non-linear algorithms (LASSO and DE). The LASSO algorithm
was used for the initial feature selection of the above four sets of spectral reflectance data.
Then, the DE algorithm combined with a predictive model was used to perform secondary
feature selection from the feature band combinations selected using LASSO. The LASSO
and DE algorithms were implemented using Python 3.8 and are described below.

LASSO is a paradigm-based algorithm in which a 1-paradigm regularization penalty
term was introduced on top of the ordinary least squares function to constrain the resid-
ual sum of squares [38], which could successfully reduce the dimensionality of the data
and resolve sparsity issues with high-dimensional data. To carry out feature selection,
the estimation was compressed using a penalty function that compressed the regression
coefficients. The coefficients of the less-sensitive variables were adjusted to zero when
the total absolute value of the regression coefficients was less than a specific value. The
following is a mathematical definition of the LASSO algorithm.

argmin
$

 n
∑

i=1

(
pi −

m
∑

j=1
hijXj

)2


subject to
m
∑

j=1

∣∣Xj
∣∣ ≤ ε (4)

where the numbers n and m denote the samples and variables, respectively; the indepen-
dent and dependent variables for each sample are denoted by hij and pi; and ε and Xj are
the critical and specific gravity values.

The DE method, which is a global optimization approach, was initially put forward
by R. Storn and K. Price [39]. It is extensively utilized in many domains because of its
straightforward structure, implementation, quick convergence, and robustness. Some
academics have also employed the method for feature variable selection [40]. The DE
algorithm is a population-based heuristic search algorithm. Its fundamental premise is
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to produce candidates for selection through individual variations within a population,
followed by crossover and selection operations to accomplish population evolution. In
order to advance to the next generation and determine the optimal model variable selection,
the DE algorithm goes through an evolutionary process, which is depicted in Figure 3 and
comprises mutation, crossover, and selection processes.
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Some of the expressions for the calculation of the DE algorithm are shown below:

(a) Initializing the population: M individuals, each made up of an n-dimensional vec-
tor, are created uniformly and randomly in the solution space. The vector and the
j-th dimensional value assigned to the i-th individual, respectively, are given in
Equations (5) and (6):

Xi(0) = (xi,1(0), xi,2(0), xi,3(0), . . . ,xi,n(0))
i = 1, 2, 3, . . . , M

(5)

Xi,j(0) = Lj_min + rand(0, 1)
(
Lj_max − Lj_min

)
i = 1, 2, 3, . . . , M;j = 1, 2, 3 . . . , n

(6)

where Xi(0) is the i-th individual; j denotes the j-th dimension; M denotes the popula-
tion size parameter; n denotes the optimization dimension; Lj_min and Lj_max are the
lower and upper bounds of the j-th dimension, respectively; and rand(0, 1) denotes a
random number on the interval [0, 1].

(b) Mutation operation: The DE algorithm implements an individual mutation operation
through a difference strategy. Equation (7) shows the vector mutation operation for
each individual:

Wi(G + 1) = Xc1(G)+Z(Xc2(G)− Xc3(G)) (7)
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where c1, c2, and c3 are random numbers; Z is a scaling factor; and G is the index of
individual mutation generations.

(c) Crossover operation: the mutated individuals are subject to the crossover operation
shown in formula eight:

Ui,j(G + 1) =
{

Wi,j(G + 1) if rand (0, 1) ≤ CR
xi,j(G) otherwise

(8)

where CR is the crossover probability.
(d) The operation for selecting the next generation of individuals is shown in Equation (9):

Xi(G + 1)=
{

Ui(G + 1) if (Ui(G + 1) ≤ f(X i(G))
Xi otherwise

(9)

where f is the objective function.

2.4.3. Construction and Evaluation of the TN Content Estimation Model

The TN content was used as the dependent variable in this research, and the indepen-
dent variables were the spectral band reflectance values of various forms. Three models,
namely, MLR, PLSR, and SVM, were used to describe the relationship between the spectral
data and TN content. The models’ specific characteristics are listed below.

MLR is a type of regression analysis where the dependent variable is predicted or
estimated using a combination of several independent factors. MLR is also widely used as
a classical prediction model for predicting soil information content [41,42]. The MLR model
has the benefit of being straightforward to construct and simple to apply when compared
with other models. However, the MLR model cannot produce a precise forecast of the
target variables when there is a non-linear connection between the independent factors and
the target variables.

PLSR is a popular multivariate statistical technique for forecasting soil element content
using hyperspectral data [43,44], which can address the issue of spectral band covariance.
The PLSR approach compares several dependent variables to numerous independent
variables in a multivariate statistical regression modeling setting. Principal component
analysis, traditional correlation analysis, and multiple linear regression analysis are the
three fundamental analytical methods combined in PLSR.

The SVM algorithm is a supervised machine learning model that employs non-linear
mapping to map data in a high-dimensional data feature space. In a high-dimensional
feature space, this enables the formulation of appropriate linear regression characteristics
between the independent and dependent variables [45], enabling fitting in the higher-
dimensional space and the subsequent return to the initial space. The core of the SVM
regression model lies in the selection of the kernel function. In this study, several kernel
functions’ model prediction capabilities were analyzed before settling on the radial basis
function (RBF). The SVM is widely used in the prediction of soil component composi-
tion using spectral data due to its high stability and generalization in solving non-linear
issues [13,46].

The coefficient of determination (R2), the mean absolute error (MAE), and the root
mean square error (RMSE) were used to evaluate the accuracy of the prediction model.
Lower MAE and RMSE values and higher R2 values correspond to more precise model
estimation [47].

Studies have shown that the d-factor can be used to evaluate the uncertainty of an
estimation model [19,48]. The degree of uncertainty of an estimation model is proportional
to the calculated value of the d-factor; that is, the degree of uncertainty of the estimated
model will increase with the increase in the calculated value of the d-factor, and the d-factor
calculation formula is as follows:

dr =
1
m

m

∑
i=1

(PUi − PLi) (10)
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d− factor =
dr

σP
(11)

where m is the sample number; PUi and PLi are upper and lower confidence limits, respec-
tively; dr is the average distance between the upper and lower confidence limits; and σP is
the standard deviation of the measured value of TN.

3. Results
3.1. Statistical Description of the TN Content of the Sampling Points

The 595 soil samples in this study were used, and for the train_test_split module in
the Python programming language the random_state parameter was set to 15, and the soil
samples were randomly divided into training and test sets at a ratio of 4:1. The numbers of
training set and test set samples were 476 and 119, respectively, and the sample distribution
of the training set and test set is shown in Figure 1c. The statistics of the samples that were
taken are shown in Table 2.

Table 2. Results of the statistical description of the TN content.

Set N Max
(g/kg)

Min
(g/kg)

Mean
(g/kg)

SD
(g/kg) CV

Whole set 595 1.80 0.37 1.01 0.22 0.22
Training set 476 1.80 0.37 1.01 0.22 0.22

Test set 119 1.71 0.43 1.02 0.24 0.23

3.2. TN Content Spectral Features Analysis and Spectral Transformation Processing
3.2.1. Spectral Features Analysis of TN Content

The ZY1-02D/AHSI hyperspectral reflectance spectral patterns of soil samples in the
research area with various TN contents are shown in Figure 4. The distribution of the
spectral reflectance curves for the various content levels followed a similar pattern, as
shown by the original reflectance curves in Figure 4a. The spectral reflectance had two
absorption peaks in the wavelength ranges 1100–1400 nm and 1750–2000 nm. According
to pertinent research, the primary cause of the absorption peaks at 1100–1400 nm and
1750–2000 nm in soil water is hydroxide ions [49]. Generally, the soil reflectance values
decrease as the TN content increases.

3.2.2. Spectral Transformation Processing

As can be seen in Figure 4b, the overall trend of the inverse reflectance spectral curve
was the opposite of the original reflectance spectral curve, with a distinct reflection peak in
the 1750–2000 nm wavelength range. Although the reflectance trough between 1750 and
2000 nm was also evident in the case of the natural logarithm of the reflectance (Figure 4c),
the reflectivity curve was comparable with that of the original reflectance. Compared with
the original reflectance, the inverse reflectance and natural logarithm of the reflectance
showed a flattening out of the reflectance values in the wavelength range, except for the
reflectance and absorption peaks that were highlighted at specific wavelengths, which
helped to reduce noise-enhancing characteristic spectral variables. Figure 4d shows the
first-order derivative reflectance spectral profile, which had more pronounced absorption
peaks at 1100 nm, 1850 nm, and 1950 nm and distinct reflection peaks at 1150 nm, 1380 nm,
and 2000 nm compared with the three other kinds of reflectance values.
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3.3. Selection of TN Spectral Characteristics

The LASSO algorithm was used to select the TN spectral bands based on the original
and transformed reflectance readings. It can be seen from the results of the LASSO feature
band selection in Figure 5 and Table 3 that the bands were much more distinctive for the
original reflectance (OR) and first-order derivative reflectance (FDR) than for the inverse
reflectance (IR) and natural logarithm of the reflectance (NLR). The main reason for this
phenomenon was that the IR and NLR had prominent reflection and absorption peaks at
specific wavelengths compared with the OR and FDR, and they had reflectance values that
differed significantly from those in the other wavelength ranges. Therefore, the bands at
the reflection and absorption peaks of IR and NLR were given larger coefficients when
performing feature selection and were retained as feature variables, while the coefficients in
other wavelength ranges were compressed to zero and excluded. The OR and FDR bands
were evenly distributed between 400 and 2500 nm, while the IR and NLR bands were more
concentrated, with most of the bands in the 400–700 nm and 1500–2000 nm wavelength
ranges. The number of bands chosen for the LASSO feature is shown in Table 3 as n.
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Table 3. LASSO algorithm TN feature band selection results.

Reflectance Representation n Wavelengths (nm)

OR 77 396–405, 439–227, 542, 577, 619, 696–705, 756–774, 791, 808,
842, 894, 920, 945–954, 988–997, 1014–1073, 1123–1139, 1190,

1224, 1308, 1341–1442, 1493, 1526, 1594, 1644–1678, 1711–1745,
1779, 1812–1880, 1930–1981, 2014–2048, 2081–2098,

2132–2199, 2267, 2300–2401, 2450–2501
IR 17 395–404, 422, 447, 697, 1526, 1778–1795, 1845–1880, 1929–1947,

1998, 2451, 2484–2501
NLR 19 404, 422, 447, 697, 757, 1375, 1425, 1526, 1594, 1644,

1845–1880, 1930–1947, 2048, 2199, 2484–2501
FDR 141 404–430, 447–490, 524–559, 576–628, 645–705, 722–1106,

1139–1173, 1207–1274, 1307–1324, 1357–1594, 1627, 1660–1795,
1828–2132, 2165–2199, 2233–2317, 2350–2501

Total 254

3.4. TN Content Model Estimation Results
3.4.1. Results of All Bands Based on the Individual Spectral Reflectance Transformation

MLR, PLSR, and SVM estimation models were formulated using the TN content as
the dependent variable, and all bands of the four spectral transformations were used as
independent variables. Table 4 presents the estimation results (OR, IR, NLR, and FDR
in the table indicate the original, inverse, natural logarithmic, and first-order derivative
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reflectances for all bands, respectively). MLR’s training set accuracy was higher than that
of PLSR and the SVM; however, its performance on the test set model was sub-par. The
SVM model’s prediction accuracy was better for both the training and test sets than that of
PLSR, except in the case of first-order derivative reflectance. The test set performance of the
SVM in terms of R2 ranged from 0.45 to 0.59, the MAE ranged from 0.11 to 0.13 g/kg, and
the RMSE ranged from 0.15 to 0.17 g/kg. SVM was the best model for estimating the TN
content based on all bands after combining the data from the training and test set models.

Table 4. Estimation results of the TN content for all bands based on individual spectral reflectance
transformations.

Model Reflectance
Training Set Test Set

R2 MAE (g/kg) RMSE (g/kg) R2 MAE (g/kg) RMSE (g/kg)

MLR

OR 0.68 0.10 0.13 0.29 0.15 0.19
IR 0.69 0.10 0.12 0.22 0.16 0.20

NLR 0.69 0.10 0.12 0.28 0.15 0.19
FDR 0.68 0.10 0.13 0.27 0.16 0.20

PLSR

OR 0.51 0.12 0.16 0.54 0.12 0.16
IR 0.54 0.12 0.15 0.55 0.12 0.15

NLR 0.53 0.12 0.15 0.54 0.12 0.16
FDR 0.50 0.12 0.16 0.47 0.13 0.17

SVM

OR 0.60 0.10 0.14 0.59 0.11 0.15
IR 0.61 0.10 0.14 0.58 0.11 0.15

NLR 0.61 0.10 0.14 0.58 0.11 0.15
FDR 0.58 0.10 0.14 0.45 0.13 0.17

The MLR model had the best results when the natural logarithm of the reflectance
was used as the independent variable. The PLSR model with the natural logarithm of
reflectance and inverse reflectance as inputs showed varying degrees of improvement in
estimation accuracy compared with the original reflectance, with the natural logarithm of
the reflectance having the best predictive power. OR–SVM was the best combination of
models for the TN content estimation for all bands based on individual spectral reflectance
conversions (Figure 6): R2 was 0.59, the MAE was 0.11 g/kg, and the RMSE was 0.15 g/kg
for the test set.

Agronomy 2023, 13, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 6. Scatter plots of measured and predicted TN contents based on individual spectral reflec-

tance conversions of the best estimation model for all bands: (a) OR–SVM training set model; (b) 

OR–SVM test set model. 

3.4.2. Results of the LASSO Feature Selection Based on the Individual Spectral Reflectance 

Transformations 

Table 5 displays the results of the TN content estimate models’ predictions, which 

utilized feature bands chosen with LASSO from the various spectral reflectance transfor-

mations. The outcomes of the training set models demonstrate that MLR and SVM had 

greater prediction accuracies than PLSR. The R2 value of the MLR training set models 

ranged from 0.53 to 0.67, and higher R2 values corresponded to lower MAE and RMSE 

values. The training set R2 value for the SVM varied from 0.54 to 0.62, and the lowest val-

ues of MAE and RMSE were 0.10 and 0.14 g/kg, respectively. According to the outcomes 

of the test set models, the SVM model made the best predictions, followed by the PLSR 

and MLR models. The R2 of the SVM for the test set ranged from 0.47 to 0.61, the MAE 

ranged from 0.11 to 0.13 g/kg, and the RMSE ranged from 0.14 to 0.17 g/kg. Combining 

the training and test set model results, the SVM was the optimal model for TN content 

estimation based on the LASSO feature selection. 

A comparison of the different spectral reflectance transformations revealed that the 

inverse reflectance and natural logarithm of reflectance were the best inputs for the MLR 

and PLSR, respectively. With the SVM models, the natural logarithm of reflectance per-

formed best in the training set, whereas OR performed best in the test set. OR–LASSO–

SVM was, overall, the optimal model combination for LASSO feature selection to estimate 

TN content (Figure 7), with test set model metrics of R2 = 0.61, MAE = 0.11 g/kg, and RMSE 

= 0.14 g/kg. 

Table 5. Estimation results of the TN content based on the LASSO feature selection. 

Model Reflectance 
Training Set Test Set 

R2 MAE (g/kg) RMSE (g/kg) R2 MAE (g/kg) RMSE (g/kg) 

LASSO–MLR 

OR 0.62 0.11 0.14 0.49 0.13 0.16 

IR 0.53 0.12 0.15 0.56 0.12 0.15 

NLR 0.54 0.12 0.15 0.55 0.12 0.15 

FDR 0.67 0.10 0.13 0.32 0.15 0.19 

LASSO–PLSR 

OR 0.55 0.12 0.15 0.54 0.12 0.16 

IR 0.52 0.12 0.15 0.57 0.12 0.15 

NLR 0.53 0.12 0.15 0.55 0.12 0.15 

Figure 6. Scatter plots of measured and predicted TN contents based on individual spectral reflectance
conversions of the best estimation model for all bands: (a) OR–SVM training set model; (b) OR–SVM
test set model.



Agronomy 2023, 13, 1842 13 of 22

3.4.2. Results of the LASSO Feature Selection Based on the Individual Spectral
Reflectance Transformations

Table 5 displays the results of the TN content estimate models’ predictions, which
utilized feature bands chosen with LASSO from the various spectral reflectance transforma-
tions. The outcomes of the training set models demonstrate that MLR and SVM had greater
prediction accuracies than PLSR. The R2 value of the MLR training set models ranged from
0.53 to 0.67, and higher R2 values corresponded to lower MAE and RMSE values. The
training set R2 value for the SVM varied from 0.54 to 0.62, and the lowest values of MAE
and RMSE were 0.10 and 0.14 g/kg, respectively. According to the outcomes of the test set
models, the SVM model made the best predictions, followed by the PLSR and MLR models.
The R2 of the SVM for the test set ranged from 0.47 to 0.61, the MAE ranged from 0.11 to
0.13 g/kg, and the RMSE ranged from 0.14 to 0.17 g/kg. Combining the training and test
set model results, the SVM was the optimal model for TN content estimation based on the
LASSO feature selection.

Table 5. Estimation results of the TN content based on the LASSO feature selection.

Model Reflectance
Training Set Test Set

R2 MAE (g/kg) RMSE (g/kg) R2 MAE (g/kg) RMSE (g/kg)

LASSO–MLR

OR 0.62 0.11 0.14 0.49 0.13 0.16
IR 0.53 0.12 0.15 0.56 0.12 0.15

NLR 0.54 0.12 0.15 0.55 0.12 0.15
FDR 0.67 0.10 0.13 0.32 0.15 0.19

LASSO–PLSR

OR 0.55 0.12 0.15 0.54 0.12 0.16
IR 0.52 0.12 0.15 0.57 0.12 0.15

NLR 0.53 0.12 0.15 0.55 0.12 0.15
FDR 0.51 0.12 0.16 0.48 0.13 0.17

LASSO–SVM

OR 0.58 0.11 0.14 0.61 0.11 0.14
IR 0.54 0.12 0.15 0.56 0.12 0.15

NLR 0.62 0.10 0.14 0.58 0.11 0.15
FDR 0.57 0.11 0.15 0.47 0.13 0.17

A comparison of the different spectral reflectance transformations revealed that the in-
verse reflectance and natural logarithm of reflectance were the best inputs for the MLR and
PLSR, respectively. With the SVM models, the natural logarithm of reflectance performed
best in the training set, whereas OR performed best in the test set. OR–LASSO–SVM
was, overall, the optimal model combination for LASSO feature selection to estimate
TN content (Figure 7), with test set model metrics of R2 = 0.61, MAE = 0.11 g/kg, and
RMSE = 0.14 g/kg.

3.4.3. LASSO-Selected Spectral Band Combinations for the Four Spectral
Reflectance Transformations

The four groups of LASSO characteristic bands of spectral reflectance transformation
were combined as the input variables of the TN content prediction model. Table 6 displays
the outcomes of the model estimations of TN content based on attributes collected from
band combinations chosen by LASSO. The LBC–MLR training set model achieved better
TN content estimation, with an R2 of 0.80; nevertheless, when compared with the other
models, the test set model did not perform as well (LBC: LASSO-selected spectral band
combination). In terms of the test set accuracy, the LBC–PLSR and LBC–SVM models both
outperformed the LBC–MLR, with the LBC–SVM model outperforming the LBC–PLSR
model in terms of prediction outcomes. The LBC–SVM model, with test set model metrics
of R2 = 0.57, MAE = 0.12 g/kg, and RMSE = 0.15 g/kg, was the best model for TN content
estimation among the LASSO-selected feature band combinations. The scatter plots of the
LBC–SVM model’s TN content measurements fitted to the predicted values are shown
in Figure 8.
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Table 6. Estimation results of the TN content model based on the LBC.

Model
Training Set Test Set

R2 MAE (g/kg) RMSE (g/kg) R2 MAE (g/kg) RMSE (g/kg)

LBC–MLR 0.80 0.08 0.10 0.23 0.19 0.24
LBC–PLSR 0.52 0.12 0.15 0.54 0.12 0.16
LBC–SVM 0.65 0.10 0.13 0.57 0.12 0.15
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3.4.4. DE Secondary Feature Selection from LASSO-Selected Spectral Band Combinations
Based on Four Spectral Reflectance Transformations

In this research, secondary feature selection from the LBC was carried out using the DE
algorithm in combination with a prediction model. For the DE algorithm, 100 individuals
were used and 1500 iterations were performed. In Table 7, the outcomes of the LBC–DE
quadratic feature selection are displayed. LBC–DE–MLR was used to pick 98 variables,
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LBC–DE–PLSR to select 61 variables, and LBC–DE–SVM to select 50 variables. N in Table 7
is the number of variables extracted.

Table 7. DE feature selection results for the LBC.

Reflectance MLR
N

PLSR
N

SVM
N

Representation Wavelengths (nm) Wavelengths (nm) Wavelengths (nm)

OR 404, 542, 576, 619, 765–774, 33 705, 757, 1880, 2132 4 447, 954, 1139, 1308, 1341, 11
791, 954, 1023, 1056, 1139, 1375, 1425, 1812, 2317,

1190, 1308, 1442, 1526, 1644, 2451
1745, 1812–1845, 1880, 1930-
1947, 1981, 2031–2048, 2082-
2098, 2183–2199, 2267, 2301,

2451
IR 396, 697, 1526, 1795, 1880, 7 1526, 1880, 1930–1947, 2451, 7 404, 422, 1795, 1862, 2484, 6

1998, 2501 2484–2501 2501
NLR 697, 757, 1425, 1526, 1880, 9 422, 1526, 1593, 1880, 1947 5 404, 4222, 1644, 1880, 1947 5

1930, 2199, 2484–2501
FDR 413, 490, 551–559, 594–628, 49 413, 447–456, 551–559, 576- 45 482, 525, 594–602, 619, 622, 28

654–662, 679–688, 722–731, 602, 619, 757, 808–842, 877, 679–688, 705, 748, 834,
757, 834, 851, 868–877, 894, 894, 928, 946, 980, 1073, 877–885, 1073, 1089, 1224,
1073–1089, 1156–1173, 1257, 1139, 1173, 1277, 1241, 1375, 1526, 1745, 1778–1795, 1880,
1375, 1442–1476, 1526, 1678- 1442, 1510–1526, 1678, 1728, 1930, 2098, 2183, 2233,
1728, 1762, 1795, 1947–1981, 1829–1846, 1880, 1930–1947, 2301, 2501

2048, 2081, 2199, 2267, 1981, 2048–2098, 2132, 2183,
2367–2417, 2451 2367

Total 98 61 50

The LBC–DE–SVM model had an excellent ability to predict the TN content; its training
set metrics were R2 = 0.85, MAE = 0.08 g/kg, and RMSE = 0.09 g/kg, while the correspond-
ing values for the test set were R2 = 0.72, MAE = 0.08 g/kg, and RMSE = 0.12 g/kg (Table 8).
The LBC–DE–MLR and LBC–DE–PLSR models were comparable in predictive ability but
inferior to the LBC–DE–SVM model. The LBC–DE–SVM was the best model for TN content
estimation based on the LBC–DE quadratic feature selection (Figure 9). Moreover, com-
pared with Figure 6, Figure 7 Figure 8, the fitted scatter plots of both the training set and test
set models in Figure 9 were closer to the 1:1 line. The results show that the LBC-DE-SVM
model had a better TN content estimation ability than the other models.

Table 8. TN content model estimation results based on LBC–DE.

Model
Training Set Test Set

R2 MAE (g/kg) RMSE (g/kg) R2 MAE (g/kg) RMSE (g/kg)

LBC–DE–MLR 0.64 0.10 0.13 0.65 0.10 0.14
LBC–DE–PLSR 0.57 0.11 0.15 0.60 0.11 0.14
LBC–DE–SVM 0.85 0.08 0.09 0.72 0.08 0.12
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4. Discussion
4.1. Role of Spectral Reflectance Transformation Processing

In modeling the soil elemental content using hyperspectral data, an essential step
is the mathematical transformation of the data. Spectral reflectance transformation can
help to increase the precision of the prediction by lowering the interference from noise
in the model [50,51]. In this study, the inverse reflectance and the natural logarithm of
the reflectance enhanced the reflection peaks between 1750 and 2500 nm, and the first-
order derivative reflectance transformation highlighted the absorption peaks at 1100 nm,
1850 nm, and 1950 nm and the reflection peaks at 1150 nm, 1380 nm, and 2000 nm. How-
ever, research demonstrated that not all spectral transformation techniques can produce
outcomes superior to those obtained using the original data [16]. Regarding this, it should
be mentioned that the best spectrum transformation varied depending on the model and
even had an impact on how well a model performed on both the training and test sets.
Using the prediction outcomes of the SVM model for LASSO feature selection based on
the individual spectral reflectance change as an illustration, the training set model had the
best accuracy when the natural logarithm of the reflectance spectral data was used as the
input, but the test set model with the best estimation capability was that utilizing original
reflectance spectral data. As a result, in this research, DE secondary feature extraction and
modeling of the LASSO feature selection band combination (LBC) were carried out for the
four spectral reflectance transforms in order to completely utilize the spectral reflectance
transformation and to improve the prediction accuracy. Compared with the individual
spectral reflectance, the accuracy of all models based on the LBC–DE quadratic feature
selection was improved to different degrees, according to the model results (Table 8). This
shows that the LASSO feature band combination data contained more essential informa-
tion than the individual LASSO feature bands, and extracting this information from the
combined spectra for model estimation could improve the models’ predictive power.

4.2. The Role of Spectral Feature Extraction

Research demonstrated that using feature bands for modeling soil elemental content
can lower the dimensionality of the data, make the prediction process simpler, and enhance
the prediction outcomes [52,53]. Moreover, in the quantitative inversion of lake water depth
and lake mineral content based on multispectral satellite remote sensing data, some scholars
used the reflectance transformation combination data and the data after feature extraction
as input variables for model estimation and achieved good estimation results [54–56].
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Therefore, in this study, the LASSO algorithm was first used to screen the TN-predicting
feature variables from the individual spectral reflectance representations to formulate
a prediction model. Then, the DE algorithm was used to perform secondary feature
selection and TN content estimation for the LASSO feature spectral band combination
(LBC). The results from this study’s test set model demonstrate that (see Figure 10), except
for individual models, the LASSO-feature-selection-based estimation models had higher
accuracies than the all-bands-based models (best R2 value using LASSO feature selection:
0.61; best R2 value of models using all bands: 0.59). This was mainly because the LASSO
feature selection method could extract the characteristic spectral bands of TN according to
the subtle relationship between TN and spectral reflectance and then achieve the purpose
of eliminating redundant spectral variables and estimating the accuracy using the model.
The model prediction results based on LBC–DE were noticeably superior to those based on
the LBC, as shown in Figure 9 (best R2 value for LBC–DE: 0.72; best R2 value for LBC: 0.57).
This implies that the LBC contained a significant amount of redundant information. The
DE technique eliminated non-essential variables and retained valuable information, which
enhanced the model’s estimation capacity.
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4.3. Estimated Model Comparison and Best Model TN Content Mapping

According to the comparison of the estimation accuracy and uncertainty evaluation
indicators (Table 9) of the MLR, PLSR, and SVM models, the estimation accuracy of the SVM
model was better than that of the MLR and PLSR models, and for the uncertainty calculation
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of the SVM model training set and test set, the index d-factor value was comparable with
the MLR and PLSR models. Overall, the SVM model had a better estimation ability for TN
content. An SVM is a machine learning model used for solving non-linear problems [13,44]
and can accurately estimate TN content and capture the link between TN content and
complex spectral data. According to this study’s findings, the accuracy of the SVM model
was increased when the DE technique was applied to extract the feature variables from the
LBC. The LBC–DE–SVM model was the best TN content estimation model in this study. As
a result, the LBC–DE–SVM model was utilized to calculate the TN content of the research
region’s farming regions (Figure 11). There was a total of 692,389 image elements in the
arable area of the study area, i.e., a total of 62,311.894 hectares of arable land, and the
estimated map raster occupied 45.813 MB of memory per hectare. The TN concentration
ranged from 0.57 to 1.52 g/kg in the study region, with a trend of being higher in the west
and lower in the east.

Table 9. Calculation value of the estimated model d-factor.

Model Training Set Test Set Model Training Set Test Set

OR–MLR 0.014 0.032 FDR–LASSO–MLR 0.014 0.033
IR–MLR 0.014 0.034 OR–LASSO–PLSR 0.013 0.029

NLR–MLR 0.014 0.033 IR–LASSO–PLSR 0.012 0.028
FDR–MLR 0.014 0.033 NLR–LASSO–PLSR 0.012 0.028
OR–PLSR 0.012 0.027 FDR–LASSO–PLSR 0.012 0.025
IR–PLSR 0.012 0.028 OR–LASSO–SVM 0.012 0.027

NLR–PLSR 0.012 0.028 IR–LASSO–SVM 0.012 0.027
FDR–PLSR 0.012 0.025 NLR–LASSO–SVM 0.013 0.028
OR–SVM 0.012 0.028 FDR–LASSO–SVM 0.010 0.021
IR–SVM 0.012 0.028 LBC–MLR 0.015 0.041

NLR–SVM 0.012 0.028 LBC–PLSR 0.012 0.028
FDR–SVM 0.010 0.021 LBC–SVM 0.012 0.025

OR–LASSO–MLR 0.013 0.031 LBC–DE–MLR 0.014 0.031
IR–LASSO–MLR 0.012 0.027 LBC–DE–PLSR 0.013 0.028

NLR–LASSO–MLR 0.013 0.028 LBC–DE–SVM 0.015 0.030
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5. Conclusions

In this work, the ZY1-02D/AHSI hyperspectral satellite’s remote sensing data and
the measured soil sample data were used to estimate the TN concentration in the study
region. In order to achieve an efficient and precise estimation of the TN content, the inverse
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reflectance, natural logarithm of the reflectance, and first-order derivative reflectance
were selected for the transformation of the original reflectance remote sensing data. The
LASSO method was used to select the feature bands for the four sets of spectral reflectance
transformations, and the combination of the DE algorithm and the prediction model was
proposed to conduct secondary feature extraction and model estimation of the TN content
for the LASSO feature band combination (LBC). The key conclusions that can be made
include the following:

(1) The transformation of the spectral reflectance data can highlight some of the enhanced
spectral information. However, the best spectral data pre-processing methods for
different estimation models differ, where even the optimal spectral transformation
methods for the training and test sets of the same model are different. Suitable spectral
reflectance transformation methods can be selected for different prediction models in
the TN content estimation studies in other regions to improve the estimation accuracy.

(2) Using the LASSO method for feature variable selection for full-band data not only
reduced the spectral data redundancy and simplified the model but also improved
the estimation accuracy of the model. Compared with individual spectral reflectance
data, the LBC contained more valid spectral information and concentrated a large
amount of noise information. This study used a combination of the DE algorithm and
the prediction model to extract feature variables from the LBC, which can achieve the
purpose of retaining valid information in the LBC and eliminating invalid information
and can provide a reference for future research in making full use of the spectral
reflectance transform and feature data for TN content estimation.

(3) Compared with ground-based hyperspectral data and airborne hyperspectral data,
ZY1-02D/AHSI hyperspectral satellite image data have the advantages of wide image
coverage, the automatic acquisition of hyperspectral remote sensing image data, and a
short return cycle, and thus, it can enable the dynamic, rapid, and large area estimation
of TN content.

Although the present study achieved satisfactory TN estimation in the central agricul-
tural region of Henan Province, there were still some shortcomings, and further studies are
needed to improve the existing results. On the one hand, there is a need for long-time-series
monitoring of TN content based on the ZY1-02D hyperspectral data; in this study, only a
single period of hyperspectral image data was used to establish a relationship with the soil
total nitrogen content for the estimation study, and a study of the change in TN content over
time and its correspondence with the change in spectral reflectance values of the images
in different periods was missing. Therefore, to achieve long-time-series monitoring of TN
content, there is still a need to further investigate the variation pattern of TN content in
a long time series, as well as the correspondence between TN content and image spectral
data in a long time series. On the other hand, this study was an estimation study based only
on the relationship between spectral data and TN content, while TN levels in agricultural
areas may be affected by the soil’s physical and chemical properties, the temperature, the
amount of moisture, the fertilizer application, and other factors. Therefore, various factors
related to the TN content should be added to the estimation model in subsequent studies
to improve the reliability of the model estimation.
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