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Abstract: The root-knot nematode (RKN) disease is a highly destructive soilborne disease that signifi-
cantly affects peanut yield in Northern China. The composition of the soil microbiome plays a crucial
role in plant disease resistance, particularly for soilborne diseases like RKN. However, the relationship
between the occurrence of RKN disease and the structure and diversity of bacterial communities
in peanut fields remains unclear. To investigate bacterial diversity and the community structure of
peanut fields with severe RKN disease, we applied 16S full-length amplicon sequencing based on the
third high-throughput sequencing technology. The results indicated no significant differences in soil
bacterial α-diversity between resistant and susceptible plants at the same site. However, the Simpson
index of resistant plants was higher at the site of peanut-wheat-maize rotation (Ro) than that at the site
of peanut continuous cropping (Mo), showing an increase of 21.92%. The dominant phyla identified
in the peanut bulk soil included Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, Chloroflexi,
Firmicutes, and Bacteroidetes. Further analysis using LEfSe (Linear discriminant analysis effect size)
revealed that Sulfuricellaceae at the family level was a biomarker in the bulk soil of susceptible peanut
compared to resistant peanut. Additionally, Singulisphaera at the genus level was significantly more
enriched in the bulk soil of resistant peanut than that of susceptible peanut. Soil properties were
found to contribute to the abundance of bacterial operational taxonomic units (OTUs). Available
phosphorus (AP), available nitrogen (AN), organic matter (OM), and pH made a positive contribution
to the bacterial OTUs, while available potassium (AK) made a negative contribution. The metabolic
pathway of novobiocin biosynthesis was only enriched in soil samples from resistant peanut plants.
Eleven candidate beneficial bacteria and ten candidate harmful strains were identified in resistant and
susceptible peanut, respectively. The identification of these beneficial bacteria provides a resource
for potential biocontrol agents that can help improve peanut resistance to RKN disease. Overall, the
study demonstrated that severe RKN disease could reduce the abundance and diversity of bacterial
communities in peanut bulk soil. The identification of beneficial bacteria associated with resistant
peanut offered the possibility for developing biocontrol strategies to enhance peanut resistance to
RKN disease.

Keywords: peanut (Arachis hypogaea L.); root-knot nematode disease; bulk soil; bacterial community
structure

1. Introduction

Arachis hypogaea L. (peanut or groundnut), commonly known as peanut or groundnut,
holds great economic importance as both economic crop and oil crop across the world [1].
It is cultivated worldwide in tropical and subtropical regions. Taxonomically, peanut is
considered a legume and is believed to have originated in Central and South America,
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with cultivation spread to other parts of the world [2]. In many countries, peanut provides
a significant nutritious contribution to the diet due to their rich protein, lipid, and fatty
acid content [3], and peanut is grown for oil production, peanut butter, confectionary,
snacks, and protein extenders globally [4]. Plant-parasitic nematodes are considered one of
the major obstacles to the production of peanut crops [5], and one of the most influential
nematodes is the root-knot nematode [6].

The root-knot nematode (Meloidogyne hapla Chitwood, RKN) can cause significant
yield losses in the cultivated peanut and has become an important factor influencing
peanut production in Northern China [7]. On the one hand, different peanut varieties have
different resistance to RKN. Most peanut cultivars are highly susceptible to RKN [8]. It is
well known that the wild diploid peanut relatives showed strong resistance to RKN [9].
But our preliminary tests found that HY9810 was more resistant to RKN than HY20
(Figure 1). They can be used as a good material to study peanut RKN disease. On the other
hand, different planting methods have a great influence on RKN. Long-term continuous
cropping of peanuts will undoubtedly aggravate the occurrence of RKN disease [10], and
the traditional approach tends to use crop rotation to control RKN [11].
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Figure 1. Photographs of HY9810 (R) and HY20 (S) at harvest time at the Mo. Site.

Bacterial community and structural changes are closely related to RKN disease. Bac-
teria are the most abundant and widely distributed microorganisms in soil. They play
an important role in maintaining the healthy decomposition of organic matter in the soil,
promoting material circulation, and maintaining the balance of the soil ecosystem [12]. Cao
et al. observed that RKN infection changed the α-diversity and microbial composition of
root microorganisms and drove the transformation of microorganisms [13]. Lu et al. found
that the community structure and function of the plant rhizosphere were significantly
correlated to the RKN disease [14]. Li et al. demonstrated that community variation and
assembly of root endophytic microbiota were significantly affected by RKN [15]. Rani et al.
revealed that the bacterial bioagents, namely B. amyloquefaciens, B. megaterium, P. fluorescens,
and P. putida, showed the potential for controlling RKN [16].
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In general, different peanut genotypes and cropping patterns had a great influence
on RKN disease. The interaction of bacteria−pathogens is the theoretical basis for im-
proving colonization and controlling the effect of biocontrol bacteria [13]. To explore the
relationships between bacterial communities, soil environments, and plant health, bacterial
communities were analyzed using the third high-throughput sequencing technology of the
16S full-length rDNA amplicons in peanut samples with different peanut genotypes and
cropping patterns. It would provide a theoretical basis for the exploitation and utilization
of microbial resources for controlling RKN disease in peanut.

2. Materials and Methods
2.1. Soil Samples Collection and Processing

Two peanut germplasms (HY9810 and HY20) and two planting sites were chosen in
this experiment. HY9810 (R-) was an advanced line developed by the disease-resistant
breeding team in Shandong Peanut Research Institute (SPRI), which is resistant to RKN
(Figure 1). HY20 (S-) was released in 2002 by SPRI, which is susceptible to RKN (Figure 1).
One of two planting sites called Mo (35◦30′13′′ N, 119◦11′43′′ E) was located at Jiajiagou,
Shanzhuan Town, Rizhao City, Shandong Province, and the soil type was sandy loam;
another one designated as Ro (36◦48′37′′ N, 120◦30′03′′ E) was an experimental base of
SPRI, located at Wangcheng Town, Laixi City, Shandong Province, and the soil type was
sandy loam. Peanut was planted continuously for seven years at the Mo site which had
severe RKN disease. Peanut, wheat, and maize were planted alternatively at the Ro location
which had light RKN disease. The two peanut varieties were sown in May 2019. In mid-
September, the bulk soils of peanut fields were collected by the five-point sampling method.
In each site, the surface soil was removed, and five soil cores at a depth of 5~20 cm near
the peanut plants were collected and mixed into one bulk soil. Twelve composite samples
were obtained by repeated sampling three times. The samples were sieved through two
mm mesh and divided into two groups, with one group stored at room temperature for
measurement of soil physicochemical properties, and the other group frozen at −80 ◦C for
DNA extraction of bacteria community. Mo.R and Mo.S stand for soil samples of HY9810
and HY20 from the field of severe RKN disease, respectively. Ro.R and Ro.S were soil
samples of HY9810 and HY20 from fields of light RKN disease, respectively.

2.2. 16S rDNA Full-Length Amplification and Sequencing

The soil bacterial diversity and community structure were detected by 16S rDNA
full-length sequencing. All the operation processes, including total soil DNA extraction,
amplification, library construction, and sequencing, were performed by Novogene (Beijing,
China); data analysis was carried out by Gene Denovo (Guangzhou, China). Total genome
DNA from soil samples was extracted by the CTAB method. DNA concentration and
purity were determined by 1.0% agarose gel and ultraviolet spectrophotometry [17]. The
DNA was diluted with sterile water to 1 ng/L, according to the concentration. The specific
primers were 16S F (forward primer, 5′-CCTACGGGNGGCWGCAG-3′) and 16S R (reverse
primer, 5′-GACTACNVGGGTATCTAATCC-3′) with barcode [18]. The amplified library
was sequenced using a PacBio SMRT RS II DNA sequencing platform (Pacific Biosciences,
Menlo Park, CA, USA). Low quality was filtered by PacBio circular consensus sequencing
technology [19], and the chimera sequences were removed [20] using the UCHIME algo-
rithm [21]. Sequences with ≥97% similarity were assigned to the same OTU (Operational
taxonomic unit) by analyzing sequences performed by Uparse software (Uparse v7.0.1001,
http://drive5.com/uparse/ accessed on 26 September 2021) [22,23]. The species that were
selected to rank top 10 in terms of mean abundance in all samples were visualized using
stacked plots, other known species were categorized as others, and unknown species were
marked as unclassified with the R project ggplot2 package (version 2.2.1). To identify
differences of bacterial communities among the four soil groups, Venn diagrams were
plotted with the VennDiagram package [24]. The PCA analysis was performed on the
community composition structure of four soil groups at the OTU level to reduce the dimen-

http://drive5.com/uparse/
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sion of the original variables to explore the similarity and differences among groups using
the QIIME software package, v. 2 [25]. UPGMA (Unweighted pair-group Method with
Arithmetic Mean) is a commonly used clustering analysis method, which mainly refers to
the hierarchical clustering analysis method using any distance to evaluate the similarity
among the soil groups [25,26]. A species accumulation boxplot was used to investigate the
species composition of a sample and predict species abundance in a sample [27]. LEfSe
(LDA Effect Size) analysis was used to find biomarkers with statistical differences between
groups [28,29], and the Lefse analysis parameter set to the alpha value of factorial Kruskal
Wallis test between classes was <0.05, and the threshold value of logarithmic LDA score for
distinguishing features was >2.0. Multiple direct gradient regression was used to analyze
the correlation between microflora and environmental factors based on soil basic physi-
cal and chemical properties and OTU annotation data. The R software language Vegan
package, v. 2.6-4, was used for Canonical correlation analyses (CCA), and Pearson, the
maximum correlation coefficient between environmental factors and differences in sample
community distribution, was used to judge the significance of CCA analysis. Spearman
rank correlation was used to study the relationship between environmental factors and
bacterial species richness to obtain the correlation and significant p-value between each
other. Based on the species and environmental factors, the R language vegan package was
used for variance partitioning analysis (VPA) of the contribution (percentage) of each group
of environmental factor variables to the species distribution. The relative abundance of
screened beneficial and harmful bacteria is displayed using the R language circlize package.

2.3. Determination of Soil Physical and Chemical Properties

Soil basic physicochemical properties of each sample were determined, including
alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), available potassium (AK) [30],
organic matter (OM) [31], and pH [32]. AN content was determined by the alkali diffusion
method [33]. AP content was determined by the molybdenum antimony colorimetric
method with a UV-visible spectrophotometer (Shimadzu UV-2700, Kyoto, Japan) [34].
The AK was digested by CH3COONH4 and measured by flame atomic absorption spec-
trophotometry with flame spectrometry (Sherwood M410 Britain, Sherwood scientific Ltd.,
Cambridge, UK) [33]. OM content was analyzed using dichromate oxidation [31]. Soil pH
was measured with a pH meter at a soil to water ratio of 1:2.5 (Meter 3100C, Licor, Lincoln,
NE, USA) [33].

2.4. Statistical Analysis

Analysis of variance (ANOVA) with Least-Significant Difference (LSD tests) and
Tukey’s HSD test were applied to distinguish significant differences between each treatment.
All statistics were carried out in IBM-SPSS 22.0 software, and significance was set at p < 0.05.

3. Results
3.1. Bacterial Community Diversity of Bulk Soil in Peanuts Field
3.1.1. Sequence Data of 16S Full-Length rDNA

To investigate the bacterial structure and diversity in peanut bulk, we sequenced the
16S full-length amplicon of 12 soil samples. Low-quality reads were corrected or removed,
SSR filtered, primers removed with the Cutadapt software v. 4.4, and chimera sequences
removed to obtain high-quality reads. Overall, a total of 164,184 raw reads were obtained;
162,706 high-quality clean reads were finally obtained (Table S1), which were used to cluster
the analysis of operational taxonomic units (OTUs) with 97% identity (Figure 2).

A total of 3739 OTUs were found in high-quality reads, belonging to 2 domains,
25 phyla, 62 classes, 121 orders, 172 families, 360 genera, and 547 species (File S1). A total
of 258 OTUs were common among the 4 groups of soil samples, while 220, 138, 287, and
249 OTUs were unique to Mo.R, Mo.S, Ro.R, and Ro.S, respectively. A total of 53 OTUs
were uniquely found in Mo.R and Ro.R, and 61 OTUs were uniquely found in Mo.S and
Ro.S (Figure S1).
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3.1.2. Alpha Diversity

Through alpha diversity analysis, the community diversity of bacteria was examined
by the Simpson and ACE indices. The larger the Simpson implies higher species diver-
sity [35]. The Simpson index analysis showed an extremely significant difference (p < 0.01)
and ACE indices showed a significant difference (p < 0.05) between the Ro site and Mo
site; no significant difference in the alpha diversity index was observed between different
genotypes (p > 0.05) (Table S2). The box plot of α diversity index was drawn and the
significance of the difference between every two groups was done by Tukey’s HSD test
(Figure 3). A comparative analysis of the four groups using the Simpson index revealed
that the Mo.R increased by 1.06% compared to Mo.S, the Ro.R increased by 0.15% compared
to Ro.S, the Ro.R increased by 1.13% compared to Mo.R, and the Ro.S increased by 2.05%
compared to Mo.S. A comparative analysis of the ACE of the four groups revealed that the
Mo.R increased by 0.36% compared to Mo.S, the Ro.R increased by −5.61% compared to
Ro.S, the Ro.R increased by 21.92% compared to Mo.R, and the Ro.S increased by 29.64%
compared to Mo.S (Figure 3 and Table S3).
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3.1.3. Beta Diversity

Principal component analysis (PCA) and clustering analysis were used to observe the
similarities among the four soil groups. The first two principal components (PC1 and PC2)
of PCA explained 59.02% and 18.22% of the total variation, respectively (Figure 4a). Cluster
analysis also revealed that soil samples from the same planting sites were classified into a
group (Figure 4b).
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3.1.4. Bacterial Community Structure of Peanut Bulk Soil Influenced by RKN

In order to further analyze the structure of the bacterial community, the abundance
distribution of each group at the levels of phylum, class, order, family, genus, and species
was shown according to the results of taxonomic annotation (Figure 5).

All OTUs were classified into 25 phyla, and there were 8 phyla in each group with a rel-
ative abundance >1% (Table S4). Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes,
Chloroflexi, Firmicutes, and Bacteroidetes were the seven dominant phyla in the peanut bulk
soil, accounting for about 90% of all bacterial taxa in each group (Figure 5a). Compared
to Mo.S, the relative abundance of Actinobacteria, Planctomycetes, and Chloroflexi increased
by 1.12%, 38.22%, and 3.24% in Mo.R, respectively; compared to Ro.S, that increased by
14.84%, 16.96%, and 20.39% in Ro.R, respectively. Conversely, compared to Mo.S, the
relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Nitrospirae decreased by
8.46%, 12.17%, 53.34 and 8.11% in Mo.R, respectively; compared to Ro.S, that decreased by
2.14%, 13.51%, 6.40% and 18.23% in Ro.R, respectively (Figure 5a).

At the class level, most of the bacteria belonged to Acidobacteria, Gammaproteobac-
teria, Alphaproteobacteria, Ktedonobacteria, Rubrobacteria, Betaproteobacteria, Planctomycetia,
Phycisphaerae, Acidimicrobiia, and Chitinophagia (Table S5). The most dominant bacterial pop-
ulations in Mo.R, Mo.S, Ro.R, and Ro.S accounted for 80.84%, 80.98%, 72.49%, and 76.34%,
respectively. Compared to Mo.S, the relative abundance of Ktedonobacteria, Planctomycetia,
and Phycisphaerae increased by 2.01%, 48.40%, and 15.46% in Mo.R, respectively; compared
to Ro.S, that increased by 14.57%, 9.07% and 23.64% in Ro.R, respectively. In contrast,
compared to Mo.S, the relative abundance of Gammaproteobacteria, Alphaproteobacteria, and
Chitinophagia decreased by 21.33%, 4.67%, and 65.56% in Mo.R, respectively; compared to
Ro.S, that decreased by 18.21%, 1.57% and 11.80% in Ro.R, respectively (Figure 5b).
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Figure 5. The top 10 species distribution in the average abundance of bacterial communities in peanut
bulk soil at the levels of phylum (a), class (b), order (c), family (d), genus (e), and species (f). Other
known species are classified as others, and unknown species are marked as unclassified.

Acidobacteriales was the most abundant bacterial order, which accounted for 23.96%,
20.34%, 16.97%, and 21.27% in Mo.R, Mo.S, Ro.R, and Ro.S, respectively (Figure 5c). Com-
pared to Mo.S, the relative abundance of Ktedonobacterales, Bryobacterales, and Tepidisphaerales
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increased by 1.27%, 1.67%, and 8.79% in Mo.R, respectively; compared to Ro.S, that in-
creased by 20.76%, 18.19% and 21.76% in Ro.R, respectively. While compared to Mo.S, the
relative abundance of Xanthomonadale, Rhodospirillales, and Rhizobiales decreased by 27.69%,
8.61%, and 4.41% in Mo.R, respectively; compared to Ro.S, that decreased by 25.41%, 1.84%,
and 11.90% in Ro.R, respectively (Figure 5c).

Acidobacteriaceae and Xanthomonadaceae were the most abundant families in the four
groups collectively (Figure 5d). Compared to Mo.S, the relative abundance of Bryobacteraceae
and Tepidisphaeraceae increased by 1.67% and 8.79% in Mo.R, respectively; compared to
Ro.S, that increased by 18.81% and 21.76% in Ro.R, respectively. In contrast, compared to
Mo.S, the relative abundance of Xanthomonadaceae, Chitinophagaceae, and Acetobacteraceae
decreased by 33.04%, 65.64%, and 4.27% in Mo.R, respectively; compared to Ro.S that
decreased by 30.14%, 12.39%, and 2.86% in Ro.R, respectively (Figure 5d).

A thorough investigation at the genus level showed that 360 taxa were classified from
the 4 bulk soil communities, whereas most genera were <15%, implying high bacterial
diversity in the 4 soil groups (File S2). As shown in Figure 5e, the predominant identifiable
genera were Acidicapsa, Chujaibacter, Gaiella, and Occallatibacter, which accounted for 9.80%,
13.21%, 5.69%, and 5.02% in Mo.R, Mo.S, Ro.R and Ro.S, respectively. Compared to Mo.S,
the relative abundance of Tepidisphaera increased by 9.13% in Mo.R; compared to Ro.S, that
increased by 20.83% in Ro.R. In contrast, compared to Mo.S, the relative abundance of
Chujaibacter, Acidobacterium, and Gemmatimonas decreased by 32.99%, 9.85%, and 2.03% in
Mo.R, respectively; compared to Ro.S, that decreased by 35.65%, 19.58% and 30.22% in
Ro.R, respectively (Figure 5e and Supplementary File S2).

Chujaibacter soli was the most abundant species in Mo.R and Mo.S, which accounted
for 8.85% and 13.21%, respectively; Gaiella occulta was the most abundant species in Ro.R
and Ro.S, which accounted for 5.65% and 5.17%, respectively (Figure 5f). Compared to
Mo.S, the relative abundance of Acidicapsa acidisoli increased by 137.21% in Mo.R; compared
to Ro.S, that increased by 19.89% in Ro.R. While compared to Mo.S, the relative abundance
of Chujaibacter soli, Acidobacterium capsulatum, Bradyrhizobium valentinum, and Acidisphaera
rubrifaciens decreased by 32.96%, 18.17%, 25.67%, and 13.49% in Mo.R, respectively; com-
pared to Ro.S, that decreased by 35.73%, 23.63%, 18.90%, and 4.86% in Ro.R, respectively
(Figure 5f).

3.2. Analysis of the Microbiological Biomarkers in the Peanut Bulk Soil

In order to analyze the biomarkers between different groups, LEfSe (LDA Effect Size)
analysis was employed in the four groups of peanut bulk soil. Statistical analysis was
performed from the phylum to the genus level in cladograms, and LDA scores of 2 or greater
were confirmed by LEfSe between resistant and susceptible peanut (Figures 6 and S2). As
can be seen from Figure 6, 17 biomarkers were pointing to susceptible peanut, while
Chujaibacter and Xanthomonadaceae had LDA scores ≥ 4.0, and 43 biomarkers pointing
to resistant peanut, while Planctomyceteria, Acidobacteria, Acidicapsa, Acidobacteriaceae, and
Acidobacteriia had LDA scores ≥ 4.0 at the Mo site; 17 and 20 biomarkers were pointing to
susceptible and resistant peanut at the Ro site, respectively.

Sulfuricellaceae at the family level as the specific biomarker was both pointing to
susceptible peanut at the same site, which suggested that Sulfuricellaceae can be used as
biomarkers of the susceptible peanut. Singulisphaera at the genus level as the specific
biomarkers were both pointing to resistant peanut at the same site, which suggested that
Singulisphaera can be used as biomarkers of resistant peanut.
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Figure 6. LEfSe Bar of different abundance between resistant and susceptible peanut at Mo site (a)
and Ro site (b) by linear discriminant analysis (LDA). The yellow horizontal bars are the biomarkers
enrichment in bulk soil of RKN-resistant peanut, which had a negative LDA score; the blue horizontal
bars are that of RKN susceptible peanut, which had a positive LDA score. The blue frame box is the
common biomarker of RKN resistant peanut. The red frame box is the common biomarker of RKN
susceptible peanut.

3.3. Relationship between Bacterial Community Structure and Environment Factors in Peanut
Bulk Soil

Spearman correlation analysis was used to study the relationship between the com-
position of bacterial community structure and environmental factors. Soil physical and
chemical factors were determined, including pH, organic matter (OM), alkali-hydrolyzed
nitrogen (AN), available phosphorus (AP), and available potassium (AK) (Table 1). The
results showed that the levels of OM, AN, and AP at the Mo site was higher than that
at the Ro site, while the pH of the Ro site was higher than that at the Mo site. However,
no significant patterns were observed between the soil physicochemical traits and the
susceptibility or resistance of the peanut.
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Table 1. Environmental chemical characteristics in four groups of peanut bulk soil.

Item Mo.S Mo.R Ro.S Ro.R

pH 4.5 ± 0.1 a 4.6 ± 0.1 a 4.8 ± 0.2 a 5.1 ± 0.2 a
Organic matter (OM, g/kg) 13.5 ± 0.7 a 14.9 ± 0.7 a 12.1 ± 0.3 a 10.9 ± 0.7 a

Available nitrogen (AN, mg/kg) 82.9 ± 10.8 a 85.5 ± 10.4 a 60.7 ± 5.7 a 54.6 ± 6.3 a
Rapidly available phosphorus

(AP, mg/kg) 103.4 ± 8.2 a 121.1 ± 13.3 a 94.3 ± 1.3 a 81.1 ± 6.3 a

Available potassium (AK, mg/kg) 46.1 ± 0.0 a 53.6 ± 14.2 a 61.2 ± 3.3 a 42.3 ± 6.5 a
Note: The same lowercase letters in the table indicate that the differences of each item among different groups are
not significant p > 0.05.

Multiple direct gradient regression was used to analyze the relationships among
sampling points, microflora, and environmental factors, and canonical correspondence
analysis (CCA) was constructed. As shown in Figure 7a, the descending order of influences
on the distribution of bacterial species in the peanut bulk soil were OM, AP, pH, AN, and
AK (the corresponding r2 were 0.8326, 0.8002, 0.6000, 0.7220, and 0.1579, respectively).
OM, AP, and AN had extremely significant effects (Pr < 0.01), pH had significant effects
(Pr < 0.05), but AK had no significant effects (Pr > 0.05). AP, AN, OM, and pH made a
positive contribution to the OTUs of bacterial, while AK made a negative contribution
(Figure 7b).
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bulk soil and environmental factors. Blue spots indicate the top 20 bacterial species. (b) Contribution
map of environmental factors.

Spearman correlation analysis was performed to study the mutual change relationship
between environmental factors and species based on the measured data of soil environment
factors and the OTU data of each sample. As seen in Figure 8, OM was the most significant
environmental factor in the top 20 of the bulk soil bacteria at specific levels; next were
AN and AP, and the last was pH. Moreover, the four environmental factors showed an
extremely significant correlation with the abundance of Acidibacter ferrireducens, Acidicapsa
acidisoli, and Acidiferrimicrobium australe.
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3.4. Analysis of Beneficial and Harmful Bacteria in the Peanut Bulk Soil

Beneficial bacteria are defined as those that can promote plant growth, help prevent
pathogen invasion, and improve plant adaptability to abiotic or biological stresses; they
are also called plant growth-promoting rhizobacteria (PGPR) [36,37]. In order to further
analyze the bulk soil bacterial diversity of R-cultivars on the basis of relevant literature
studies, 11 bacterial species were chosen to draw a Circos diagram. The results showed that
the relative abundance of RKN-resistant peanut was higher than that of RKN susceptible
peanut (Mo.R-Mo.S ≥ 0 and Ro.R-Ro.S ≥ 0) (Figure 9a). Among them, the large proportion
included Burkholderia cepacia, Jatrophihabitans soli, Arthrobacter dokdonellae, Rhodanobacter
lindaniclasticus, and Nitrosospira multiformis. The relative abundance of Mucilaginibacter
ximonensis and Ferruginibacter alkalilentus in susceptible and resistant plants at the same
planting site was a leap from absence to present, although the difference in value was not
significant.
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Figure 9. The Circos map of candidate beneficial and harmful bacteria resistant to RKN in peanut
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Harmful bacteria are defined as the opposite of beneficial bacteria, which inhibit
plant growth, help pathogens to invade, and reduce plant adaptation to abiotic or bi-
otic stresses [38,39]. To further analyze the bulk soil bacterial diversity of S-cultivars,
10 bacterial species were chosen to draw the Circos diagram, which indicated that the rela-
tive abundance of RKN-susceptible peanut was higher than that of RKN-resistant peanut
(Mo.R-Mo.S≤ 0 and Ro.R-Ro.S≤ 0) (Figure 9b). The large proportions were Bradyrhizobium
valentinum, Bacillus funiculus, Niastella hibisci, Ramlibacter solisilvae, and Rhodoplanes elegans.
It is worthy of note that the relative abundance of Cutibacterium acnes from resistant to sus-
ceptible peanut in the same planting site was a qualitative leap from nothing to something,
although there was little difference in value.

3.5. Prediction of Bacterial Functional Potential in the Peanut Bulk Soil

To explore the functional roles of bacteria in peanut bulk soil, PICRUSt2 was used to
predict their function based on KEGG metabolic pathways and the relative frequencies of
predicted functions. A total of 171 metabolic pathways in KEGG were annotated (File S3).
Among the 6 primary pathways, the number of metabolic pathways annotated was at
most (118); the next was genetic information processing annotated to 18; the third was
cellular processes annotated to 9. In the second level of the metabolic pathway, Xeno-
biotics biodegradation and metabolism, Carbohydrate metabolism, and the metabolism
of terpenoids and polyketides were the 3 most annotated pathways, with 17, 15, and
14 annotated pathways, respectively. Some representative pathways were selected for
demonstration and analysis. Seven pathways were both increased in Mo.R compared to
Mo.S and Ro.R compared to Ro.S (Figure 10). These seven metabolic pathways mainly
focus on the first level of Genetic information processing, Human diseases and metabolism,
and the secondary level of Transcription, Translation, Immune diseases, Biosynthesis of
other secondary metabolites, and Metabolism of terpenoids and polyketides. Three of
the seven metabolic pathways belong to the Metabolism of terpenoids and polyketides.
Interestingly, the abundance of novobiocin biosynthesis was over 300 in both resistant
peanut, but 0 in both susceptible peanut at the same planting site.
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4. Discussion
4.1. Effect of Severe RKN Disease on the Bacterial Diversity in Peanut Bulk Soil

The structure and function of the root microbiome play an important role in plant
immunity and development and are closely related to plant health [40,41]. Some studies
have shown that the suppression and outbreak of soilborne diseases are closely related
to soil bacterial communities [42,43]. The increase of bacterial quantity and community
structure diversity in soil is one of the main reasons to inhibit soilborne plant diseases [44].
Plants regulate their microbiome under biological stresses [45,46]. Our study found that
the bacterial diversity of peanut bulk soil in the Ro site was higher than that in the Mo site;
and RKN susceptible peanut showed a downward trend compared with RKN resistant
peanut at the same planting site, but the difference was not significant (Figure 2). This
result is consistent with previous studies that planting area can have a significant impact
on bacterial community composition [47,48]. The results of this study supported that the
bacterial diversity in bulk soil of RKN susceptible peanut was decreased compared with
that of RKN resistant peanut.

We also found that Acidobacteria, Proteobacteria, Actinobacteria, Planctomycetes, Chlo-
roflexi, Firmicutes, and Bacteroidetes were the most dominant phyla in peanut fields (Figure 3),
which was broadly consistent with previous reports on peanut rhizosphere soil micro-
biota [22]. It was also found that samples at the same planting site were clustered together
by β-diversity analysis (Figure 4). Distinct differences in bacterial communities can be ob-
served between the two different sites, which indicates that cropping pattern or the severity
of RKN disease has more influence on a bacterial community than peanut genotypes. It
also been found that the abundance of Actinobacteria, Planctomycetes, and Chloroflexi in RKN-
resistant peanut bulk soil, and similarly, Cao found that Actinobacteria and Planctomycetes
were also present in healthy tobacco soils compared to RKN-susceptible tobacco soils [49].
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4.2. Differential Bacterial Communities between Peanut Bulk Soils of Resistant and Susceptible
to RKN

The result showed that Sulfuricellaceae at the family level was detectable as a specific
biomarker in the bulk soil of RKN susceptible peanut compared to RKN resistant peanut at
the same planting site (Figure 6). All members of Sulfuricellaceae utilize inorganic sulfur
compounds as their energy source and use oxygen or nitrate as terminal electron acceptors
for respiration. Its subordinate genus Sulfuricella [50,51] is also an indicator of a biomarker
in Mo.S compared to Mo.R, and its subordinate genus Sulfuriferula is an indicator of a
biomarker in Ro.S compared to Ro.R. It seems that the sulfur-like bacteria in the bulk soil
of RKN-susceptible peanut are more prominent compared to that of RKN-resistant peanut.

Singulisphaera at the genus level was recognized as the specific biomarker in the bulk
soil of RKN-resistant peanut compared to RKN-susceptible peanut at the same planting
site (Figure 6). Representatives of this Singulisphaera genus are common inhabitants of
soils and wetlands [52]. The Singulisphaera genus showed remarkable responses to pectin
and xylan [53]. Moreover, xylan and pectin are important components of plant cell wall
polysaccharides [54], which can prevent invasion and colonization of pathogenic microor-
ganisms [55]. Although Singulisphaera seems to be inextricably related to peanut anti-KNF,
further study is needed to provide more information on the mechanism.

4.3. The Role of Environment Factors in Bacterial Communities of Peanut Bulk Soil

Soil physicochemical properties are closely related to the bacterial communities of
bulk soil [56]. Soil physical and chemical properties have a direct regulatory effect on plant
root microenvironment and affect the composition and structure of root bacterial commu-
nities [57]. In this study, soil physical and chemical properties displayed an important
factor affecting soil bacterial community structure (Figures 7 and 8), which was consistent
with previous studies. In addition, we found that AP, AN, OM, and pH made a positive
contribution to the OTUs of bacteria, while AK made a negative contribution; pH, OM, AN,
and AP all had extremely significant differences along with bacteria Acidibacter ferrireducens,
Acidicapsa acidisoli, and Acidiferrimicrobium australe (Figures 7 and 8).

4.4. Bacterial Potential Function in Peanut Bulk Soil

Soil microorganisms are an important part of the farmland ecosystem, which can
promote the recycling of matter and energy in soil, especially the recycling and transforma-
tion of nutrient elements [58]. In our study, the highest functional enrichment of bacterial
communities in peanut bulk soil was the first level of metabolism, and the second level
xenobiotic biodegradation and metabolism. Seven metabolic pathways were selected as
they were all increased in the resistant peanut bulk soil compared to the susceptible at the
same planting site. Notably, we found that the novobiocin biosynthesis pathway differed
300-fold between resistant and susceptible peanut. It is presumed that RKN-resistant
peanut could be involved in the biosynthesis of some novobiocin.

4.5. Beneficial and Harmful Bacteria in Peanut Bulk Soil

Beneficial microorganisms in soil can not only promote the transformation of soil
organic matter into nutrients that can be absorbed and utilized by plants and improve the
soil microecological environment but also produce a variety of bacteriostatic or bactericidal
active substances, enhance the resistance of crops to a variety of diseases, and reduce the
incidence of soilborne diseases [59]. Nitrifying has a profound effect on the form of mineral
nitrogen that plants take up, use, and retain in the soil or lose to the environment [60]. Other
beneficial bacteria had similar results, such as Planctomyces, Gemmata, Flavisolibacter [61].
It was found that Arthrobacter is a beneficial bacterium in corn fields [62], Inquilinus has
the function of promoting the growth of ginseng [63], and Nocardioides belonging to the
phylum actinomycetes can promote the growth of ginseng root [64]. Harmful bacteria,
which have the opposite function of beneficial bacteria to plants, also deserve our attention.
Literature stated that the relative abundance of beneficial bacteria such as Sphingomonas,
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Pseudomonas, and Aspergillus increased significantly, while the relative abundance of the
pathogen Pythium decreased significantly after crop rotation [65]. Rhodoplanes and Kaisto-
bacter were the main bacteria in healthy roots of American ginseng, while Sphingobium
was the main bacterial group in rotten roots [66]. In soil microorganisms, there are many
promoting bacterial populations for plant growth and disease control, which are known as
plant growth-promoting rhizobacteria (PGPR). PGPR has a certain biological control effect
on soil-pathogenic microorganisms and nonparasitic rhizosphere harmful microorgan-
isms [67]. The relative abundance of beneficial bacteria antagonistic to pathogenic bacteria,
such as Planctomyces, Bradyrhizobium, and Burkholderia increased significantly, resulting in a
low incidence under pineapple−banana rotation [68]. Bacillus bacterial agents can increase
the abundance of the beneficial bacteria Nitrospirae, Variovorax, Rhodanobacter, Nitrosospira,
Rhodopseudomonas, and Mesorhizobium [69]. It also showed that the family Pseudomonadaceae
is beneficial to the control of root-knot nematodes [70].

Moreover, some studies have shown that Bradyrhizobium, Rhizobia, Burkholderia, and
Achromobacter have the potential to biofix nitrogen with cowpea roots [71]. Non-pathogenic
Pseudomonas fluorescens (WCS417r) and Moringa oleifera leaf extracts were effective against
wheat aphids [70]. Stenotrophomonas Maltophilia, Serratia Plymuthica, Pseudomonas Trivialis,
P. Fluorescens, B. subtilis, and Burkholderia cepacia can produce volatile organic compounds
(VOCs) that inhibit the growth of plant pathogenic fungi hyphae [16]. In the research of bio-
logical control of plant diseases, the biological control of soilborne diseases has made great
achievements. The bacteria used for biocontrol mainly belong to Trichonderma, Streptomyces,
Gliocladium, Bacillus, Pseudomonas, Agrobacterium, Flavobacter, and Enterobacter [72,73].

Referring to the beneficial and harmful bacteria of other plants studied by previous
reports, in this study, 11 candidate beneficial bacteria and 10 harmful bacteria were obtained
for peanut resistance to RKN (Figure 9). Burkholderia cepacia accounted for the largest
proportion of beneficial bacteria, and it may benefit from Burkholderia cepacia producing
volatile organic compounds (VOCs) that inhibit the growth of plant pathogenic fungi
hyphae [16]. Burkholderia cepacia could be used as a biological agent for peanut resistance to
RKN in the future. Bradyrhizobium is generally beneficial for plants that can fix nitrogen,
and it is also beneficial and antagonistic to pathogenic bacteria in banana rotation [68].
However, in our study, Bradyrhizobium valentinum is the largest percentage of potentially
harmful bacteria for peanut resistance to RKN. It may be two-sided: it can fix nitrogen and
is also pathogenic to peanut resistance to RKN.

5. Conclusions

Our findings strongly indicate that the planting site has more influence on the bac-
terial community of peanut bulk soil than the peanut genotype. Singulisphaera at the
genus level was a biomarker in the bulk soil bacteria of RKN-resistant peanut compared to
RKN-susceptible peanut in the same planting site and Sulfuricellaceae at the family level
was detected to be a biomarker in that of RKN susceptible peanut. AP, AN, OM, and
pH made a positive contribution to the OTUs of bacteria, while AK made a negative con-
tribution. All pH, OM, AN, and AP had extremely significant differences on Acidibacter
ferrireducens, Acidicapsa acidisoli, and Acidiferrimicrobium australe. The function of the novo-
biocin biosynthesis pathway plays an important role in peanut resistance to RKN. A total
of 11 candidate-beneficial and 10 harmful bacteria were obtained for peanut resistance to
RKN, and Burkholderiacepacia, as a beneficial bacterium against RKN in peanut could be
used as a potential bioagent in the future.

These results highlight the significance of planting site, specific bacterial taxa, soil
properties, and functional pathways in peanut resistance to RKN. The identification of
candidate beneficial bacteria, including Burkholderia epacia, suggests the possibility of
utilizing them as bioagents in future for RKN management strategies in peanut.
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