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Abstract: Wheat is one of the widely cultivated crops. Accurate and efficient high-throughput ear
counting is important for wheat production, yield evaluation, and seed breeding. The traditional
wheat ear counting method is inefficient due to the small scope of investigation. Especially in the
wheat field scene, the images obtained from different platforms, including ground systems and
unmanned aerial vehicles (UAVs), have differences in density, scale, and wheat ear distribution,
which makes the wheat ear counting task still face some challenges. To this end, a density map
counting network (LWDNet) model was constructed for cross-platform wheat ear statistics. Firstly,
CA-MobileNetV3 was constructed by introducing a collaborative attention mechanism (CA) to
optimize the lightweight neural network MobileNetV3, which was used as the front end of the feature
extraction network, aiming to solve the problem of occlusion and adhesion of wheat ears in the field.
Secondly, to enhance the model’s ability to learn the detailed features of wheat ears, the CARAFE
upsampling module was introduced in the feature fusion layer to better restore the characteristics
of wheat ears and improve the counting accuracy of the model for wheat ears. Finally, density map
regression was used to achieve high-density, small-target ear counting, and the model was tested on
datasets from different platforms. The results showed that our method can efficiently count wheat
ears of different spatial scales, achieving good accuracy while maintaining a competitive number of
parameters (2.38 million with a size of 9.24 MB), which will benefit wheat breeding and screening
analysis to provide technical support.

Keywords: UAVs; wheat ear counting; density map; lightweight

1. Introduction

Wheat has the largest sown area, the largest yield, and is the most widely distributed
food crop in the world. The number of ears of wheat is one of the most critical parameters
in wheat phenotyping research, which is the key evaluation parameter for wheat planting
density and yield estimation. How to count wheat ears accurately, efficiently, and non-
destructively is of great significance to phenotype analysis, field management, and food
security [1]. However, the wheat ears are not only similar in color to the leaves but
also densely distributed. Only relying on the traditional manual counting method has
disadvantages, such as strong subjectivity, low efficiency, large error, long counting cycle,
and lack of unified statistical standards [2]. Therefore, the counting method of wheat ears
is still an important issue in current research.

In fact, with the development of high-throughput phenotype acquisition platforms,
RGB images can be acquired not only by hand-held cameras and ground devices but also by
convenient drone platforms. Among them, images acquired by ground-based phenotyping
platforms have a high spatial resolution, which has been applied to crop plant counting by
some scholars. The UAV remote sensing platform has the advantages of miniaturization,
practicability, and high resolution, which has also provided a new way for large-scale
field crop counting. In the past ten years, detection and counting methods based on deep
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learning, including single-stage target detection network models, such as FCN [3], Faster-
RCNN [4], etc., and two-stage target detection network models, such as EfficientDet-D0 [5],
YOLO v3 [6], YOLO v4 [7], YOLO v5 [8,9], etc., were used to generate multiple location
boxes by detecting the target area of wheat ears, thus realizing the counting of wheat ears
in the field. The above studies show that the identification and counting of wheat ears
in the field environment based on the convolutional neural network model can not only
make up for the subjectivity, experience, and unsustainability of manual detection but
also provide higher detection accuracy. However, there are more practical problems to be
overcome when counting wheat ears in high-density wheat areas in crowded field scenes.
In particular, wheat in the field grows densely and has smaller ears. The method based on
small target detection still needs to be further improved. On the one hand, the detector
needs to be trained to capture more information, resulting in a complex structure of the
training detector and a large amount of calculation. On the other hand, after multiple
downsampling in the deep CNN architecture, the deep feature maps will lose more spatial
information, resulting in a decrease in counting accuracy [10]. Therefore, the difficulty of
the above target detection limited the further improvement of the accuracy and efficiency
of counting the number of ears of wheat in large-scale and intensive fields.

Currently, methods based on density maps, which skip the recognition and classifi-
cation tasks and directly generate density maps, have been favored in the study of dense
object counting [11]. Specifically, the method is to learn the mapping relationship between
the local key features of the wheat image and the density map, thereby obtaining the count
of the target object based on the integral of the density map [12]. The research showed that
the method of constructing density map regression improved the accuracy of wheat ear
counting in the real scene of wheat field. For example, Ma et al. proposed an EarDensityNet
model based on a fully convolutional neural network to generate a wheat canopy density
map to achieve satisfactory ear counting results, which solved the problem of mutual
occlusion between wheat ears [13]. Therefore, counting wheat ears using a density map
model has a positive effect on reducing labor intensity and time consumption. Although
the above-mentioned method successfully implements the count, the design of the counting
model needs to consider not only the accuracy but also the complexity and size of the
model. On the one hand, to facilitate the producers and breeders to better realize the
high-throughput phenotype analysis of wheat, it is necessary to reduce the number of
network parameters as much as possible without reducing the accuracy. For example,
Khaki et al. (2022) designed a lightweight neural network to successfully implement the
counting of wheat ears based on public datasets [14]. On the other hand, in addition to
ground-based field crop counts, images obtained from UAV platforms were often used
for field high-throughput monitoring due to their convenience, high speed, and low cost.
Studies have shown that when the vertical heights from the wheat canopy are 2.5 m [4],
2.9 m [15], 3.5 m [16], 5 m [17], and 20–30 m [18], the spikes were successfully detected.
In addition, wheat ear counting can also be achieved through UAV platforms based on
different heights, such as 0.5–1.2 m [19] and 25 m [20]. Although high-throughput phe-
notypic data collection has become a reality, most of the previous studies were based on
building models for phenotypic acquisition on a single platform, and few studies involved
counting wheat ears across different platforms [21]. Therefore, it is necessary to develop a
high-precision model to meet the difficulty of counting small wheat ears for different spatial
scales, which is of significance for wheat field monitoring and wheat yield estimation in
application scenarios of different spatial scales.

Therefore, a cross-platform wheat ear counting model based on deep learning of
UAV and ground system was constructed in this study. The main contributions were to
(1) improve the lightweight neural network using the collaborative attention mechanism
to solve the problems of dense distribution, overlapping, severe occlusion, and adhesion
in the images of wheat ears obtained at different spatial scales, aiming to improve the
robustness of cross-platform ear counting models, (2) optimize the feature fusion layer
with the CARAFE upsampling module, aiming to improve the feature extraction ability
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of small target wheat ear details on different platforms, (3) build a lightweight wheat ear
density map counting network, which reduces the number of learning parameters of the
model, making the model easy to be deployed in field applications on ground systems or
UAV platforms.

2. Materials and Methods
2.1. Data Collection
2.1.1. Data Sources

The data collection area is located at the National Agricultural Science and Technology
Innovation and Integration Demonstration (31◦25′~31◦42′ N, 117◦09′~117◦16′ E). The area
belongs to the subtropical monsoon climate, and the agricultural climate resources are
relatively superior. Winter wheat is the main food crop in the area, and the main camera
(48 megapixels) of a nova5pro mobile phone (Huawei Technologies Co., Ltd., Shenzhen,
China) was used for data acquisition on 7 May and 17 May 2021. The camera lens was kept
at a distance of about 50 cm from the wheat ears, and a total of 500 images of winter wheat
ears were collected, with an image pixel resolution of 3024 × 3024 pixels. These images
contain many samples of different light intensities, different densities, and different periods,
including 313 for filling and 187 for maturity. Our team members manually counted the
number of ears of wheat while taking pictures and recorded it as a wheat ear counting
(WEC) data set.

In addition, to avoid the problem of overfitting the training model due to the single
feature of wheat images, it is necessary to obtain diverse and representative wheat images.
We added another 560 wheat images from GWHD with a resolution of 1024 × 1024 pixels.
To reflect the diversity of the data, 140 wheat images from four continents in the GWHD
dataset were selected, including Asia, Europe, North America, and Oceania, as shown
in Figure 1, to verify the transferability and universality of the model, whether it can
effectively count wheat ears in a denser wheat scene. Wheat images were obtained on
8 May and 26 May 2022 at a height of about 3–5 m from the top of the wheat ears using UAV
(unmanned aerial vehicle) 3P (SZ DJI Technology Co., Shenzhen, China) at the High-tech
Agricultural Park in Hefei, China, as the UAV-WE (UAV-based wheat ears counting) dataset,
which was used to test the models individually, as shown in Figure 1c. 
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Figure 1. Examples of wheat ears images from different datasets.
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2.1.2. Data Annotation

The wheat images in the dataset are marked with ear points, that is, a point is marked
at the position of each wheat ear and saved in the UCF-QNRF dataset format. This labeling
method not only does not affect the resolution of the image but also can better preserve
spatial information of the wheat ears. In order to save computation time and labeling
workload, the wheat images in the WEC dataset are scaled to 1024 × 1024 pixels before
labeling. An example of wheat ear labeling and an example of a saved label in “.mat”
format, as shown in Figure 2.
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Figure 2. An example of wheat image annotation.

2.1.3. Dataset Construction

To enhance the superiority of the counting model, the wheat images in the training set,
validation set, and test set are all in the same distribution and independent of each other.
The WEC and GWHD datasets include 560 wheat images from different regions in different
periods. In addition, the data set UAV-WE specifically includes two parts. One part is the
original image of 24 wheat-filling stage images taken at a distance of 5 m from the ground,
and its resolution is 4000 × 3000 pixels. The other part is to use a sliding window with a
resolution of 512× 512 pixels to intercept the above-mentioned image of 4000× 3000 pixels
to obtain a UAV image with a resolution of 512 × 512 pixels, from which 24 relatively dense
images from UAV were selected. In this study, the data obtained by the ground system
and UAV platform were randomly divided into training set, validation set, and test set
according to the ratio of about 70%, 20%, and 10%, and 770, 224, and 114 pictures were
obtained. The details are shown in Table 1.

Table 1. Construction of wheat ear image dataset.

Data Sets Continent Platform Number
Training Validation Test

Size Wheat Ear Num
Set Set Set

WEC (filling) Asian G 313 219 63 31 1024 × 1024 8295
WEC (maturity) Asian G 187 131 37 19 1024 × 1024 4426

GWHD Asian G 140 98 28 14 1024 × 1024 6100
GWHD Europe G 140 98 28 14 1024 × 1024 6947
GWHD North America G 140 98 28 14 1024 × 1024 4742
GWHD Oceania G 140 98 28 14 1024 × 1024 7423

UAV-WE
Asian U 24 14 6 4 4000 × 3000 80,274
Asian U 24 14 6 4 512 × 512 7682

Total 1108 770 224 114 125,889

Note: G represents the data obtained from the ground system, and U represents the data obtained from the
UAV platform.
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2.2. CA-MobileNetV3

MobileNetV3-Small is a lightweight neural network in the MobileNetV3 series, which
combines the depthwise separable convolution (DSC) and the inverse residual structure
of the linear bottleneck, the former of which comes from MobileNetV1 and the latter
from MobileNetV2. In addition, MobileNetV3-Small also includes attention architecture,
named squeeze and excite (SE), which is lightweight [22]. The DSC is used in the block
instead of the standard convolution, which can reduce the calculation parameters of the
network, aiming to make the network lightweight, and the linear bottleneck can effectively
prevent the ReLU activation function from destroying information in low-dimensional
space. In addition, the reverse residual structure can avoid the failure of the convolution
kernel during the depth convolution process and the disappearance of the gradient when
the network depth is too deep. However, the SE-block module has a large amount of
calculation, and it only pays attention to channel information.

To improve the feature extraction ability of occluded wheat ears, MobileNetV3 is
improved by introducing a coordinated attention mechanism (CA), which enables Mo-
bileNetv3 not only to capture the long-distance dependence in the spatial direction but also
to obtain more accurate wheat ears location information, thereby improving the accuracy
of wheat ear counting. The specific structure is shown in Figure 3.
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Figure 3. Structure diagram of CA-MobileNetV3 block.

It can be seen from Figure 3 that the input wheat images are trained in different
directions and jointly learned to obtain mixed attention weights to activate input features.
The channel outputs of height and width are, respectively:

Th
c (h) =

1
W ∑

0≤i≤W
xc(h,i) (1)

Tw
c (w) =

1
H ∑

0≤j≤H
xc(j,w) (2)

where H and W are the height and width, respectively, xc is the channel feature map,
Th

c represents the cth channel with height h, Tw
c represents the cth channel with height of w.
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2.3. CARAFE Upsampling

CARAFE consists of two parts, Kernel Prediction Module and Content-aware Re-
assembly Module, and its structure is shown in Figure 4. In the Kernel Prediction Module,
firstly, the channel number of the input feature map of H ×W × C is compressed to Cx, the
multiple of upsampling is T, and the size after upsampling is Sk × Sk, and the number of
channels is changed from Cx becomes T2 × Sk

2 to realize content coding, and then expands
the channel features in the spatial dimension, and then performs Softmax normalization
on the obtained upsampling kernel, so that the weight sum of the convolution kernel is
1. In the Content-aware Reassembly Module, each position in the output feature map is
mapped to the input feature map, and the original feature map and the upsampled map are
subjected to a dot product operation to obtain a feature map with a size of TH × TW × C.
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Figure 4. Structure diagram of CARAFE upsampling.

The CARAFE upsampling module has the characteristics of small redundancy, strong
feature fusion ability, and fast operation speed, which can aggregate wheat ear feature
information in a large receptive field. In addition, this module can make full use of the
information of surrounding pixels to improve the expression ability of wheat ear features,
which will help to obtain higher quality wheat ear feature maps.

2.4. LWDNet Model

To reduce the storage capacity of the regression counting network model based on
the wheat ear density map, enhance the expression of the characteristic diversity and
complexity of mutually occluded wheat ears, and increase the feature response of micro-
wheat ears, a lightweight wheat ear density map regression counting network (LWDNet)
was used. The structure of LWDNet is shown in Figure 5. H represents Height, W represents
Width, and 3 represents the number of channels.

The LWDNet model is mainly divided into front network, end network, and regres-
sion counting network. CA-MobileNetV3 is the feature extraction network in the front
network, which contains 3× 3 convolution operation, 11-layer CA-MobileNetV3 block, and
1 × 1 convolution operation. It is used to extract the deep features of wheat ears. The
regression counting network includes CARAFE upsampling module and 3 continuous
convolution modules, which combine the applyColorMap function in OpenCV and the
color mapping algorithm to visualize the output wheat ear density map.
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Figure 5. Structure diagram of LWDNet network model.

The density map is denoted as p, which reflects the spatial distribution information of
wheat ears. The number of wheat ears N can be obtained by integrating the density values
in the density map. Its definition is shown in Formula (3), where x represents any position
of the density map and corresponds to the density value p(x).

N = ∑x∈p p(x) (3)

The specific parameters of the LWDNet model in this study are shown in Table 2.
Among them, Input represents the input feature matrix, Operator represents the operation
or module, Output represents the number of feature matrix channels finally output by
each Operator, CA represents collaborative attention mechanism, NL represents the type of
nonlinear activation function used, where HS stands for h-swish, RE stands for ReLU, S
stands for stride.

Table 2. Parameters of the LWDNet model.

Input Operator Output CA NL S

1024 × 1024 × 3 Conv2d, 3 × 3 3 - - 1
1024 × 1024 × 3 CA-MobileNetV3 16

√
RE 2

512 × 512 × 16 CA-MobileNetV3 24 - RE 2
256 × 256 × 24 CA-MobileNetV3 24 - RE 1
256 × 256 × 24 CA-MobileNetV3 40

√
HS 2

128 × 128 × 40 CA-MobileNetV3 40
√

HS 1
128 × 128 × 40 CA-MobileNetV3 40

√
HS 1

128 × 128 × 40 CA-MobileNetV3 48
√

HS 1
128 × 128 × 48 CA-MobileNetV3 48

√
HS 1

128 × 128 × 48 CA-MobileNetV3 96
√

HS 2
64 × 64 × 96 CA-MobileNetV3 96

√
HS 1

64 × 64 × 96 CA-MobileNetV3 96
√

HS 1
64 × 64 × 96 Conv2d, 1 × 1 512 - - 1
64 × 64 × 512 Upsample 512 - - -

128 × 128 × 512 Conv2d, 3 × 3 256 - - 1
128 × 128 × 256 Conv2d, 3 × 3 128 - - 1
128 × 128 × 128 Conv2d, 1 × 1 1 - - 1

Note: - indicates that the CA module is not included, and
√

indicates that the CA module is included.
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2.5. Regression Count of Wheat Ear Density Map Based on Lwdnet Model
2.5.1. Overall Technical Route

Figure 6 shows the technical route of this study. Firstly, the wheat images used as
the training set were manually annotated. Secondly, the constructed LWDNet model was
trained, and the optimal wheat ear counting model was obtained by optimizing parameters.
Finally, the model was tested. The predicted density map of wheat ears was obtained
through the LWDNet model. The predicted density map of wheat ears was obtained
through the LWDNet model, and the sum of the density values in the density map was
the predicted number of wheat ears, which reflected the approximate spatial location and
distribution of wheat ears. We also evaluated the model on the basis of the ground truth
and predicted ears.
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Figure 6. Overall technology roadmap.

2.5.2. Design of Loss Function

The loss function is generally used to estimate the difference between the predicted
value of the model and the ground truth from the density map. In complex scenes, the scale
of dense wheat ears varies, and it is difficult to select appropriate Gaussian checkpoint
annotations for smoothing, resulting in the generation of density maps of wheat fields
with additional errors. To obtain good generalization performance of the LWDNet model,
we constructed the loss function LTotal of LWDNet using the count loss LC, the optimal
transmission loss LOT , and the overall variation loss LTV . Among them, LTotal is used to
measure the total difference between the ground truth density map g and the predicted
density map p, and LOT and LTV are used to calculate the distribution difference between
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g and p. LC is used to supervise the relationship between the total number of wheat ears
and the total number of predictions, and its definition is shown in Equation (4).

LC = |P− G| (4)

Among them, P and G, respectively, represent the predicted number of wheat ears
and the actual number of wheat ears obtained by integrating and summing the density
values according to the density map of predicted p and ground truth g.

The optimal transmission loss LOT is defined as shown in Equation (5).

LOT =

〈
α∗,

p
‖p‖1

〉
+

〈
β∗,

g
‖g‖1

〉
(5)

where ||∗||1 represents the L1 norm of the vector, and α∗ and β∗ are the solutions based on
the Monge–Kantarovich Optimal Transport formulation.

The definition of the total loss function is shown in Formula (6):

LTV =
1
2
‖ p
‖p‖1

− g
‖g‖1

‖
1

(6)

The total loss function LTotal is the weighted sum of the above three losses, and to
ensure that the count loss LC and the total variation loss LTV have the same scale, multiply
the total change loss LTV by ‖g‖1.

LTotal = LC + λ1LOT + λ2‖g‖1LTV (7)

where λ1 and λ2 are adjustable hyperparameters used to balance the optimal transmission
loss LOT and the overall variation loss LTV . In this study, λ1 and λ2 are set to 0.1 and
0.01, respectively.

2.5.3. Generation of Ground Truth Density Maps

The density map regression method was used to obtain the number of wheat ears,
and the density map g of the ground truth of wheat ears was generated according to the
point labeling. On the marked wheat ear image, according to the position of the marked
wheat ear, the size of the wheat ear at the position is estimated, and the coverage area of the
wheat ear is obtained. Assuming that there is a wheat ear i(i = 1, 2, .., N) at the position of
pixel xi in the wheat image, the probability that the pixel point at position x on the density
map belongs to the wheat ear is represented by the impulse function δ(x− xi). Therefore,
the total probability value g(x) of the pixel at position xi belonging to the wheat ear in an
image with N wheat ear labeled points is expressed as:

g(x) =
N

∑
i=1

δ(x− xi) (8)

2.5.4. The Evaluation Index of The Model

To effectively appraise the proposed model, we used the mean absolute error (MAE)
and the root mean squared error (RMSE) are used, and the coefficient of determination
(R2). The formulas are as follows:

MAE =
1
N

n

∑
i=1

∣∣∣xGT
i − xP

i

∣∣∣ (9)

RMSE =

√√√√ 1
N

n

∑
i=1

∣∣xGT
i − xP

i

∣∣2 (10)
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R2 = 1− ∑N
i=1
(
xGT

i − xP
i
)

∑N
i=1
(
xGT

i − xP
i
) (11)

MAE is the average of the absolute values of all forecast deviations, which can avoid
the offset of positive and negative errors due to the calculation of the absolute values.
Therefore, MAE can directly reflect the accuracy of the wheat ear counting model, and
RMSE can better reflect the robustness of the wheat ear counting model. R2 represents the
degree of fit between the estimated value of ear count and the ground truth.

In addition, we also used the number of parameters (Parameter), floating point op-
erations (FLOPs), the Model Size, and FPS (Frames Per Second) to measure the counting
efficiency of our model.

3. Results
3.1. Model Training

In this study, all models were trained and tested on the same device, and the hardware
and software details of the device are shown in Table 3.

Table 3. Details of experimental hardware and software parameters.

Configuration Name Parameter

Operating system Windows 10 Professional 64-bit
Code execution Environment Python 3.7
Deep Learning Framework Pytorch 1.80

GPU model NVIDIA GeForce RTX 2080
Processor Intel Core i7-8700 CPU @ 3.20 GHz

The LWDNet model was trained and validated using the wheat dataset shown in
Table 1. The training set and validation set were used to build the LWDNet model.
In this study, the following initial parameters are used to train the LWDNet model:
Learning rate = 0.00001, Weight decay = 0.0001, Max Epoch = 5000, Batch size = 2.

When the Epoch reaches about 4000, the value of Loss gradually stabilizes, and the
corresponding MAE and RMSE also tend to be stable. Among them, when the Epoch
is 4845, when the value of Loss reaches the lowest value, that is, 0.40, the corresponding
MAE and RMSE also reach 0.32 and 0.53, respectively. The corresponding LWDNet model
is the optimal model, which will be used for subsequent testing.

3.2. Counting Results of Wheat Ears for Ground System

An example of counting results for wheat ears is shown in Figure 7. Among them,
Figure 7a,b showed the predicted ear density map and ear number of wheat images from
the GWHD and WEC datasets in the test set, respectively. The top row shows the RGB
image obtained from different platforms, the second row shows the ground truth density
map generated according to the point annotation, the third row represents the predicted
density map based on our model, and the fourth row represents the superimposed image
of the predicted density map and the original image.

As can be seen from Figure 7, the distribution of the wheat ear density map obtained
by our model is not much different from that of the ground truth density map. In addition,
from the predicted value in Figure 7, we also found that the predicted value is close to the
ground truth of wheat ears. Therefore, the model has a good counting effect on images
of different periods, different densities, and different regions, which verifies the strong
generalization ability of the model.

Moreover, to verify the wheat ear prediction results of the LWDNet model, three
datasets were used for testing, and relevant evaluations were made on the test results, as
shown in Table 4. From the results in Table 4, it was obvious that the counting effects of
LWDNet models tested with different datasets performed well. Among them, the model’s
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MAE were 1.36, 1.82, and 1.39; RMSE were 1.59, 2.57, and 1.71, respectively. In particu-
lar, the R2 of the LWDNet model reached 0.9672 in 16 images of the GWHD, including
7204 wheat ears. In the 50 images of the WEC, including 12,721 wheat ears, the LWDNet
model R2 reached 0.9787. In the 66 images of the WEC, 19,925 wheat ears were included.
The LWDNet model R2 achieved 0.9792.
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Table 4. Density regression count results for the test set.

Different Data Image Number MAE RMSE R2

WEC 50 1.36 1.59 0.9672
GWHD 16 1.82 2.57 0.9787

WEC + GWHD 66 1.39 1.71 0.9792

In addition, the MAE of the count results of the test set WEC constructed from images
collected in this region increased by 25.2% compared to the dataset GWHD with images



Agronomy 2023, 13, 1792 12 of 19

collected in different continents and increased by 2.2% compared to the mixed dataset
WEC + GWHD. The WEC test set results were better than the GWHD test set results,
probably because the GWHD dataset comes from four different continents, and the size,
shape, and color of the wheat ears were quite different. However, the wheat varieties in
the WEC dataset were relatively single, and different ears of wheat had a certain degree of
similarity, which led to the fact that the test effect on GWHD was inferior to that on WEC.

3.3. Counting Results of Wheat Ears for UAV Platform

To verify whether the LWDNet model can effectively count wheat ears in a dense
wheat scene and evaluate the application ability and potential promotion value of the
LWDNet model. The model was tested using the UAV-WC dataset, which was acquired
from the UAV platform. Twenty denser wheat images in UAV-WC were selected for testing,
and the total number of wheat ears in each image exceeded 200. The results of automatic
counting using our model are shown in Figure 8. In Figure 8, the first row represents the
RGB image of wheat aerially taken from the UAV platform, and the second to third rows
represent the density map of wheat ears, which are the ground truth density map generated
based on the point labeling and the predicted density using the model proposed in this
study. The fourth row represents the overlay of the two density maps mentioned above.
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From Figure 8, we found that the wheat ear counting model LWDNet had a better
effect. Although some tiny wheat ears were ignored in the wheat image, the predicted
density map could reflect the spatial information of most ears in the original wheat image,
and the predicted number of wheat ears was close to that of the ground truth.

4. Discussion
4.1. Comparison of Counting Results for Ground System Based on Different Models

To examine the counting performance of our model, self-built test set was used to
compare the results of typical density map counting models, including multi-column convo-
lutional neural network (MCNN) [23], congested scenes recognition network (CSRNet) [24],
distribution matching for crowd counting (DM-Count) [25]. Among them, the software
and hardware environment obtained by the inference speed indicator FPS: Windows10
operating system, Intel Core i7-8700 CPU @ 1.80 GHz, NVIDIA GeForce GTX 2080 GPU,
memory 8 G.

As can be seen from Table 5, R2 based on LWDNet is 83.8%, 76.1%, and 1.9% higher
than that of the MCNN, CSRNet, and DM-Count, respectively. The MAE based on LWDNet
is 80.4%, 76.6%, and 32.2% lower than that of MCNN, CSRNet, and DM-Count. The RMSE
based on LWDNet is 85.9%, 83%, and 35.2% lower than that of MCNN, CSRNet, and
DM-Count. Therefore, the experimental results showed that our model outperformed other
models in multiple evaluation indicators.

Table 5. Regression count results of wheat ear density for different models.

Method MAE RMSE R2

MCNN 7.09 12.09 0.1578
CSRNet 5.93 10.08 0.2327

DM-Count 2.05 2.64 0.9546
LWDNet 1.39 1.71 0.9726

In addition, it can be seen from Table 6 that the Parameter, Model Size, and FPS
of LWDNet proposed in this study reached 2.38 million, 9.24 MB, and 58.82, respec-
tively. Compared with CSRNet and DM-Count, LWDNet reduced by 13.88 million and
19.12 million for Parameter, 52.81 MB and 72.78 MB for Model Size, and increased by 49.9
and 49.56 for FPS. Further, the Parameter, Model Size, and FPS of MCNN and LWDNet
were close. However, the counting accuracy of LWDNet was significantly better than that
of MCNN. Table 6 shows a comparison of model evaluation metrics. In terms of model
size, the LWDNet model was 85.1% and 88.7% less than CSRNet and DM-Count. In terms
of parameters, the LWDNet model was 85.4% and 88.9% less than CSRNet and DM-Count.
The FLOPs of the LWDNet model were 92.3% and 92.2% lower than both CSRNet and DM-
Count. Moreover, the FPS of the LWDNet model was not the best. However, the density
estimation accuracy based on MCNN performed the worst among the four models [26]. In
conclusion, LWDNet outperformed the other three models in terms of counting accuracy
and efficiency.

Table 6. Comparison results of performance indicators of different counting models.

Method Parameter
(Million) Model Size (MB) FLOPs (G) FPS

MCNN 0.13 0.52 28.23 18.7
CSRNet 16.26 62.05 433.36 6.01

DM-Count 21.5 82.02 432.16 6.4
LWDNet 2.38 33.58 9.24 58.82

Figure 9 shows the test results on different datasets. It can be seen from Figure 10
that MCNN and CSRNet have low accuracy for wheat ear statistics in severe occlusion
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scenarios. It may be because the loss function of the density map engendered based on the
MCNN and CSRNet models is determined according to the Gaussian kernel. However, it
is difficult to determine the appropriate size of Gaussian kernel due to the different sizes
and shapes of ears in wheat images [27].
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4.2. Counting Results of High-Density Wheat Ears for UAV Platform

Actually, the density distribution and overlapping degree of wheat ears in the im-
ages acquired by different platforms are different, and each image contains about 50–100,
200–400, 3000–4000 wheat ears, respectively, as shown in Figures 7, 8 and 10. Therefore,
in order to verify the robustness of the proposed LWDNet model, four RGB images of
wheat obtained from drones in the UAV-WC dataset with high-density and large-scale
were used for testing, including the filling period and the maturity period, the result of
counting, as shown in Figure 10. From the results in Figure 10, it can be found that the
wheat ears with high-density distribution in the filling stage are estimated to be 4.2–5.6%
higher than the ground truth, and the estimated values of wheat ears in the mature stage
are 5.6% and 10.1% lower than the ground truth. The possible reason is that the wheat in
the filling period is growing vigorously, and the wheat ears and wheat leaves have similar
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characteristics, which may easily lead to false detection. However, the tips of wheat ears in
the mature stage are all vertical to the ground, resulting in missed detection.

Although the density map predicted by the LWDNet model still had a few ears that
were not completely consistent with the ground truth, the LWDNet model could effectively
distinguish the irrelevant background from wheat, and the predicted density map could
generally reflect the spatial distribution and count of wheat ears captured by drones at low
altitudes. The visualization of experimental results is beneficial to better understand how
well the model is performing. Through the test results, it can be found that the LWDNet
model proposed in this study can generate high-quality wheat ear density maps for wheat
ear images of different densities obtained by ground systems and UAV platforms, and the
error of density estimation is small.

In addition, when the UAV flies at a low altitude, the airflow generated by the rotation
of its blades will cause the leaf structure of the crop canopy to be unstable, which increases
the difficulty of phenotypic analysis and detection. Therefore, it is very important to choose
the best aerial photography altitude without affecting the image quality, aiming to obtain
as high-resolution images as possible. In addition, while providing high resolution, the
capture throughput of the UAV remote sensing system is controlled as much as possible to
improve flight work efficiency.

4.3. Existing Counting Challenges and Visualization of Existing Techniques

Recently, to accurately identify and count ears of wheat in field wheat images taken
under natural conditions, many researchers built different semantic segmentation models
using a deep learning framework. For example, Ma et al., built a network model based
on the combination of a deep convolutional neural network and a fully convolutional
network (FCN) and realized the counting of wheat ears through pixel-level semantic
segmentation [28]. Sadeghi-Tehran et al., built the model with simple linear iterative
clustering, which can successfully segment the wheat ears from the complex background,
thereby realizing the counting of wheat ears [29]. Wang et al., constructed the SSRNet
model to achieve field wheat ear segmentation, which provided a good foundation for
wheat ear counting under field conditions [30]. Misra et al., constructed SpikeSegNet to
segment and count spikes in wheat plants [31]. The above studies have shown that the
deep learning model can effectively segment wheat ears for accurate counting. However, it
is seriously affected by the occlusion of wheat ears and leaves, changes in the scale of wheat
ears, and the background interference of wheat fields. There are still many challenges to
achieving high accuracy in predicting wheat ear counts in a single image. We improved the
YOLOv4 model to better realize the counting of wheat ears by detecting wheat ears and
counting the number of detection frames [7]. However, in the face of wheat field scenes
of different scales, different densities, and different complex backgrounds, the robustness
of detection boxes is not as good as that of counting wheat ears based on density map
estimation. Moreover, in this study, we have improved the regression estimation method
based on the density map, which has good performance in the detection and counting
of wheat ears with severe occlusion and different scales, including ground scale and
UAV scale.

To better illustrate the superiority of the proposed model, the class activation map
(CAM) was used to verify the robustness of the proposed model in this study. Class
activation map (CAM) is an intuitive method in convolutional neural network (CNN)
interpretation, and it was usually generated by the last convolutional layer of a CNN,
which can highlight different regions of the target class in the input image. To verify the
contribution of CA-MobileNetV3 and CARAFE upsampling module to the count of wheat
ears, an object localization method (Grad-CAM++) [32] was used to construct important
regions of multiple objects on the image through gradients with convolutional layers for
feature visualization. In this study, LWDNet and DM-Count were selected for feature
visualization comparison, and the original wheat ear map, the wheat ear heat map of
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DM-Count and LWDNet, and the wheat ear visualization class heat activation map, were
displayed, respectively, as shown in Figure 11.
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In Figure 11b–e, the red and light blue regions in the feature map represented the
regions activated by the network of LWDNet, and the dark blue background showed the
inactivated parts by any network. Among them, the redder part indicated that the influence
of the network on the target recognition of ears of wheat was greater. In particular, in
Figure 11b,d, we found that DM-Count pays more attention to background information
than wheat ears. Obviously, the model is not enough to focus on the characteristics of small
target wheat ears. We noticed from Figure 11c,e that the LWDNet network model paid
more attention to the characteristics of wheat ears more finely and accurately. It could be
seen that the CA-MobileNetV3 and CARAFE upsampling module used in the proposed
LWDNet network model could better learn the characteristic information of wheat ears so
that the counting effect of the ear density map is good.

5. Conclusions

To achieve accurate and efficient counting of wheat ears from different platforms,
including ground systems and UAV platforms, a lightweight network model LWDNet is
proposed in this study. This structure not only introduces a collaborative attention mecha-
nism to improve the lightweight neural network but also uses the CARAFE upsampling
module to optimize the feature fusion layer, thereby overcoming the problems of dense
distribution of wheat ears at different scales, serious overlap, small size, and complex
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background information. The experimental results show that the model proposed in this
study realizes cross-platform wheat ear counting, which is of great significance for wheat
field monitoring and wheat yield estimation in different spatial scale application scenarios,
and also provides a reference for the estimation of other scenarios.
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