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Abstract: In the Czech Republic, soil moisture content during the growing season has been decreasing
over the past six decades, and drought events have become significantly more frequent. In 2003,
2015, 2018 and 2019, drought affected almost the entire country, with droughts in 2000, 2004, 2007,
2012, 2014 and 2017 having smaller extents but still severe intensities in some regions. The current
methods of visiting cadastral areas (approximately 13,000) to allocate compensation funds for the crop
yield losses caused by drought or aggregating the losses to district areas (approximately 1000 km2)
based on proxy data are both inappropriate. The former due to the required time and resources,
the later due to low resolution, which leads to many falsely negative and falsely positive results.
Therefore, the study presents a new method to combine ground survey, remotely sensed and model
data for determining crop yield losses. The study shows that it is possible to estimate them at the
cadastral area level in the Czech Republic and attribute those losses to drought. This can be done with
remotely sensed vegetation, water stress and soil moisture conditions with modeled soil moisture
anomalies coupled with near-real-time feedback from reporters and with crop status surveys. The
newly developed approach allowed the achievement of a proportion of falsely positive errors of less
than 10% (e.g., oat 2%, 8%; spring barley 4%, 3%; sugar beets 2%, 21%; and winter wheat 2%, 6% in
years 2017, resp. 2018) and allowed for cutting the loss assessment time from eight months in 2017 to
eight weeks in 2018.

Keywords: crop yield loss; drought; remote sensing; artificial neural network

1. Introduction

Drought has been a major factor affecting crop productivity globally, with high-
yielding regions such as the USA [1,2] and Europe [3,4] being no exceptions. The general
characteristics of the climate change pattern in Europe can be simplified into a wetting trend
in northern Europe and increasing aridity in the south. Anomalous years such as 2018 can
largely deviate from this general pattern. For instance, Moravec et al. [5] showed a “water
seesaw” pattern between the Mediterranean’s wetter-than-usual and warm conditions
and positive crop production anomalies, and Central and Northern Europe’s arid and
very warm conditions resulted in negative crop production anomalies across a number
of countries in 2018. This means that there is a need to pay attention not only to overall
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trends but, even more importantly, to extremes when designing robust adaptation measures.
This is especially true in Central Europe, where climate change projections [6,7], as well
as observed trends [8,9], indicate that droughts will tend to become more frequent and
more intensive.

Despite the fact that agriculture in Central Europe represents a seemingly small part
of the economy [10], it is nevertheless the dominant land use, with wheat, barley, winter
rapeseed, sugar beets and potatoes being the dominant crops [11]. Since 2000, 6 major
droughts within Central Europe have been reported, including the spring drought in 2000,
the well-known 2003 drought, 2 more regionally constrained events during 2006–2007 and
2011–2012 [12] and the 2015–2019 drought episode, which can be classified as a 500-year
drought [13]. This last five-year drought, particularly in 2015, 2017 and 2018, significantly
affected production across the region in terms of the yield deviations of three major field
crops, i.e., winter wheat, winter rapeseed and spring barley (Figure 1).

Figure 1. (a) Daily proportion of the Czech Republic (CZ) affected by drought intensity categories [14]
between 1 January 2015 and 31 December 2019; (b) yield deviations in NUTS4 regions for winter
wheat, spring barley and winter rapeseed during the droughts of 2017 and 2018, expressed as yield
anomalies [%] from the 2010–2014 mean.

The occurrence of a major agricultural drought has significant impacts on any agri-
cultural system. The prolonged drought episode of 2015–2019 included three seasons of
agricultural droughts that resulted in major crop yield losses. The compounded effect of
consecutive droughts in agriculture systems without any drought insurance has led to
profound economic problems across the agricultural sector. During 2015, 2017 and 2018,
the Ministry of Agriculture of the Czech Republic was confronted with the need to provide
farmers with financial subsidies known as “drought compensation” to support the viability
of the agricultural sector during years with adverse conditions. However, it has been
obvious that the common methods of yield reporting used for the statistical census are too
slow and have spatial resolutions that are too low (NUTS2, i.e., approximately 10,000 km2

per reporting region) to meet the challenge of providing accurate and spatially explicit
estimates and payouts.

In any agricultural drought event, a quick and reasonably accurate yield loss analysis
is essential for effectively alleviating socioeconomic drought impacts in the agricultural
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sector [15]. The quantification of drought impacts is usually based on (i) simple statistical
relationships between yields and ground-based agroclimatic indicators [16], (ii) remote
sensing data [17,18] or (iii) crop growth models combined with remotely sensed data [19,20].
While crop growth models may provide complex insights into processes (mostly in a
deterministic manner), these models are demanding in terms of their data requirements
and are difficult to handle when applied at large scales where many sources of uncertainty
are combined [21]. The recent advancements in machine learning provided an opportunity
to further analyze the first two approaches and/or their combination.

Quantifying drought and its impact on crops can take advantage of the responsive-
ness of yield to anomalies in soil moisture, evapotranspiration, spectral crop reflectance,
changes in fluorescence, or their combinations. Soil moisture availability to crops or its
anomalies with regard to normal conditions can be assessed through ground data-driven
systems, such as the Czech Drought Monitor, hereinafter called CzechDM [22,23], or the US
Drought Monitor [24], or through the use of remotely sensed soil moisture. Anomalies in
evapotranspiration based on land surface temperature remote sensing retrievals are often
used as another effective tool for capturing the physiological activities of crops [25–27].
The canopy status can also be assessed on the ground, either during a harvest or by using
qualified observers over the course of the season [27]. Conducting assessments over large
areas almost implicitly points toward the use of remote sensing approaches, e.g., using
microwave technology for soil moisture [28,29]. The spectral properties of certain plant
species have been used for crop condition monitoring [30] and yield estimation. Different
spectral bands derived from satellite imagery can be used together for the calculation
of vegetation indices. Vegetation indices such as the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI) are widely used in agriculture
due to their ability to track the evolution in crop green biomass and health [20,31]. Crop
yield estimation of corn [32,33], barley [34], soybeans [35,36], winter rapeseed [37], sugar
beets [38] and wheat [31,39] have frequently taken advantage of the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor onboard the Aqua and Terra satellites and,
more recently, of the Sentinel missions operated by the European Space Agency since 2015.

Following the 2015 season, which resulted in major impacts on crop production, a state-
of-the-art drought observation and agriculture impact collection system was established in
the Czech Republic [22,27]. In 2015, however, the crop loss was only assessed at the NUTS4
level (Figure 1b), resulting in palpable frustration on the side of the farming community,
as low spatial resolution led to many false positive and negative errors, especially at
the borders of pairs of regions with and without compensation. The newly established
approach with higher space resolution could then be tested during the events of 2017
and 2018.

This paper resulted from two successive drought seasons and aims to evaluate several
approaches for yield prediction based on remote sensing and machine learning and to
provide recommendations on how to effectively provide an independent objective source
of data concerning the impacts of droughts on crop yield losses. The key hypothesis
is that a machine learning approach based on artificial neural network (ANN) models
combining remotely sensed and ground-based data can be used to guide the determination
of crop yield losses up to the farm level in near-real time. The presented paper (i) describes
the data collected and methods used; (ii) introduces the nature of the 2017 and 2018
drought episodes, including their impacts; and follows with (iii) a description of the
applied approaches and the achieved results.

2. Materials and Methods

To estimate the impacts of the 2017 and 2018 droughts on yields, principally, the same
workflow was followed for both years (Figure 2).
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Figure 2. The workflow of the drought impact analysis of yield set for 2018. Artificial neural networks
combine predictors and yield data from samples to estimate crop yield losses for the whole cadastral
area level.

2.1. Data on Drought-Based Yield Losses

The basic administrative unit of the study was a so-called cadastral area. In total,
there are 13,091 cadastral areas in the Czech Republic, with a total area of 78,000 km2.
The average size of a cadastral area is thus approximately 6 km2 or 600 ha, and over 53%
of the whole area of the Czech Republic is classified as arable land (Figure 3a). Information
about arable land is open to the public in the Land Parcel Identification System (LPIS) [40].

Figure 3. Images of the areas of interest depicting (a) the extent of the arable land and grasslands;
(b) the annual mean precipitation; (c) the annual climatic water balance, i.e., the difference between
the precipitation and the reference evapotranspiration; and (d) the main cultivars for the period
from 1991–2020.
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Drought impacts on yields were assessed for 17 different crops in the years of 2017
and 2018 (Table 1 and Table 2, respectively). The drought impact data were not available
for all crops in both years, and the included field crops together with grasslands for hay
represented over 90% of the agricultural area of the Czech Republic. The two levels of yield
decline were considered, i.e., 30 and 50% compared to mean yield in previous five years
not counting the highest and lowest yield. When the threshold for the yield decline is being
reached at the farm/region, then the state is allowed to financially compensate affected
farms based on the national drought response plan notified by the European Commission.

Table 1. Overview of the 2017 drought impact data on yield obtained from the special questionnaire
and Czech Drought Monitor (CzechDM) surveys.

Crop
Cadastral Areas

Reported (Special
Questionnaire)

Usable Records
from the Special

Questionnaire [%]

Cadastral Areas
Reported

(CzechDM)

Cadastral Areas
with Yield Losses

from 30 to 50%

Cadastral Areas
with Yield Losses

over 50%

Grain maize 443 30.25 105 1104 88
Spring barley 843 30.96 116 947 17
Winter barley 636 24.06 116 423 4

Winter rapeseed 1165 37.25 99 1421 40
Winter wheat 1329 50.04 116 736 41

Table 2. Overview of the 2018 drought impact data obtained with respect to yield from the special
questionnaire and Czech Drought Monitor (CzechDM) surveys.

Crop
Cadastral Areas

Reported (Special
Questionnaire)

Usable Records
from the Special

Questionnaire [%]

Cadastral Areas
Reported

(CzechDM)

Cadastral Areas
with Yield Losses

from 30 to 50%

Cadastral Areas
with Yield Losses

Over 50%

Alfalfa 1015 57.93 130 2280 586
Clover 1401 49.89 133 3441 992

Grain maize 1243 32.66 297 4332 859
Grasslands 5022 74.07 330 6907 4142

Hops 113 59.29 10 131 42
Oat 1083 28.07 103 909 36

Poppy seeds 921 25.84 42 105 1030
Potatoes 584 44.18 160 1078 147

Silage maize 3139 49.57 300 2017 145
Spring barley 3694 37.28 336 1054 75
Spring wheat 1064 19.92 - 1063 42
Sugar beets 1315 37.11 69 1027 211
Sunflower 358 26.82 49 151 21

Triticale 929 25.51 - - -
Winter barley 2267 28.01 361 392 24

Winter rye 542 24.35 357 275 7
Winter wheat 6729 51.67 373 2051 186

In both years, two unique datasets were collected through an intensive data collection.
In 2017, drought impact data were collected using weekly questionnaire reports provided
by the national reporting network of CzechDM [27]. This database includes expected
yield loss information from more than 300 cadastral areas, including only those with at
least 3 reports for a given crop during the drought event. To supplement this long-term
weekly monitoring data, the Agrarian Chamber of the Czech Republic and the Agricultural
Association of the Czech Republic carried out a special drought impact survey. Both
institutions collected yield data during 2012–2017 at the cadastral area level through their
members using a unified survey form. The final database of reports contained information
about winter wheat (1329 reports), spring barley (842 reports), winter barley (636 reports),
corn (443 reports) and winter rapeseed (1165 reports). On average, 34.5% of the reports from
the special data collection process were used for our modeling purposes. The remaining
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reports failed to provide sufficiently long coverage of yield data for the given cadastral
areas (∼90%), or the data contained errors of various types (∼10%).

Based on the 2017 experience, a more thorough system was developed in 2018. As in
2017, the network of CzechDM reporters (3050 reports in total) was used together with the
specialized questionnaire in cooperation with the Agricultural Association of the Czech
Republic. Thanks to the effort of the major farmers’ associations and the Ministry of
Agriculture, the data collection process in 2018 had a much wider outreach and obtained
information at the cadastral area level for the 2013–2018 period from 7191 cadastral areas.
Of all the reports, 6202 cadastral areas were suitable for modeling based on data availability
and quality control. The remaining reports failed to include sufficiently long yield data or
reported incorrect yield values. Overall, 46.11% of the total number of 31,419 reports were
fit for the development of the model. The report with the highest yield loss was selected if
there were multiple reports for a given crop and cadastral area.

The cadastral area level yield data (in tons/ha) were screened for (i) missing yield
reports in the given year and the five preceding years; (ii) repeating values for multiple
cadastral areas, as some farms reported the same values across several cadastral areas
they manage; (iii) zeros instead of missing values; (iv) incorrect units; and (v) typing
errors. In case the report could not be corrected in collaboration with the reporting farm,
the reports were not considered. Only reports with a coverage of at least three out of five
years were considered.

The yield deviation (for each cadastral area and each crop) in a given year y was
calculated as

Dev(Yield, y) =
Yieldy

AVGi=y−1
i=y−5Yieldi

− 1, (1)

where Yieldi is yield in year i, we omitted members during years in which the yields were
not known and AVG denotes the average. This means that Dev(Yield, y) > 0 shows an
increase in yield with respect to the previous period and Dev(Yield, y) < 0 shows a decrease
in yield.

The CzechDM-based data have been active since 2014 and, thanks to collaborating
farmers, provides a continuous assessment of drought impact for selected crops. Unlike
the specialized surveys in 2017 and 2018, it contains only relative drought impacts on yield,
however, these are recorded over the entire season. The collaborating farmers have been
trained to provide every week of the growing season their estimation of the crop yield
reduction compared to the last three years. The survey includes the following categories:
no decrease, decreases of 0–10%, decreases of 10–30%, decreases of 30–40% and decreases
over 40%. These relative assessments of yield loss were found quite valuable and have
been included in the study. At least three reports from the onset of the drought episode had
to be provided for the reporting farm to be used in the study. Crop yield losses reported at
the time of the harvest were considered.

Each crop had a different number of cadastral areas with valid data from which the
Dev(Yield, y) was calculated. We called each such cadastral area a sample.

2.2. Yield Loss Predictors

On the other hand, we used predictors that were time averaged to a weekly resolution
and then spatially averaged to the arable land at the cadastral area level. Let Pri(w) define
the value of the predictor in year i and week w. Then, the deviation of the predictor for
year y (for each cadastral area) for the period from week w1 to week w2 was calculated as

Dev(Pr, y, w1, w2) =
∑w2

w=w1 Pry(w)

AVGi=y−1
i=y−5

(
∑w2

w=w1 Pri(w)
) − 1, (2)

where we omitted members during years for which yields were not known due to them
being matched with Dev(Yield, y).
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The set of predictors is listed in Table 3. The vegetation indices relied on ten-day filters
and used the maximum value for each grid cell to eliminate the view obstruction caused by
cloud cover. In total, eight remote sensing data predictors were used. The high density of
ground-based climate and precipitation stations was used to run the national soil moisture
model [14]. In total, 25 agrometeorological characteristics and characteristics based on
water balance model simulations were applied in the study.

Table 3. The list of indicators including their time steps and resolutions. The * indicators are based
on the remotely sensed data. Soil moisture model indicators apply the 1961–2010 reference period,
while for the remotely sensed data, the reference period is 2000–2016. A provider of all indicators
was intersucho.cz [23], other alternative providers are in the table.

Acronym of the
Indicator Description Time

Step
Spatial

Resolution
Data

Provider

AWD Soil water content anomaly from the reference period in mm for 0–100 cm soil
depth Daily 500 m

AWD1 Soil water content anomaly from the reference period in mm for 0–40 cm soil
depth Daily 500 m

AWP Drought intensity anomaly from the reference period for 0–100 cm soil depth Daily 500 m

AWP1 Drought intensity anomaly from the reference period for 0–40 cm soil depth Daily 500 m

AWR Relative soil moisture content as a share of the field capacity in % for 0–100 cm
soil depth Daily 500 m

AWR1 Relative soil moisture content as a share of the field capacity in % for 0–40 cm
soil depth Daily 500 m

AWV Soil moisture content in mm for 0–100 cm soil depth Daily 500 m

AWV1 Soil moisture content in mm for 0–40 cm soil depth Daily 500 m

DaysAwp_S2+ Number of days with AWP values of 2 or higher per season 500 m

DaysAwp_S3+ Number of days with AWP values of 3 or higher per season 500 m

DaysAwp_S4+ Number of days with AWP values of 4 or higher per season 500 m

DaysAwp1_S2+ Number of days with AWP1 values of 2 or higher per season 500 m

DaysAwp1_S3+ Number of days with AWP1 values of 3 or higher per season 500 m

DaysAwp1_S4+ Number of days with AWP1 values of 4 or higher per season 500 m

DaysAwr_30 Number of days with AWR values of 30 or lower per season 500 m

DaysAwr_50 Number of days with AWR values of 50 or lower per season 500 m

DaysAwr1_30 Number of days with AWR1 values of 30 or lower per season 500 m

DaysAwr1_50 Number of days with AWR1 values of 50 or lower per season 500 m

DaysHeatDrought
Number of days with AWR < 30% and concurrent heatwaves (periods with
average maximal temperature ≥ 30◦C and daily maximal temperature ≥ 30 ◦C
for 3+ days in row) per season

500 m

DaysTmax35 Number of days with maximal temperatures > 35◦C per season 500 m

ETo Reference evapotranspiration Daily 500 m

ETa/ETo Actual-to-reference evapotranspiration ratio Daily 500 m

P Daily precipitation in mm Daily 500 m

P-ETo
Sum of differences between the sum of daily precipitation and the sum of daily
reference evapotranspiration for April–June period Daily 500 m

T Daily average temperature in ◦C Daily 500 m

* ESI12WK 12-week accumulated evaporative stress index based on the ALEXI approach Weekly 3.5 km USDA/NASA

* ESI4WK 4-week accumulated evaporative stress index based on the ALEXI approach Weekly 3.5 km USDA/NASA

* EVI2 MODIS-derived 2-band enhanced vegetation index calculated from surface
reflectance bands Daily 5 km NASA

* EVI2PAAG EVI2 anomaly Weekly 5 km
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Table 3. Cont.

Acronym of the
Indicator Description Time

Step
Spatial

Resolution
Data

Provider

* NDVI MODIS-derived normalized difference vegetation index calculated from
surface reflectance bands Daily 5 km NASA

* NDVIPAAG NDVI anomaly Weekly 5 km

* SWI0–40 Soil moisture content in % for 0–40 cm soil depth Weekly 11 km Copernicus

* SWI0–100 Soil moisture content in % for 0–100 cm soil depth Weekly 11 km Copernicus

2.3. Aggregating the Results of Reports on the Cadastral Area

The crop type identification process was performed in cooperation with the State
Agricultural Intervention Fund on the tabular data for individual years containing crop
species, unique land parcel IDs, grower identification information and crop areas. For the
spatial delineation of land parcels, the geospatial data of the LPIS were used as the main
administrative units for agricultural land. The LPIS database, provided by the Czech
Ministry of Agriculture, is a publicly available data source with shapefile data and a set of
attribute information, including unique land parcel IDs [40]. As the next step, the tabular
crop type data were paired with the LPIS spatial dataset by the land parcel ID attribute in
the Environmental Systems Research Institute ArcGIS environment (Redlands, CA, USA),
and a final crop type geodatabase was produced for each year. In cases with land parcels
growing more than one crop species (approximately 20% of arable land), the prevailing
crop area was used to identify the main crop. As the final step, the land parcel data were
aggregated to calculate the total area of the crop types for each cadastral area.

2.4. Development of the Crop Yield Loss Model

To estimate crop yield losses, we used an artificial neural network (ANN). An ANN
is a dynamic structure that is used to find masked relations between input and output.
For each crop, we set the ANN individually (Table 4). We used a three-layer ANN archi-
tecture. The first layer was the input layer composed of the predictors, the second layer
was a hidden layer and the third layer was the response variable. In the determination
phase of the ANN, we wanted to find the optimal settings of the weights and thresholds of
individual neurons to satisfy the ANN-required operations. We set the number of neurons
in the first two layers by the number of samples, by the resilient propagation rule and by
expert practice. Then, we randomly split the samples into two parts: two-thirds for training
the ANN, one-third for validation. We selected suitable predictors (the neurons in the first
layer) according to the maximum of the average of the Spearman and Pearson correlation
coefficients between yield deviations and predictor deviations. Then, we trained the ANN,
starting with random weights. We measured the mean squared error. When the validation
error lines and those of the training part were similar, then the ANN was suitable. We had
to reduce the number of neurons when they differed. First, we tried to reduce the number
of neurons in the hidden layer. We also had to reduce the number of predictors when the
previous reduction was insufficient. In this way, the most suitable architecture for the ANN
was developed.

The next work phase focused on designing the ANN architecture. Because each ANN
performs better in different data subsets, an ensemble could reduce the impact of the
poorest performing ANNs (as well as the better ANNs). To obtain reliable outputs, we
used an ensemble of 50 different ANNs for a given architecture. They differed in terms of
dividing the samples into two parts and randomly initializing the weights of the ANNs.
From 50 ANNs, we selected 30 as the best ANNs according to a coefficient of determination
validation of the modeled and real sample values. The output of the model was considered
the average of the whole ensemble of the best 30 ANN outputs.
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Table 4. Settings of the artificial neural networks (ANNs) for the selected crops in 2018, including the
number of samples given by the number of different cadastral areas, the hierarchy of the three-level
ANN and the predictors. A predictor value equal to 1/0 indicades that predictor was/was not used
in the ANN. The complete list is given in Appendix A Tables A1 and A2.

Crop Winter
Wheat

Spring
Barley Grain Maize Sugar Beets Potatoes Poppy Seeds

Samples for the ANN 3839 1711 700 556 417 277

ANN hierarchy 20-20-1 20-15-1 15-7-1 15-6-1 10-7-1 9-5-1

Alt 1 1 0 1 0 0
AWD 0 0 0 0 0 1
AWD1 1 1 1 0 1 0
AWP1 1 1 1 0 0 0
AWR1 1 1 1 1 1 0

DaysAWP_S2+ 1 1 1 0 0 0
DaysAWP1_S3+ 1 1 1 0 0 0

DaysAWR_50 1 1 0 1 1 1
DaysAWR1_30 1 1 0 1 1 0

DaysHeatDrought 1 1 1 1 1 1
DaysTmax35 0 1 0 1 0 0

ESI12WK 1 1 1 1 0 0
ESI4WK 1 1 1 1 1 1

ETo 0 1 1 1 1 1
ETa/ETo 1 1 0 0 0 0

EVI2 1 1 1 0 0 0
EVI2PAAG 1 1 1 1 0 0

Lat 1 1 0 1 0 0
NDVI 1 1 0 0 0 1

NDVIPAAG 1 1 0 0 0 1
P-ETo 1 1 1 1 1 1

SWI0-40 1 0 1 1 1 0
SWI0-100 0 0 1 1 0 0

T 1 1 1 1 1 1

To evaluate models, it was appropriate to define the following two errors (the overall
error and partial error). Let Nwrong be the number of all incorrectly estimated cadastral
areas, N be the total number of cadastral areas and N f alsecomp be the number of cadas-
tral areas that are estimated to receive compensation and actually not eligible to receive
compensation; then,

Erroroverall [%] = 100
Nwrong

N
, (3)

Errorpartial [%] = 100
N f alsecomp

Nwrong
. (4)

3. Results
3.1. Droughts of 2017 and 2018

The drought of 2017 started toward the end of 2016, had two peaks prior to the
main growing season (in February and early April of 2017) and then resumed toward
the end of May through early August (Figure 1a). The intensity of this drought and
impact on vegetation conditions were most pronounced in the southeast and southwest
of the country (Figure 4). These two distinct regions were also affected by significant
yield reductions (Figure 4). This created almost a “dipole” situation, with the south of the
country facing significant yield losses, while the northern regions were much less affected.
In contrast, Figures 1 and 4 document that the drought in 2018 was more ubiquitous,
starting in February 2018 and continuing until April 2019 (Figures 1 and 4). The effect of this
drought on vegetation conditions was profound across the entire country (Figures 1 and 4),
with the northern half being affected earlier and more intensively than the southern half;
however, the drought of 2017 persisted when the drought of 2018 started. Yield losses were
widespread in both years (Figure 1). In particular, 2018 exhibited extreme hydroclimatic
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conditions across various locations of the European continent [41], yet the impacts were
characterized by considerable spatial [41] and temporal [42] heterogeneity.

Figure 4. The intensities of the droughts and relative vegetation conditions (based on EVI2) provided
for April, June and August of 2017 and 2018.

3.2. Predictors of Crop Loss

Based on correlations, remote sensing data predictors of yield, especially EVI2, per-
formed best. Additionally, predictors based on temperature and data from the SoilClim
model, especially AWR1, showed considerable skill in predicting yield losses. The most fre-
quently used predictors in 2017 were AWR1, EVI2 and EVI2PAAG, with NDVI, NDVIPAAG,
AWR and AWV also being used quite often. In 2018, the most frequently used predictors
were ESI4WK, T and AWR1, with Awd1, DaysAwr_50, DaysAwr1_30, ETr, EVI2, EVI2PAAG,
Lat, P-ETo and SWI0−40 also frequently considered.

Since there were significantly fewer samples in 2017 than in 2018, it was necessary
to use fewer predictors in the first layer of the ANN. The highest correlations among the
individual predictors with yields in 2017 were approximately 0.5 for grain corn and sugar
beets in cases involving multiple predictors. For example, for spring barley and winter rape-
seed, the maximum correlations were only slightly higher than 0.2. In 2018, the maximum
correlations among the crops that were monitored in both years were on average lower
than those in 2017. The highest was 0.5 for sunflowers, followed by approximately 0.4 for
rye, winter wheat, oats, corn with grain and sugar beets. Other crops had correlations of
approximately 0.3, and hops even had correlations below 0.2.

Virtually all crop yield loss models used both ground-based and remotely sensed
predictors, except for the potato model, for which satellite data did not improve the
model skill.

3.3. Estimating Yield Losses

The results indicate that it was, in general, easier to determine cadastral areas that
were entitled to obtain compensation in 2017 than in 2018. This can be clearly seen in the
Taylor diagram (Figure 5), where symbols for all crops for 2017 indicate higher correlations
and lower errors than their 2018 counterparts. The main reason for this result is the high
spatial variability of the drought in 2018 across the whole Czech Republic in June and
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August. Similarly, the vegetation condition was worse over the whole Czech Republic in
2018 (Figure 4). In the crucial months of the growing season in 2017, there were especially
persistent effects in the southwestern part of the Czech Republic. This result agrees with
the poor vegetation status across the region.
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Figure 5. The spatial Taylor diagram of predicted versus observed crop yield losses in 2017 and 2018.
The model results for 2017 were more successful, as evidenced by their higher correlations and lower
root mean square errors. Solid symbols indicate major crops that were common to both years.

The sample data produced “lighter” tails than the modeled estimates (Figure 6).
The only crop yield loss model with a high share of false positive results was the sugar beet
model in 2018. The peak of the density in 2018 was left of the −0.3 threshold, meaning
that many estimates fell into the compensation category (30% yield loss). At the same time,
most of the observed and modeled yield anomalies were below zero (Figure 6); therefore,
in most cadastral areas, negative yield anomalies were recorded.

The models underestimated the number of cadastral areas with low and high yield
anomalies (Figure 6). This, in general, corresponded to the intended use of the model, as it
meant that the models underestimated the scale of the yield decreases by 30 or even 50%,
and therefore false positive results did not occur as frequently.

The main aim of the yield loss model was to select as many cadastral areas as possible
so we could be almost sure that the yield decrease was at least 30% or even 50% to satisfy
the conditions for obtaining compensation. Thus, false positive results, i.e., mistakenly
categorizing the cadastral area into the category with a high yield loss, are undesirable.
On the other hand, false negative results are less of an issue, as an alternative (but more
administratively demanding) method is available for claiming compensation.

Given this condition, the overall error (Equation (3)) and partial error (Equation (4)),
which are ratios of boxes in Figure 7, were defined. To compare the errors among different
crops and seasons, it is not possible to track only one of these errors. At the very least,
we must look at both of these errors simultaneously because each of them alone does not
give a sufficient picture of the situation. Moreover, the percentage of cadastral areas with
genuine claims for compensation is also relevant information.

If we look at errors (Figure 7a), the model in 2017 for sugar beets came out best, with
an overall error of 7% and a partial error of 23%, which corresponds to higher correlations
of the input predictors to crop yield losses and low percentage of cadastral areas eligible
for compensation. Winter wheat had an overall error of 12% and a partial error of 16%.
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Furthermore, the results obtained for winter barley and oats were very similar (overall
errors of 14% and 16%, partial errors of 16% and 12%). Then, winter rapeseed (an overall
error of 15%, a partial error of 23%) and spring barley performed even worse, with an overall
error of 22% and a partial error of 17%; these two crops also had the lowest correlations
with the input predictors. The poorest performing model in 2017 was for grain maize (an
overall error of 13%, a partial error of 50%).
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Figure 6. Kernel density estimation series with the bin size equal to 0.1 times the deviations of the
estimated and observed yields of oats, spring barley, sugar beets and winter wheat in 2017 and 2018.
The vertical dashed lines depict thresholds of two degrees of compensation (30 and 50% yield loss).

For 2018, more models were developed but with different accuracies compared to
2017, with the model performance primarily being affected by the extent of the data used
for model development. For example, poppy seeds produced the smallest overall error
among all processed crops with 17%, but its partial error was 100%. This is because the
correlations of predictors to crop yield losses were quite low, the percentage of cadastral
areas eligible for compensation were very high and we had the second-smallest number
of samples for poppy seeds. Similarly, for hops, which had the fewest samples and the
lowest correlations, the overall error was only 18%, but the partial error was 86%. On the
other hand, we considered the best three models to be those of winter barley, winter rye
and spring barley, which all had an overall error of approximately 25% and a partial error
of less than 12%. Acceptable results could be found for winter wheat, silage maize, spring
wheat, oats and sunflowers.

An overview of the errors for each crop is presented in Figure 7b. Compared to
Figure 7a, we see that performing weighting at the cadastral area level did not provide
any significant improvement of the model predictions. However, in both years, the area
weighting actually reduced the part corresponding to the compensation claim for all crops
but winter wheat.
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Figure 7. Scaled bar plots for both 2017 and 2018 showing the distributions of the successes of the
model for all crops and the total distribution over all crops together (a) as a percentage of the number
of cadastral areas; (b) as the percentage of the area of cadastral areas and (c) as a comparison between
the distribution of the success of the model for 2018 with two different calibration datasets from 2017
and 2018. The results show that only the calibration dataset from the current year should be used.
Overall error is the dark-grey box. False positive results are in the hatched area in the dark-grey box,
and the partial error is the ratio of hatched dark-grey to full dark grey area.

Figure 7c compares the errors obtained using the 2017 calibration for the 2018 estimates
with the correct 2018 calibration for the 2018 estimates. The models with the 2017 calibration
failed, and the overall error increased to 78–88% for the three selected crops: grain maize,
spring barley and winter wheat. Thus, we did not correctly detect almost any of the
cadastral areas entitled to compensation. For spring barley and winter wheat, the models
were total failures, as they induced large partial errors when using the 2017 calibration.
This implies that modeling cannot replace yield loss data collection at the cadastral area
level, but can only supplement ongoing survey efforts—effectively serving to improve
spatial detail in the loss assessment. With this approach, loss models for each crop will
need to be recalibrated for each drought-affected season, as a generally calibrated crop loss
model would be highly inaccurate.

For a spatial overview of the estimated situation compared to special questionnaire
web survey outputs in the cadaster area level for both years 2017 and 2018, maps for
individual crops were produced, and a spatial comparison between years 2017 and 2018
of reported crop yield losses over 30% where the highest loss over all crops for a given
cadastral area was considered (Figure 8). Drought in 2017 had an impact on this general
crop yield loss over 30% by copying of the annual water balance pattern (Figure 3c).
Drought in 2018 affected mostly the complement of the growing area compared to in 2017
(Figure 4). Therefore, the crop yield losses over 30% were over the whole growing area of
the Czech Republic in 2018.



Agronomy 2023, 13, 1669 14 of 21

Figure 8. Final maps of the cadastral areas established for allocating grants in 2017 for winter wheat,
spring barley and winter rapeseed and in 2018 for grasslands, sugar beets, potatoes and poppy seeds.
There is a comparison between the upper maps based on the special questionnaire web survey and
the lower maps based on estimations. In the bottom right, there are total yield losses reported by the
special questionnaire web survey (without the Czech Drought Monitor) as greater than 30% for the
years 2017 and 2018.

3.4. Applicability of the Method

The response to the 2015 drought involved compensation that was aggregated at the
district (NUTS4) level. This leads to considerable discontent within the farming community,
as it resulted in many false positive results (and payments), while many impacted farmers
were left without any support [43] (Václav Hlaváček, Ph.D.—vice president of the Czech
Agrarian Chamber).

The compensation method introduced in 2017 provided a considerable improvement
in spatial resolution, from 78 districts to 13,078 cadastral areas, but required a far more
detailed yield loss survey. This required significantly more time, and as a result, it took
almost four months to prepare the data and an additional eight months to obtain approval
from the European Commission and the national government and proceed with the drought
payment compensation process.

However, once the method was set up and tested in 2017, the subsequent drought
of 2018 was evaluated much faster. The government approved compensation for the
2018 drought in August 2018, crop yield loss data collection was conducted immediately
afterward and, in mid-September, the cadastral area-based data were transferred to the
Ministry of Agriculture and to the agency responsible for the compensation process, cutting
the required time period from a year to two months. Therefore, the study also shows that
this time lag can be easily avoided if proper methodologies and data are ready to be used
on short notice, as was the case with the Czech drought monitoring system in early 2018.

4. Discussion

The presented ANN-based models exhibit practical applicability that enables the
allocation of drought compensation funds immediately after harvest without a large delay.
This is facilitated through the combination of predictors derived from both satellite imagery
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and ground observations. ANNs allow for using a variety of predictors. At the same time,
the approach allows for collecting and combining yield loss data from cadastral areas with
different sources, i.e., not only from the emergency data collection process performed after
a drought episode. It is very useful to include a gradually growing network of agricultural
respondents that regularly report on drought status. It is therefore very appropriate to use
such a yield loss model as the first criterion for compensation. Nevertheless, true losses
should still be quantified in case the ANN method fails to determine whether the given
cadastral area is eligible for compensation.

In both 2017 and 2018, the compensation decisions were not directly based on the
outputs of the above-described models. For the farm to qualify for support, there were
two options: a farmer could prove their damage (a) through certified yield reporting,
which is administratively complicated both on the side of the farmer and at the Ministry of
Agriculture or (b) through a simplified scheme. The simplified scheme clustered cadastral
areas into three groups based on the above-described crop-specific models: (i) yield losses
of more than 50%; (ii) yield losses between 50 and 30%; and (iii) yield losses less than 30%.
The cadastral areas in the first two groups were eligible for compensation if the cadastral
areas suffered from severe agricultural drought for at least three weeks during the key part
of the growing season of the given crop and the vegetation condition (Figure 4) was worse
than normal during at least part of the growing season of the studied crop, or if they had
reliable continuous reports of at least 30% yield decreases from the certified reporter. In this
way, only cadastral areas affected by drought and those with very likely drought-induced
crop yield losses exceeding 30% were considered for compensation.

We have shown that the most efficient way to improve the model would be to improve
the quality of the yield and crop loss data. The results confirm that the quality of the
collected data is paramount for the tightness of the model fit with the given set of predictors
and the overall robustness of the final model. The most efficient way to improve the
model accuracy is to collect more accurate yield loss data, as more predictors can then be
included in the first ANN layer. Another factor affecting the results was the distribution
of the number of cadastral areas with compensation claims in the sample relative to their
unknown true distribution. In general, the yield losses reported from the web survey
showed relatively poor accuracy, which is shown by the difference between the submitted
number of reports and the total number of report contacts.

Clearly, the motivation of survey respondents is much higher in drought-affected
cadastral areas than in unaffected areas. This leads to difficulties in constructing any objec-
tive modeling framework that is dependent on high-quality inputs for model calibration.
Other problems came from the web survey in cases when the participants filled in their
damage values per farm, which represented multiple cadastral areas. An improved sample
size can rapidly increase the prediction quality achieved for crop yields [44]. The random
forest model for the prediction of wheat, barley and winter rapeseed had a prediction
accuracy at a root mean square error (RMSE) level ranging from 360 to 420 kg/ha, and it
improved greatly as the sample size increased. The data collection process can be aided by
using the methods of Kang and Özdoğan [45], which would allow the county-level yield
statistics to be downscaled through the Markov Chain Monte Carlo algorithm on leaf area
index time series from Landsat. This approach could also provide an independent method
for verifying crop loss data if properly used. Thus, we see the potential for improving
the calculations if we were able to obtain more continuous questionnaires and ensure that
they were being completed more accurately. A larger number of continuous reports would
ensure that the same percentage distribution of cadastral areas between those eligible for
compensation and those not eligible for compensation is used in the samples and outputs
of the models, thus approximating the actual distribution. The method of calculating the
estimates is already so complex that adding further conditions would probably not lead to
a significant improvement.

Apart from focusing on collecting more representative and higher-quality yield data,
further enlargement of the model inputs could be considered. For example, Guan et al. [46]
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combined multiple sources of remotely sensed satellite data for large-scale crop monitoring
and yield estimation for the U.S. Corn Belt. They included the EVI and ALEXI-based evap-
otranspiration, as in our study, but also estimated gross primary production based on the
Global Ozone Monitoring Experiment-2 solar-induced fluorescence (SIF-GPP), QuikSCAT
Ku-band radar backscatter and AMSR-E X-band passive microwave vegetation optical
depth and used the partial least squares regression method for dimensionality reduction.
The results of a validation conducted on the United States Department of Agriculture
county-level crop yield statistics showed that most of the satellite-derived metrics shared
common information related to above-ground crop biomass. However, Ku-band backscat-
ter, thermal-based ALEXI-ET and X-band vegetation optical depth provide unique infor-
mation on environmental stresses that improve the overall skill of crop yield prediction.
Moreover, the additional use of ancillary climate data (e.g., precipitation and temperature)
improved the model performance, in part because the crop reproduction stage related
to the harvest index is highly sensitive to environmental stresses, but they are not fully
captured by satellite data. The results presented for the Czech Republic have confirmed
these findings as well.

Clearly, improvement would also be possible to achieve by using predictors with
higher resolutions than those of MODIS, such as Landsat [47] or Sentinel-2 [48] imagery.
As noted by Anderson et al. [49], a robust interpretation of the remote sensing results as
a key crop yield estimator requires the integration of crop growth and pest models, which
should correctly reflect air temperature and moisture differences in critical growing stages.
An illustration of the potential improvement achieved by using higher-spatial-resolution
satellite data comes from the work of Gaso et al. [50]. The authors estimated the crop yield
of winter wheat by incorporating time series of vegetation indices from Landsat 7 and 8.
The result of the simple regression method achieved an RMSE of 966 kg/ha, and the pixel
size of the data (30 m) enabled the identification of within-field areas with yield potential.
Gaso et al. [51] incorporated leaf area index retrieval from Sentinel-2 into their crop model
to predict the within-field crop yield of soybeans. The model accuracy presented by the
relative RMSE ranged from 28 to 51%, which confirmed the capability of the methodology
to represent observed spatial yield patterns. Similarly, Hunt et al. [52] combined freely
available Sentinel-2 data with environmental data (e.g., meteorological, topographical
and soil moisture data) to estimate the within-field wheat yield variability in a single year
via a random forest regression model. The validation conducted on harvester yield data
achieved an RMSE of 660 kg/ha under the presence of within-field crop yield variability
at a 10 m pixel size. Although ultra-high resolution images have been shown to improve
estimates [53], they are generally only applicable to smaller areas and may not be feasible
for use across the entire Czech Republic.

In our study, ANNs were applied, but further improvements could be achieved
through the use of other machine learning algorithms and statistical methods for crop
yield prediction. The most commonly used models are random forests, neural networks,
linear regression models and gradient boosting trees, but convolutional neural networks,
long short-term memory models and deep neural networks are also the most preferred
deep learning algorithms [54]. The parallel use of multiple methods could lead to the
development of multimodel ensembles. Franz et al. [55] combined the spatial information
derived from vegetation conditions, soil water content and topography via the random
forest method to predict maize crop yield at the field level. For their study, the historical
yield maps were the best predictors, followed by crop condition, soil water content and
elevation data, depending on the site.

A somewhat controversial point could involve shifting the threshold of the estimation
boundary that decides the category to which we classify a given cadastral area—does
it/does it not qualify for compensation. The data show that it is possible to slightly increase
the overall model error while simultaneously reducing the partial error. This would lead
to more farmers having to prove potential compensation claims in an administratively
burdening way, but we would reduce the number of situations in which farmers who
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should not have been entitled to compensation actually receive it; i.e., we would reduce an
important partial error.

All of the above options should be considered when developing a methodology for
evaluating the upcoming drought events that are predicted to affect large portions of the
agricultural area, not only in the Czech Republic [7] but also globally [6].

5. Conclusions

This study demonstrates the potential of machine learning in combination with remote
sensing and ground observation data to assess yield declines during a year with a severe
drought. The results indicate that it is necessary to evaluate each such year separately,
and for each dry year, it is necessary to obtain a new calibration set and tune the model
to the event, as we did for 2017 and 2018. We have shown that the declines vary by
crop depending on the course of the growing season. ANN-based models have great
potential for practical applications, such as enabling the government to allocate drought
compensation immediately after a harvest without a large time lag. It is therefore very
appropriate to use such a yield loss model as a first criterion for allocating compensation.
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Appendix A

Table A1. The settings of the artificial neural networks (ANNs) for all crops in 2017, including the
number of samples given by the number of different cadastral areas, the three-level ANN hierarchy
and the predictors. A predictor value equal to 1/0 indicades that predictor was/was not used in
the ANN.

Crop Grain
Maize Oats Spring

Barley
Sugar
Beets

Winter
Barley

Winter
Rapeseed

Winter
Wheat

Samples for the ANN 231 59 368 114 262 528 799

ANN hierarchy 7-5-1 3-3-1 10-5-1 5-3-1 7-5-1 10-9-1 15-10-1

AWD1 0 0 0 0 0 0 1
AWR 1 0 1 0 1 1 1

AWR1 1 1 1 1 1 1 1
AWV 1 0 1 0 1 1 1
AWV1 0 0 1 0 0 1 1
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Table A1. Cont.

Crop Grain
Maize Oats Spring

Barley
Sugar
Beets

Winter
Barley

Winter
Rapeseed

Winter
Wheat

daysAWP_S4+ 0 0 1 0 0 1 1
daysAWP1_S2+ 0 0 0 0 0 0 1
daysAWP1_S4+ 0 0 1 0 0 1 1
daysAWR1_30 0 0 0 0 0 0 1

EVI2 1 1 1 1 1 1 1
EVI2PAAG 1 1 1 1 1 1 1

NDVI 1 0 1 1 1 1 1
NDVIPAAG 1 0 1 1 1 1 1

P 0 0 0 0 0 0 1
T 0 0 0 0 0 0 1

Table A2. The settings of the artificial neural networks (ANNs) used for all crops in 2018, including
the number of samples given by the number of different cadastral areas, the three-level ANN hierarchy
and the predictors. A predictor value equal to 1/0 indicades that predictor was/was not used in
the ANN.
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Alt 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1
AWD 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
AWD1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1
AWP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AWP1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1
AWR 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

AWR1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1
daysAwp_S2+ 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1
daysAwp_S3+ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

daysAwp1_S2+ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
daysAwp1_S3+ 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0

daysAwr_50 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1
daysAwr1_30 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1
daysAwr1_50 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

daysHeatDrought 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1
daysTmax35 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0

ESI12WK 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1
ESI4WK 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

ETo 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0
ETa/ETo 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1

EVI2 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1
EVI2PAAG 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1

Lat 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1
NDVI 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1

NDVIPAAG 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1
P 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

P-ETo 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1
SWI0-40 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1
SWI0-100 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0

T 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
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45. Kang, Y.; Özdoğan, M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sens.
Environ. 2019, 228, 144–163. [CrossRef]

46. Guan, K.; Wu, J.; Kimball, J.S.; Anderson, M.C.; Frolking, S.; Li, B.; Hain, C.R.; Lobell, D.B. The shared and unique values of
optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. Remote Sens. Environ. 2017,
199, 333–349. [CrossRef]

47. Doraiswamy, P.C.; Hatfield, J.L.; Jackson, T.J.; Akhmedov, B.; Prueger, J.; Stern, A. Crop condition and yield simulations using
Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [CrossRef]

48. Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution
SAR and optical image time series. Remote Sens. 2016, 8, 362. [CrossRef]

49. Anderson, M.C.; Neale, C.M.U.; Li, F.; Norman, J.M.; Kustas, W.P.; Jayanthi, H.; Chavez, J.O.S.E. Upscaling ground observations
of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens.
Environ. 2004, 92, 447–464. [CrossRef]

50. Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression
or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [CrossRef]

http://dx.doi.org/10.3354/cr01411
http://dx.doi.org/10.1016/j.agwat.2021.107064
http://dx.doi.org/10.1016/j.agrformet.2022.108808
http://dx.doi.org/10.1016/S0034-4257(99)00036-X
http://dx.doi.org/10.1007/s10113-020-01710-w
http://dx.doi.org/10.1016/j.rse.2010.01.010
http://dx.doi.org/10.1080/01431169608949138
http://dx.doi.org/10.1016/j.rse.2003.10.021
http://dx.doi.org/10.1016/j.rse.2005.09.010
http://dx.doi.org/10.1016/j.rse.2005.03.015
http://dx.doi.org/10.1016/j.rse.2013.10.027
http://dx.doi.org/10.1016/j.jag.2016.05.010
http://dx.doi.org/10.1080/01431160410001698870
http://dx.doi.org/10.1080/01431160110107653
https://eagri.cz/public/app/lpisext/lpis/verejny2/plpis/
https://eagri.cz/public/app/lpisext/lpis/verejny2/plpis/
http://dx.doi.org/10.1088/1748-9326/abe828
http://dx.doi.org/10.1029/2021EF002394
http://dx.doi.org/10.1007/s11119-018-09628-4
http://dx.doi.org/10.1016/j.rse.2019.04.005
http://dx.doi.org/10.1016/j.rse.2017.06.043
http://dx.doi.org/10.1016/j.rse.2004.05.017
http://dx.doi.org/10.3390/rs8050362
http://dx.doi.org/10.1016/j.rse.2004.03.019
http://dx.doi.org/10.1016/j.compag.2019.02.026


Agronomy 2023, 13, 1669 21 of 21

51. Gaso, D.V.; de Wit, A.; Berger, A.G.; Kooistra, L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area
index with a crop growth model. Agric. For. Meteorol. 2021, 308, 108553. [CrossRef]

52. Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowl, C.S. High resolution wheat yield mapping using Sentinel-2.
Remote Sens. Environ. 2019, 233, 111410. [CrossRef]

53. Sharifi, A. Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images. Remote
Sens. Lett. 2018, 9, 559–568. [CrossRef]

54. Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review.
Comput. Electron. Agric. 2020, 177, 105709. [CrossRef]

55. Franz, T.E.; Pokal, S.; Gibson, J.P.; Zhou, Y.; Gholizadeh, H.; Tenorio, F.A.; Rudnick, D.; Heeren, D.; McCabe, M.; Ziliani, M.;
et al. The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield. Field Crop. Res. 2020,
252, 107788. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.agrformet.2021.108553
http://dx.doi.org/10.1016/j.rse.2019.111410
http://dx.doi.org/10.1080/2150704X.2018.1452058
http://dx.doi.org/10.1016/j.compag.2020.105709
http://dx.doi.org/10.1016/j.fcr.2020.107788

	Introduction
	Materials and Methods
	Data on Drought-Based Yield Losses
	Yield Loss Predictors
	Aggregating the Results of Reports on the Cadastral Area
	Development of the Crop Yield Loss Model

	Results
	Droughts of 2017 and 2018
	Predictors of Crop Loss
	Estimating Yield Losses
	Applicability of the Method

	Discussion
	Conclusions
	Appendix A
	References

