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Abstract: Fencing enclosures play an important role in improving ecological quality. There is a direct
impact of implementing fencing enclosures on the change in soil quality. The soil quality index was
used to examine the effects of fencing enclosures for different years (7 and 11 years) on soil quality
in Biru County of Qinghai–Tibet Plateau, China. The fencing enclosure significantly increased soil
water content, non-capillary porosity, soil organic matter, total nitrogen, total phosphorus, and alkali-
hydrolyzable nitrogen, and significantly decreased the soil bulk density. The soil quality gradually
improved as the fencing enclosure time length increased, probably due to the increase of vegetation
coverage and biomass under the fencing enclosure. The minimum data set was composed of soil
organic matter, capillary porosity, total potassium, and non-capillary porosity. The minimum data
set was significantly correlated with the total data set and could replace the total data set for soil
quality evaluation in the fencing enclosure project area. In summary, our study reflects that fencing
enclosures significantly improve soil quality, and the implementation of the fencing enclosure project
will effectively curb land degradation in Biru County of the Qinghai–Tibet Plateau, China.

Keywords: fencing enclosure; soil quality index; principal component analysis; minimum data set;
Qinghai–Tibet Plateau

1. Introduction

The Qinghai–Tibet Plateau is a significant ecological security barrier for both China
and Asia due to its special geographical location and sensitivity to climate change [1]. In
recent years, the Qinghai–Tibet Plateau has been facing serious ecological degradation
issues due to frequent human activity and climate change. The principal effects of ecological
degradation on the Qinghai–Tibet Plateau include soil erosion, reduction of biodiversity,
accelerated thawing of the permafrost layer, and so on. These problems destroy the
ecological structure and function of the Qinghai–Tibet Plateau and threaten the stability
of the ecosystem. Additionally, the problem of ecological degradation seriously affects
people’s life and production and has become an important area of concern in the ecological
protection and restoration in the Qinghai–Tibet Plateau [2–5].

Ecological engineering can change the ecological security and the ecological carrying
capacity. Additionally, ecological engineering can lead to changes in community structure,
ecosystem service functions, and land use types in the implementation area [6–8]. With
the further implementation of the ecological project in the Qinghai–Tibet Plateau, relevant
research on the effect of fencing enclosures on the ecosystem has gradually deepened.
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Currently, some studies focus on the changes in community structure and vegetation dy-
namics after the implementation of the fencing enclosure. For example, Liu et al. (2021)
compared and analyzed the differences in plant community structure between fencing
enclosure and grazing areas in Sanjiangyuan grassland, and then evaluated the impact of
fencing enclosure on grassland restoration. Their results showed that fencing enclosure
significantly increased above-ground biomass [9]. Furthermore, Zhang et al. (2022) studied
the changes in grassland plant communities during the fencing enclosure period and the
regrazing period for nearly 20 consecutive years, and the results demonstrated that the
height, coverage, and above-ground biomass of grassland vegetation increased rapidly dur-
ing the three-year fencing period [10]. Some scholars focused on the research of soil quality
in the Qinghai–Tibet Plateau. For example, Wan et al. (2021) studied the effects of different
utilization methods on soil particle composition and fractal characteristics of four alpine
grasslands (grazing, fencing enclosure, fencing enclosure + replanting, and undisturbed) in
the Qinghai–Tibet Plateau [11]. Zhou et al. (2018) conducted a comprehensive assessment
of the quality of degraded alpine grasslands on the southeastern edge of the Qinghai–Tibet
Plateau, and their results showed that after 7 years of restoration by fencing enclosure, the
soil physicochemical properties within the fence were improved [12].

Fencing enclosures are one of the main methods to renovate degraded ecosystems.
They are also easy to operate, quick to take effect, and cost-efficient. Fencing enclosures
are used to restore the ecosystem by prohibiting grazing to prevent human activities such
as livestock foraging and trampling. They can promote ecosystem succession and restore
ecosystem stability [13,14]. Additionally, the enclosures significantly improve soil physico-
chemical properties, water content, soil organic carbon, nitrogen, and phosphorus [15–17];
above- and below-ground biomass; productivity; species richness, evenness and com-
plexity; soil microbial diversity, and ecosystem structure and function [18–22]. However,
their effectiveness is influenced by the ecosystem types, the degree of degradation, the
fencing enclosure method, and the time length [23,24]. Some studies have shown that
fencing enclosures may have a negative impact on the food chain, the ecosystem web, and
soil enzyme activity with increasing fencing enclosure time length [25–28]. However, the
effects of fencing enclosure time length on soil quality have rarely been reported, espe-
cially in the severely degraded grasslands. The hypothesis of this study is that the fencing
enclosure can significantly improve soil quality, and the improvement is related to the
implementation years.

Soil degradation is a serious menace to mankind’s survival and economic development
in society [29–32]. Land use is the most common, direct, and profound factor influencing
soil quality. It can result in degradation phenomena of soil nutrient degradation, soil
erosion, and land desertification [33,34]. Soil quality is a sensitive indication, reflecting
the soil management changes and soil recovery ability from degradation [35]. The soil
quality index (SQI) is a vital tool to assess the changes in soil quality [36–39]. It is very
important that various soil properties are integrated into an overall indicator for assessing
soil quality [40,41]. Larson and Pierce (1991) raised the idea that a minimum data set
(MDS) was a good method by selecting the most representative soil properties to reflect the
responses of soil quality to the different management practices [42].

With the implementation of ecological engineering in the Qinghai–Tibet Plateau, stud-
ies exploring the impact of fencing enclosures on the ecosystem structure and function,
vegetation dynamics, and soil physicochemical properties have gradually increased. How-
ever, little research has focused on the effects of fencing enclosure on soil quality in the
Qinghai–Tibet Plateau based on MDS. Taking the results of the preexisting research, we in-
vestigated the effects of fencing enclosures on soil quality based on MDS in Biru County of
the Qinghai–Tibet Plateau, China. We aimed to investigate the following: (1) How fencing
enclosure affects soil physical and chemical properties. (2) How the effect of the fencing
enclosure on soil quality is assessed by using the SQI. (3) Whether the MDS can replace the
total data set (TDS) to assess soil quality. Overall, our study could provide the scientific
basis for the implementation of fencing enclosures in the Qinghai–Tibet Plateau, China.
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2. Materials and Methods
2.1. Study Area

The study area is located in Biru County of the Qinghai–Tibet Plateau between the
Nyingchi Tanggula and Tanggula Mountains (31◦28′40.26′′ N, 93◦40′52.68′′ E). The terrain
is dominated by low hills with high mountain valleys and surrounded by icy mountains
and snow-capped peaks, with an average elevation of about 4500 m. The annual average
temperature is 2.9 ◦C, and the annual average rainfall is 580–650 mm. The main species
in the study area include Kobresia pygmaea C. B. Clarke, Microula sikkimensis (C. B. Clarke)
Hemsl., Potentilla chinensis Ser., and Leontopodium leontopodioides (Willd.) Beauverd. The
grassland was used for grazing, and the main animals involved were Bos mutus and some
species of endemic sheep.

2.2. Soil Sampling and Analysis

In July 2021, a 20 m × 20 m site was selected for each of the three conditions, including
natural grassland (Control), a fencing enclosure for 7 years (FE7), and a fencing enclosure
for 11 years (FE11). FE7 and FE11 were established in 2014 and 2010, respectively, by
fencing a previous natural grassland. The fences were plugged into a soil depth of 0.5–1 m
and the terrain of the fencing enclosure area was flat. The detailed information for each
sample site is listed in Table 1. Three 3 m × 3 m plots were randomly chosen in the control,
FE7 and FE11, respectively. Additionally, three soil samples of 0–10 cm, 10–20 cm, and
20–30 cm were randomly collected in each plot and brought back to the laboratory to
determine the soil’s physicochemical properties. To investigate the vegetation indicators,
nine 1 m × 1 m quadrats were randomly chosen in the control, FE7 and FE11 conditions.
Then, the vegetation coverage and abundance were observed by a combination of pho-
tographic methods: First, the sample photos were obtained using a camera. Following
this, the vegetation image elements were extracted by supervised classification using the
ERDAS IMAGINE 2013 software. Finally, the proportion of vegetation image elements was
calculated using ArcMap10.2, which represented the coverage of the sample square [43].

Table 1. Vegetation and soil characteristics of different fencing enclosure times in Biru County of
Qinghai–Tibet Plateau, China (sampling in July 2021).

Ecological
Engineering Longitude Latitude

Vegetation
Abundance
(Number)

Vegetation
Coverage

(%)
Soil Type

Soil Texture (%)

Clay Silt Sand

Control 93.1484◦ E 31.6649◦ N 1000 35 cambisols 4.5 56.8 38.7
FE7 93.1477◦ E 31.6656◦ N 2000 80 cambisols 5.9 62.3 31.8

FE11 93.1483◦ E 31.6663◦ N 6800 90 cambisols 5.1 61.7 33.2

The cutting ring method was used to determine the soil bulk density (BD), capillary
porosity (CP), and non-capillary porosity (NCP) [44]. The soil water content (SWC) was
determined by the gravimetric method [45]. Furthermore, the potassium dichromate
method was used to determine the soil organic matter (SOM) [46]. The Kjeldahl method
was also used to determine the total nitrogen (TN) [47]. The alkali fusion-Mo-Sb anti-
spectrophotometric method was used to determine the total phosphorus (TP) [48]. Finally,
the total potassium (TK) was measured with the method of sodium hydroxide fusion [49],
and the alkali N-proliferation method was used to measure the alkali-hydrolyzable nitrogen
(AN) [50].

2.3. Methods of Soil Quality Assessment
2.3.1. Determination of the MDS

The specific method for constructing the MDS is as follows: (1) We use principal
component analysis (PCA) to analyze the raw data of soil properties. PCA is one of
the most widely used algorithms for data dimensionality reduction and was used to
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analyze the raw data of soil properties in this study. According to the results of PCA, we
retrieve information on the eigenvalues of PCs, the factor load value, the explanation, and
the indicator communalities. The principal components (PCs) with eigenvalues ≥1 are
extracted. (2) The highest load value factor and indicators within 90% of the highest load
value in every principal component (PC) are classified into the MDS. (3) The correlation
analysis of indicators under the same PC in MDS is taken as follows: If the indicators are
highly correlated (R > 0.5), the indicator with the highest norm value is retained; if not, all
indicators are retained. (4) If an indicator appears in both PCs in the MDS, it is assigned to
the set of PCs with the lower load value [51,52]. Norm, also known as the modulus vector,
is a length indicator of the modulus vector in a multidimensional space. With a longer
length, the indicator will have a larger combined load value on all PCs. The formula is

Nik =

√
∑k

1

(
Uik

2·λk

)
(1)

where Nik is the combined load value of the ith variable on the first k PCs with eigenvalues
≥1. Uik is the load value of the ith variable on the kth PC, reflecting the importance of the
ith variable in the k PC. λk is the kth PC eigenvalue.

2.3.2. Soil Quality Index

Because the units of each soil index are not consistent, the values of every index of
the determined MDS are normalized to a dimensionless value of 0–1 by dequantizing the
evaluation index score function [53–55]. The formula is

Si =
1

1 +
(

X
X0

)−2.5 (2)

where Si is the liner score of the indicator, and 1 is the maximum value of the function. X is
the indicator value. X0 is the average value of each site indicator. Lastly, −2.5 is the slope
of the function.

The weight of an indicator is the ratio of the variance of the indicator to the sum of the
variances of all participating indicators [56,57]. The formula is

Wi =
Ci

∑n
i=1 Ci

(3)

where Wi is the weight of the indicator. Ci is the variance of the indicator. n is the number
of indicators for the MDS.

Based on the above steps, the soil quality index (SQI) is calculated [39]. The formula is

SQI = ∑N
I=1 Wi·Si (4)

where SQI is the soil quality index. Wi is the weight of the ith indicator. Si is the standard
score of the ith indicator. N is the number of participating indicators in each data set.

2.4. Statistical Analysis

We used the SPSS 27 software to perform the statistical analyses. A one-way ANOVA
followed by Duncan’s post hoc test was applied to test the effects of fencing enclosure on
SWC, BD, CP, NCP, SOM, TN, TP, TK, and AN. Additionally, using a two-way ANOVA,
we analyzed the effects of fencing enclosure and soil depth and their interaction on the
soil’s physical and chemical properties above. Principal component analysis (PCA) and
correlation analysis were used to screen soil properties to construct the MDS.
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3. Results
3.1. Effects of Fencing Enclosure on Soil Properties

The fencing enclosure time length significantly increased SWC (p < 0.001, Figure 1a
and Table 2), and FE11 significantly increased SWC in the 0–10 cm range, while FE7 and
FE11 significantly decreased SWC in the 20–30 cm range (p < 0.05, Figure 1a). Additionally,
the fencing enclosure time length significantly affected NCP in the soil depth ranges of
0–10 cm and 20–30 cm (p < 0.05, Figure 1d). FE11 also significantly decreased BD in the
0–10 cm range (p < 0.05, Figure 1b). Additionally, there were significant interactions of
fencing enclosure and soil depth on SWC and NCP (p < 0.05, Figure 1a,d and Table 2).
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Figure 1. (a) The soil water content (SWC), (b) soil bulk density (BD), (c) capillary porosity (CP), and
(d) non-capillary porosity (NCP) in different fencing enclosure times and different soil depths in Biru
County of Qinghai–Tibet Plateau, China. Values indicate means ± standard error (n = 3). Different
letters above the boxes of the same soil depth indicate significant differences (p < 0.05) according to
Duncan’s post hoc test.

Table 2. F-values of the fencing enclosure time (FET), soil depth (SD), and the interaction effects on
the soil properties in Biru County of Qinghai–Tibet Plateau, China.

SWC BD CP NCP SOM TN TP TK AN SQI

FET 20.612 *** 2.091 1.788 0.445 2.028 0.476 7.206 ** 3.868 * 23,578 *** 0.939
SD 2.139 0.342 0.067 1.665 9.994 *** 12.294 *** 4.733 * 0.897 5798 *** 11.423 ***

FET × SD 3.648 * 1.872 1.187 13.677 *** 4.905 ** 7.878 *** 1.265 0.299 1525 *** 8.509 ***

*, **, and *** represent significance at p < 0.05, p < 0.01, and p < 0.001, respectively.

Fencing enclosure time length significantly increased TP and AN (p < 0.05, Figure 2c,e
and Table 2). Soil depth significantly affected SOM, TN, TP, and AN (p < 0.05, Figure 2a–c,e
and Table 2), and significant interactions of fencing enclosure and soil depth on SOM, TN
and AN were also observed (p < 0.01, Table 2). Additionally, FE11 significantly increased
the SOM and TN in the 10–20 cm soil depth range (p < 0.05, Figure 2a).
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Figure 2. (a) The soil organic matter (SOM), (b) total nitrogen content (TN), (c) total phosphorus
content (TP), (d) total potassium content (TK), and (e) alkali-hydrolyzable nitrogen (AN) in different
fencing enclosure times and different soil depths in Biru County of Qinghai–Tibet Plateau, China.
Values indicate means ± standard error (n = 3). Different letters above the boxes of the same soil
depth indicate significant differences (p < 0.05) according to Duncan’s post hoc test.

3.2. Soil Quality Assessment
3.2.1. Establishment of the Minimum Data Set

The eigenvalues of the four PCs were more than one and the indicators of these four
PCs explained 80.127% of the overall results (Table 3). The results showed that the MDS
could replace the total data set (TDS) to assess the soil quality of the different fencing
enclosure time lengths. Four PCs could explain more than 80% of the variation in SWC,
CP, NCP, and TN, and more than 70% of the variation in BD, TK, and AN. The indicator
assigned to the MDS alternative in PC1 was SOM, with a factor load value of 0.486; the
indicator assigned to the MDS alternative in PC2 was CP, with a factor load value of 0.542;
the indicator assigned to the MDS alternative in PC3 was TK, with a factor load value of
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0.581; and, lastly, the indicator assigned to the MDS alternative in PC4 was NCP, with a
factor load value of 0.542. Correlation analysis was used to study the relationships between
the alternative indicators (Table 4). Finally, CP, NCP, SOM, and TK were determined as the
important properties for the integrated evaluation of soil quality based on the MDS.

Table 3. Different principal components of different soil properties based on PCA in Biru County of
Qinghai–Tibet Plateau, China.

Soil Properties
Principal Components

Communalities Group
1 2 3 4

Soil water content (%) 0.148 0.281 −0.201 0.132 0.815
Soil bulk density (g/cm3) −0.173 0.216 0.202 −0.455 0.775

Capillary porosity (%) −0.033 0.542 0.162 0.002 0.877 2
Non-capillary porosity (%) −0.18 0.303 0.044 0.542 0.822 4

Soil organic matter (%) 0.486 −0.113 −0.094 −0.005 0.92 1
Total nitrogen (%) 0.401 0.092 0.195 −0.097 0.863

Total phosphorus (%) 0.158 −0.192 0.279 0.062 0.648
Total potassium (%) −0.018 0.181 0.581 −0.112 0.782 3

Alkali-hydrolyzable nitrogen (mg/kg) −0.071 −0.038 0.266 0.322 0.709
Eigenvalues 2.49 2.085 1.411 1.224
Explanation 27.668 23.172 15.682 13.605

Explained variation 27.668 50.84 66.522 80.127

Table 4. Pearson correlation coefficients observed between different soil properties of soil water
content (SWC), soil bulk density (BD), capillary porosity (CP), non–capillary porosity (NCP), soil
organic matter (SOM), total nitrogen content (TN), total phosphorus content (TP), total potassium
content (TK) and alkali–hydrolyzable nitrogen (AN) in Biru County of Qinghai–Tibet Plateau, China.

SWC BD CP NCP SOM TN TP TK AN

SWC 1
SBD −0.117 1
CP 0.605 ** 0.23 1

NCP 0.211 −0.266 0.186 1
SOM 0.434 * −0.297 0.122 −0.089 1
TN 0.277 −0.055 0.354 −0.04 0.774 ** 1
TP −0.276 −0.237 −0.359 0.059 0.136 0.181 1
TK −0.234 0.04 0.053 −0.028 −0.072 0.195 0.398 * 1
AN −0.451 * −0.345 * −0.218 0.3 −0.079 0 0.362 * 0.292 1

* and ** represent significance at p < 0.05 and p < 0.01, respectively.

3.2.2. The Weights of the Indicators

The communalities of CP, NCP, SOM, and TK were 0.877, 0.822, 0.92, and 0.782,
respectively (Table 5), and the weights of the four indicators, calculated according to
Formula (3), were 0.2579, 0.2417, 0.2705, and 0.2299, respectively (Table 5).

Table 5. Communalities and weights of the soil properties of capillary porosity (CP), non-capillary
porosity (NCP), soil organic matter (SOM), and total potassium (TK) in minimum data set (MDS) in
Biru County of Qinghai–Tibet Plateau, China.

Soil Properties Communalities Weights

Capillary porosity (%) 0.877 0.2579
Non-capillary porosity (%) 0.822 0.2417

Soil organic matter (%) 0.92 0.2705
Total potassium (%) 0.782 0.2299
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3.2.3. Comprehensive Assessment of Soil Quality

In the 0–10 cm soil depth range, FE7 and FE11 significantly increased SQI, and the
average SQI was 0.512 in FE7 and 0.524 in FE11, which respectively increased by 29.2%
and 32.1% compared to the average SQI of 0.396 in the control (Figure 3). This observation
showed that the implementation of fencing enclosures can indeed improve the soil environ-
ment and soil quality in the 0–10 cm range. In the 20–30 cm range, the SQI was 0.449 in FE7
and 0.382 in FE11, while the SQI was 0.496 in control. FE7 and FE11 significantly decreased
the SQI (p < 0.05). Soil depth significantly affected SQI (p < 0.001, Table 2), and a significant
interaction of fencing enclosure and soil depth on SQI was observed (p < 0.001, Table 2).
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(p < 0.05) according to Duncan’s post hoc test.

Soil quality changed with the vegetation coverage under fencing enclosures (Figure 4).
The SQI of each index in MDS in the low-coverage area was observed to be in the order of
CP > SOM > NCP > TK, and the SQI of each index in MDS in the high-coverage area was
observed to be in the order of SOM > CP > NCP > TK. This indicated that soil quality in the
low-coverage area was influenced mainly by CP, while soil quality in the high-coverage
area was influenced mainly by SOM.

The percentage contributions of the soil properties to the SQI were similar in control,
FE7, and FE11 (Figure 5). The contribution of SOM increased with the implementation
years, and the range of values was 0.252–0.271, with a mean value of 0.259. The range of
values of the contribution of CP was 0.239–0.281, with a mean value of 0.264; the range of
values of the contribution of NCP was 0.233–0.254, with a mean value of 0.241; and the
range of values of the contribution of TK was 0.224–0.253, with a mean value of 0.236.

To study the limiting factors of the SQI, the scores of soil quality properties at different
soil depths for the different fencing enclosure time lengths were plotted as radar maps
(Figure 6). The closer the crossing point is to the center of the radar, the stronger the
limitation of the indicator to the SQI. The SQI was mainly influenced by the SOM in the
0–10 cm soil depth range in FE7 and the NCP in the 0–10 cm soil depth range in FE11, and
other score values of each indicator were similar in FE7 and FE11.
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3.3. Verification of the MDS

In order to guarantee the rationality and reliability of the MDS index selection, the
rationality of the MDS assessment index system was verified, which is an essential part
of the soil evaluation process [58]. In the TDS, the SQI had a minimum value of 0.3399, a
maximum value of 0.6133, and a mean value of 0.4798. In the MDS, the same values are
0.3680, 0.6256, and 0.4843, respectively. The correlation between the TDS and the MDS was
significant (Figure 7), indicating that the MDS evaluation system has a good representation
and can represent the TDS to assess the soil quality in the study area.
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4. Discussion
4.1. The Minimum Data Set

The SQI can be used to assess the impact of land use and management methods
on soil quality because of its flexibility and manageability [31]. The construction of the
MDS is an easy way to select and evaluate SQI. On the one hand, the MDS selects the
most representative indicators from a large number of original soil properties as a way
to reduce data redundancy. On the other hand, by analyzing the correlation between
the commonality and characteristics of every indicator, the weight of each indicator can
be generated and used to determine it’s importance. It can avoid human interference in
the soil quality assessment process and reduce subjectivity. In this study, a total of nine
potential properties were selected in the process of assessing soil quality. Several studies
summarized that the soil quality evaluation indicators were frequently addressed during
the construction of the MDS, and found that SOM was the most frequently addressed
indicator. SOM is important in soil function as it is strongly related to processes, such as
mineral transformation, microbial activity, and nitrogen cycling. Therefore, SOM is always
included in the construction of the MDS in most of the soil quality evaluations, which
coincides with our findings [59,60].

4.2. Soil Quality Index Analysis

As the ecosystem degrades, the loss of vegetation protection on the land surface leads
to the loss of nutrients from the topsoil, which, in turn, reduces the soil quality. In this study,
the contribution of SOM to SQI increased with the increasing vegetation coverage. This may
be because SOM mainly comes from the residual secretions of plants and microorganisms,
and the improvement in vegetation cover and apoptosis after the implementation of the
fencing enclosure has caused an increase in the conversion of SOM [61]. SOM is important
to soil fertility, aggregate stability, and nutrient effectiveness, and is an essential indicator
reflecting soil function [62,63]. The increase in SOM after the implementation of the fencing
enclosure indicates that the soil quality has improved, which in turn indicates that the
influence of the fencing enclosure is positive. The quality of soil structure affects the
operation of soil functions, including root growth, nutrient cycling, soil productivity, and
biological activity [64,65]. In this study, the MDS included CP and NCP, indicating that the
implementation of fencing enclosures had resulted in a change in soil structure, and this
change is positive. This may be because, compared to the control area with low vegetation
coverage, the vegetation coverage increases, the root activity in the project area increases,
microbial activity is more frequent, the soil is no longer compacted, and the soil structure is
better and more permeable. TK was mainly influenced by mineral types, and the role of TK
was highlighted in the soil quality evaluation in low vegetation coverage, probably due to
the reduced vegetation cover and accelerated ground weathering [66,67].

In the 0–10 cm range, the SQI significantly increased with the implementation years,
indicating that implementing fencing enclosures could improve the soil quality in the
surface soil, and the improvement effect was related to the fencing enclosure time. In terms
of soil depth, the SQI of FE11 showed a trend to increase and then decrease with increasing
soil depth. Conversely, the SQI of FE7 showed a decreasing tendency with increasing soil
depth. Additionally, the SQI decreased significantly in the 20–30 cm depth range, which
was different from the tendency in the surface soil. This observation may be due to the fact
that the engineering area evolves for a longer period, with higher ecosystem stability, richer
vegetation coverage and litter, and higher decomposition efficiency of microorganisms,
enriching the surface nutrients. Furthermore, plant roots in the surface soil continue to
absorb nutrients from the surface layer, resulting in less and less nutrients being able to
migrate downward. The nutrient content decreased with depth, thus showing a decreasing
tendency of SQI with the increase of soil depth [68,69].
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4.3. Verification of the Minimum Data Set

The rationality of the MDS index selection will affect the precision of soil quality
assessment, and, therefore, verification of the MDS is essential when assessing soil quality.
In the research reported by Zhang et al. (2022), the R2 was approximately 0.50 [70], which
indicated that the MDS could be used as a representation of TDS to evaluate soil quality.
Liu et al. (2018) found an R2 of 0.895 [71], indicating that the MDS used to evaluate the SQI
is reasonable in the Qinghai–Tibet Plateau. Our study verified the correlation between the
TDS and the MDS and found that R2 was close to 0.86, and thus they were significantly
correlated. This observation indicates that the properties filtered by the MDS can well take
the place of the TDS to assess soil quality in this research.

4.4. The Impact of the Fencing Enclosure on Soil Properties

Fencing enclosure has influenced the soil physicochemical properties in the Biru
County. The impact degree varies with the implementation years of the fencing enclosure
and the depth of the soil layer. The improvement in soil water content was not significant
in FE7 in the 0–20 cm soil depth range, while the improvement in soil water content
was significant in FE11 in the same 0–20 cm range. The important influencing factor for
these changes could be vegetation. Soil water content is determined by the combination
of precipitation infiltration, water redistribution, water evaporation, and vegetation use,
in which vegetation is an important part of the process [72]. Many studies have shown
that vegetation roots are one of the factors affecting soil water content and that the two
are closely related. The water consumed by plants will change with the heterogeneity of
vegetation root distribution in the soil, and these changes will further lead to a certain
regularity of soil water content and its distribution [73]. The soil organic matter content
increased after the implementation of the fencing enclosure. This may be because soil
organic matter mainly comes from the residue secretion of plants and microorganisms.
The vegetation coverage and litter increased after implementing the fencing enclosure,
resulting in an increase in the transformation of soil organic matter [61]. Overall, the
improvement in the soil organic matter content in the 0–20 cm range was more obvious.
This may be due to the vegetation coverage and litter in the soil surface layer being richer
and microbial decomposition being more efficient, leading to an enrichment of nutrients at
the surface [69]. In the 0–10 cm range, fencing enclosures increased the NCP and decreased
the BD. A possible explanation for the increase in NCP and decrease in BD is that with the
increase in vegetation coverage, the root activity in the project area increases, microbial
activity is more frequent, the soil is no longer compacted, and the soil structure is more
permeable. The distributions of TN were similar to SOM in different soil layers. A possible
reason for the tendency might be that TN and SOM have a certain correlation (p < 0.01).
FE7 significantly increased the AN. The reason for the increase in AN may be that the AN
content depends on the soil organic matter content and the degree of maturation of the soil,
and the soil with high organic matter content tends to maintain high levels of AN [74].

In the control plots, from 2010 to 2021, the species composition of the grassland was
the same, and mainly included Gentiana straminea Maxim., Potentilla chinensis Ser. and
Bryophyta, reflecting that the control plots from 2010 to 2021 are in degradation status
and the degradation gradient is media-degradation [75]. After implementing the fencing
enclosure, the species composition has gradually changed, especially the appearance of
Kobresia pygmaea C. B. Clarke. Some studies found that Kobresia pygmaea C. B. Clarke could
be used as a characterization of grassland degradation [76,77]. In FE11, an increasing
proportion of Kobresia pygmaea C. B. Clarke was observed, indicating that the fencing
grassland is gradually becoming healthy and the level of degradation is reducing.

5. Conclusions

This study analyzed the effect of the different fencing enclosure time lengths on soil
quality in the Biru County of Qinghai–Tibet Plateau, China. Fencing enclosures improved
the soil properties of SWC, NCP, SOM, TN, TP, and AN, and decreased BD, reflecting that
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fencing enclosure can improve soil quality. The improvements in soil quality caused by the
fencing enclosure project gradually increased as the fencing enclosure time length increased
in the surface soil. The SQI in the fencing enclosure area showed a certain regularity with
the increase of soil depth, and the order of contributions of each soil index to the SQI was
SOM > CP > NCP > TK. Additionally, the correlation between the MDS and the TDS was
significant, and the constructed MDS could replace the TDS to complete the assessment
of the soil quality of the fencing enclosure project. Collectively, our study verified the
simplicity and accuracy of the constructed MDS, and the construction of the MDS should
be focused on similar ecological engineering soil quality evaluation work in the future.
Overall, this study provides ideas for further ecological engineering studies and acts as a
scientific reference for related policy management in the Qinghai–Tibet Plateau, China.
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