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Abstract: Heavy metals and metalloids (HMs) are environmental pollutants, most notably cadmium,
lead, arsenic, mercury, and chromium. When HMs accumulate to toxic levels in agricultural soils,
these non-biodegradable elements adversely affect crop health and productivity. The toxicity of
HMs on crops depends upon factors including crop type, growth condition, and developmental
stage; nature of toxicity of the specific elements involved; soil physical and chemical properties;
occurrence and bioavailability of HM ions in the soil solution; and soil rhizosphere chemistry. HMs
can disrupt the normal structure and function of cellular components and impede various metabolic
and developmental processes. This review evaluates: (1) HM contamination in arable lands through
agricultural practices, particularly due to chemical fertilizers, pesticides, livestock manures and
compost, sewage-sludge-based biosolids, and irrigation; (2) factors affecting the bioavailability
of HM elements in the soil solution, and their absorption, translocation, and bioaccumulation
in crop plants; (3) mechanisms by which HM elements directly interfere with the physiological,
biochemical, and molecular processes in plants, with particular emphasis on the generation of
oxidative stress, the inhibition of photosynthetic phosphorylation, enzyme/protein inactivation,
genetic modifications, and hormonal deregulation, and indirectly through the inhibition of soil
microbial growth, proliferation, and diversity; and (4) visual symptoms of highly toxic non-essential
HM elements in plants, with an emphasis on crop plants. Finally, suggestions and recommendations
are made to minimize crop losses from suspected HM contamination in agricultural soils.

Keywords: heavy metals; arable lands; agricultural practices; soil binding models; action mechanisms;
visual symptoms; crop production

1. Introduction

Metals, including potentially toxic elements, are inorganic elements containing atomic
densities (g·cm−3) several times higher than H2O (1 g·cm−3) and broadly classified into
heavy and light metals, and semi-metals (Figure 1). Based on physical, physiological,
and chemical properties, metals have been classified under several sub-groups, namely:
transition metals: e.g., chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni),
copper (Cu), and molybdenum (Mo); post-transition metals: e.g., aluminum (Al), zinc
(Zn), cadmium (Cd), mercury (Hg), and lead (Pb); alkaline earth metals: e.g., calcium
(Ca), magnesium (Mg), beryllium (Be), and barium (Ba); alkali metals: e.g., lithium (Li),
sodium (Na), potassium (K), and cesium (Cs); and metalloids, which are also referred to as
semi-metals because of their metallic and non-metallic properties: e.g., boron (B), silicon
(Si), arsenic (As), and antimony (Sb) [1].
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Heavy metals and metalloids (HMs) are environmental pollutants. They are also ag-
ricultural soil contaminants, because if present at elevated levels in the soil, HMs can neg-
atively impact crop health and productivity [2,3]. HMs are recalcitrant to degradation, and 
if not taken up by plants or removed by leaching, they can accumulate in the soil and 
persist for long periods [4–6]. The elements that are frequently found to contaminate ag-
ricultural soils and cause toxic effects at elevated levels on plants include Cd, Pb, Cr, As, 
Hg, Ni, Cu, and Zn [4,7]. Among them, Cd, Pb, As, Hg, and Cr are highly toxic and detri-
mental to plant health at almost all levels of contamination [8–10]. 

Several elements are classified as essential mineral nutrients for plant growth and 
productivity (Figure 1). Examples include Cu, Zn, Fe, Mn, Mo, Ni, Mg, Ca, and B. At rela-
tively low concentrations, these elements can enhance specific cellular functions in plants 
including ion homeostasis, pigment biosynthesis, photosynthesis, respiration, enzyme ac-
tivities, gene regulation, sugar metabolism, nitrogen fixation, etc. [3,8,11]. However, when 
accumulated at concentrations above optimum, these same essential elements can ad-
versely affect plant growth, development, and reproduction [2,3]. Conversely, if the con-
centration falls below certain threshold levels, they also produce mineral deficiency symp-
toms in plants [11]. 

HM contamination in agricultural soil is a global issue. In addition to certain geogenic 
and climatic factors, specific circumstances such as rapid urbanization, and increased in-
dustrial, municipal, agricultural, domestic, medical, and technological applications ap-
pear to be the major causes of HM pollution in the environment at the present time. How-
ever, the problem is more prominent in many developing countries, partly because of the 
above reasons, and perhaps partly due to a lack of proper awareness about the toxic con-
sequences of these elements not only to human health but also to crop health [12–16]. This 
review concentrates on the adverse effects of HMs on crop health. 

2. Sources of HM Contamination in Arable Lands 
Agricultural soil is an important non-renewable natural resource. It can be contami-

nated with toxic HM elements such as Cd, Pb, Cr, As, Hg, Cu, Ni, Zn, Al, and several 
others due to natural causes as well as anthropogenic activities. Natural causes include, 
among many others, weathering of metal-bearing rocks by rainwater and atmospheric 
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Mg (magnesium), Ca (calcium), Fe (iron), B (boron), Mn (manganese), Zn (zinc), Mo (molybdenum),
Cu (copper), Pb (lead), Ni (nickel), Cr (chromium), As (arsenic), Hg (mercury), Cd (cadmium),
Al (aluminum), Li (lithium), K (potassium), Na (sodium), Si (silicon).

Heavy metals and metalloids (HMs) are environmental pollutants. They are also
agricultural soil contaminants, because if present at elevated levels in the soil, HMs can
negatively impact crop health and productivity [2,3]. HMs are recalcitrant to degradation,
and if not taken up by plants or removed by leaching, they can accumulate in the soil
and persist for long periods [4–6]. The elements that are frequently found to contaminate
agricultural soils and cause toxic effects at elevated levels on plants include Cd, Pb, Cr,
As, Hg, Ni, Cu, and Zn [4,7]. Among them, Cd, Pb, As, Hg, and Cr are highly toxic and
detrimental to plant health at almost all levels of contamination [8–10].

Several elements are classified as essential mineral nutrients for plant growth and
productivity (Figure 1). Examples include Cu, Zn, Fe, Mn, Mo, Ni, Mg, Ca, and B. At
relatively low concentrations, these elements can enhance specific cellular functions in
plants including ion homeostasis, pigment biosynthesis, photosynthesis, respiration, en-
zyme activities, gene regulation, sugar metabolism, nitrogen fixation, etc. [3,8,11]. However,
when accumulated at concentrations above optimum, these same essential elements can
adversely affect plant growth, development, and reproduction [2,3]. Conversely, if the
concentration falls below certain threshold levels, they also produce mineral deficiency
symptoms in plants [11].

HM contamination in agricultural soil is a global issue. In addition to certain geogenic
and climatic factors, specific circumstances such as rapid urbanization, and increased in-
dustrial, municipal, agricultural, domestic, medical, and technological applications appear
to be the major causes of HM pollution in the environment at the present time. However,
the problem is more prominent in many developing countries, partly because of the above
reasons, and perhaps partly due to a lack of proper awareness about the toxic consequences
of these elements not only to human health but also to crop health [12–16]. This review
concentrates on the adverse effects of HMs on crop health.

2. Sources of HM Contamination in Arable Lands

Agricultural soil is an important non-renewable natural resource. It can be contam-
inated with toxic HM elements such as Cd, Pb, Cr, As, Hg, Cu, Ni, Zn, Al, and several
others due to natural causes as well as anthropogenic activities. Natural causes include,
among many others, weathering of metal-bearing rocks by rainwater and atmospheric
deposition. Anthropogenic activities include industrial activities (e.g., mining, leather
tanning, textile, and petrol-chemical), disposal of metal-containing wastes, vehicle exhausts,
and agricultural practices [4,15,17–20]. However, irrespective of the source of contamina-
tion, continued addition of HMs to arable lands can result in soils that can be too toxic to
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support plant growth and productivity. The following subsections review primarily the
contamination of HMs in farmlands through suspected agricultural practices, as outlined
in Figure 2.
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Figure 2. A flow chart showing the contamination of HMs in farmlands through agricultural practices,
their absorption and translocation in crop plants, and the key mechanisms of action in plants.

2.1. Application of Chemical Fertilizers

Chemical fertilizers, particularly inorganic fertilizers, are a crucial input for crop
production. Consequently, large quantities of inorganic fertilizers, including nitrogen (N),
phosphorus (P), potassium (K), and compound/mixed fertilizers are routinely added to
agricultural lands to supply adequate quantities of these macronutrients. For instance, it
was estimated that in 2019, more than 220 million tons of commercial fertilizers and liming
materials were applied worldwide, mostly to agricultural fields [21].

Among these fertilizers, P fertilizers contain the highest level of HM contaminants [4,22–24].
For example, superphosphate fertilizers can contain Cd, Co, Cu, Pb, Zn, Cr, and Ni as
contaminants. In a study that assessed soil with and without P fertilizer amendments, the
concentration of Zn was higher not only in the amended soil, but also in the plants grown
in that soil [25]. Cadmium content in the soil has been shown to increase persistently due
to the application of P fertilizers [12,23,26]. Cadmium is extremely toxic to plants because
of its high solubility and mobility in soil solution. The concentration of Cd present as an
impurity in several P fertilizers evaluated in a study is shown in Table 1.

Table 1. Cadmium concentrations in several phosphate fertilizers (adapted from [27]).

Fertilizers Cadmium Content (mg Kg−1)

Based on Product Based on P Content

Complete fertilizer 23–29 418–527

Single superphosphate 16–26 186–302

Superphosphate 13–34 151–395

Rock phosphate 7.2–47 54–303

High analysis fertilizer <0.6–5.6 15–118

Double superphosphate <0.6–12 <3.6–72

Triple superphosphate 0.8–7.0 24–35

Mono-ammonium phosphate 1.8–8.1 12–37

Di-ammonium phosphate 4.3–6.6 22–28
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In addition to P fertilizers, copper sulphate, iron sulphate, and zinc sulphate fertilizers
can also contain HM contaminants, including Pb [22,27,28]. A study reported from green-
house experiments that repeated application of chemical fertilizers significantly increased
the accumulation of several HM elements in the soil (Table 2). Experiments carried out
with soil samples collected from multiple locations in agricultural lands of peninsular
Malaysia and Guangdong Province of China show that the concentrations of different HM
elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn) were severalfold higher as compared to
control soil samples (refer to Table S2). These HM elements have originated from suspected
agricultural practices, including fertilizer applications. Sources of HM contamination in
fertilizers include the raw materials used in the manufacture of inorganic fertilizers. For
instance, phosphate rock, also known as phosphorite, is utilized in the production of P fer-
tilizers [29,30]. Over 90% of potash extracted from mines is used in the manufacture of
K fertilizer [31]. Based on the level of HM impurities, chemical fertilizers can be ranked as
follows: P fertilizers ≥ compound fertilizers> K fertilizers> N fertilizer [32,33].

Table 2. Heavy metal concentrations in greenhouse soil because of repeated application of inorganic
fertilizers (adapted from [24]).

Elements MAX MIN Fold Difference

mg Kg−1 Soil

Cd 0.65 0.06 10.8

Cu 171.5 21.0 8.2

Ni 36.9 28.7 1.3

Pb 38.0 20.5 1.9

Zn 433 71.9 6

2.2. Pesticide Application

Pesticides play an important role in global agriculture. It has been estimated that
without pesticides, the world’s food production could be reduced by close to ~40% [34].
Another study estimated a 78% loss of fruit production, 54% loss of vegetable production,
and 32% loss of cereal production without pesticide use [35]. Pesticides such as insecticides,
fungicides, rodenticides, nematicides, and herbicides are composed of either organic or
inorganic compounds that are toxic to the targeted organisms. Analysis of these compounds
shows that some of them contain HM elements either as active ingredients (Table 3) or as
impurities in the formulations (Table 4).

Table 3. Pesticides containing different HM elements in their active ingredients (adapted
from [36,37]).

Chemical Name Formula HM Elements

Insecticides

Aluminum phosphide AIP Al

Aluminum silicate Al2Si2O7 Al

Arsenic acid H3AsO4 As

Copper acetoarsenite C4H6As6Cu4O16 As, Cu

Copper oxide Cu2O Cu

Copper carbonate CH2Cu2O Cu

Copper naphthenate C22H14CuO4 Cu

Lead arsenate AsHO4Pb As, Pb
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Table 3. Cont.

Chemical Name Formula HM Elements

Lithium perfluorooctane sulfonate C8F17LiO3S Li

Sodium meta-arsenite NaAsO2 As

Fungicide

Copper oxide CuO Cu

Copper bis(3-phenylsalicylate) C26H18CuO6 Cu

Copper abietate C40H58CuO4 Cu

Copper acetate Cu2(CH3COO)4 Cu

Copper carbonate CH2Cu2O Cu

Copper chloride CuCl2 Cu

Copper hydroxide H2O2Cu Cu

Copper naphthenate C22H14CuO4 Cu

Copper oxychloride (ClCu2H3O3)2 Cu

Copper sulphate CuSO4-Ca(OH)2 Cu

Mercuric oxide HgO Hg

Mercurous chloride Hg2Cl2 Hg

Methoxyethylmercury chloride C3H7ClHgO Hg

Methoxyethylmercury acetate C5H10HgO3 Hg

Phenyl mercuric acetate C8H8O2Hg Hg

Phenylmercury chloride C6H5ClHg Hg

Phenylmercury nitrate C6H5HgNO3 Hg

Sodium arsenite NaAsO2 As

Zinc borate ZnB3O4(OH)3 Zn, B

Zinc oxide ZnO Zn

Zineb C4H6N2S4Zn Zn

Herbicides

Arsenic acid H3AsO4 As

Calcium arsenate As2Ca3O8 As

Sodium arsenite NaAsO2 As

Cacodylic acid (CH3)2AsO(OH) As

Rodenticides

Barium carbonate BaCO3 Ba

Zinc phosphide Zn3P2 Zn

Thallium sulfate Tl2SO4 Tl

Defoliants

Sodium dichromate Na2Cr2O7 Cr

Zinc chloride ZnCl2 Zn

Mercuric chloride HgCl2 Hg
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Table 4. Pesticide products containing HM elements as impurities.

Trade Name Technical Name Metal Impurities (ppb) *

Insecticides Defarge et al. [38]

Pyrinex® Chlorpyriphos As (390), Cr (800), Ni (1200)

Polysect® Acetamiprid Ni (50)

Fungicides Defarge et al., [38]

Eyetak® Prochloraz As (200), Co (90), Cr (200), Ni (190), Pb (12)

Folpan® Folpet As (260), Cr (2000), Ni (1200)

Maronee® Tebuconazole As (90), Co (50), Cr (100)

Opus® Epoxiconazole Cr (90), Ni (60)

Pictor® Boscalid As (300), Co (275), Cr (1000), Ni (600)

Teldor® Fenhexamid As (575), Cr (800), Ni (800)

Herbicides Defarge et al. [38]

R 3+®

Glyphosate-based
formulations

As (375), Co (50), Cr (175), Ni (20)

R Bioforce® As (260), Cr (200), Ni (120)

R Express® As (60)

R GT+® As (450), Co (150), Cr (100), Ni (50), Pb (10)

R WeatherMax® As (500), Cr (100), Ni (20), Pb (10)

Bayer GC® As (75), Co (60), Cr, (110) Ni (20)

Clinic EV® As (400), Co (90), Cr (150), Ni (20)

Glyfos® As (200), Cr (1100), Ni (50), Pb (30)

Glyphogan® As (320), Co (125), Cr (100), Ni (40)

Pavaprop-G® Cr (110), N (190)

Radical Tech+® As (270), Co (70), Cr (50), Ni (50)

Lonpar® 2,4-D As (160), Cr (150), Ni (180)

Matin® Isoproturon As (100), Cr (100), Ni (30), Pb (25)

Starane® Fluoroxypyr As (75), Cr (250), Ni (100), Pb (100)

Insecticides Alnuwaiser [39]

Sniper® Fipronil Zn (506), Cu (423), Cr (746), Co (275), Pb (88)

CyperCel® Cypermethrin Zn (2389), Cu (669), Cr (373), Co (18), Pb (807)

CyperSafe® Cypermethrin Zn (968), Cu (464), Cr (10), Co (6), Pb (119)

Scope 60® Asaybrmthrin Zn (527), Cu (539), Cr (437), Co (23), Pb (39)

Brodor® Permethrin Zn (10), Cr (16), Pb (186)

Clash® Acephate + Buprofezin Zn (1078), Cr (73), Co (39), Pb (1316)

Acefed® Mithomail Cu (19), Cr (48), Co (4), Pb (121)

Lanid® - Cu (128), Cr (60), Pb (98)

Probalt® - Cu (179), Cr (85), Co (25), Pb (46)

Nourcam® - -

Madar® - Zn (10), Cu (66), Cr (16), Co (10),

PifPaf® - Cu (110), Co (5), Thallium, Tl (19), Pb (12)

Paygon® - Zn (52), Tl (15), Pb (19)
* European Union (EU)/World Health Organization (WHO) prescribed permissible levels (ppb) in water: As (10),
Cr (50), Ni (20/70), Pb (10), Co (NA).
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Several fungicides and insecticides extensively used in the past in agricultural lands
were shown to contain significant concentrations of HM elements in their active ingredients.
Examples include Cu-containing fungicides such as copper sulphate (Bordeaux mixture,
also referred to as Bordo® mix) and copper oxychloride; Pb-containing insecticide such as
lead arsenate; and Cu-containing insecticide such as copper acetoarsenite. The commonly
found HM elements in the active ingredients of pesticide products include Cu, As, Pb, Hg,
Cr, Zn, Al, Li, Ba, B, and Ti (titanium) [36,37].

On the other hand, HM elements can also be present in pesticide products as impurities.
For example, certain pesticide products used for pest control in Japan contained Cd, Hg, As,
Cu, Zn, and Pb as contaminants [17]. A chemical analysis of several pesticides, including 11
glyphosate-based herbicide formulations, by utilizing inductively coupled plasma/optical
emission spectrometry (ICP-OES) detected As, Cr, Co, Pb, and Ni as contaminants [38].
A similar analysis of several insecticides using ICP mass spectrometry detected Zn, Cu, Cr,
Co, Pb, and Tl (thallium) as contaminants [39]. It has been suggested that the HM elements
contaminate pesticide products during the manufacturing process, while some of them are
intentionally added as nano pesticides for increased efficacy [38,40].

2.3. Application of Livestock Manures and Compost

Livestock manures are organic fertilizers composed predominantly of poultry, cattle,
and pig manures. Application of these manures and the compost made from them to
farmlands is a common practice in agricultural crop production. However, these manures
and compost contain high concentrations of HM elements such as Cu, Zn, Cd, Ni, Cr, As, Pb,
and Hg as contaminants [20,26,41,42]. A study conducted to determine the concentrations
of HM elements in different livestock and poultry manures is presented in Table 5. The
major sources of contamination of HM elements in the manures include the minerals
supplied with the commercial feeds [41,42]. For example, supplementation of animal
feeds with growth-promoting organic arsenical products was practiced for many years [43].
Some studies confirmed that Zn, Cu, As, and Cd were artificially added to commercial
feeds to promote animal growth and improve disease resistance [44,45]. However, animals
cannot digest these HM elements, and discharge them through manure [46]. Because
HMs are non-degradable elements, they are also not broken down during the composting
process [47]. Thus, long-term repeated applications of manures and compost can result in
the buildup of HM elements to toxic levels in agricultural soil [48,49] and can affect crop
health and productivity.

2.4. Application of Sewage-Sludge-Based Biosolids

Sewage sludge originated from municipal and industrial wastes can be highly con-
taminated with HM elements such as As, Cd, Cr, Cu, Pb, Hg, Ni, Mo, Zn, and others.
Long-term application of untreated sewage sludge in some developing countries has led to
increased concentrations of HMs in the agricultural lands [14,20,50]. However, the biosolids
generated from sewage sludge processing plants can be typically low in HM contamination
and can contain organic materials rich in nutrients, and be used as fertilizers [51,52]. When
applied to arable lands, processed sewage sludge can improve soil physical properties
and crop productivity. Utilization of these byproducts for agricultural crop production is,
therefore, a common practice in many countries. In the United States, about 3.0 million dry
tons of biosolids are utilized annually for crop production [4]. The European community
countries utilized >30% of processed sewage sludge as a fertilizer in agricultural lands [53].
Australia incorporates over 175K tons of dry biosolids into agricultural soil [54]. In the
United States, federal regulations limit concentrations of major elements (e.g., As, Cd, Cu,
Pb, Hg, Ni, Se, and Zn) commonly found in biosolids for land application (Table 6) [52].
Although biosolids produced from sewage sludge processing treatment are generally low
in HM concentration, repeated applications of these products can result in the buildup of
HM elements in agricultural soil and can negatively impact crop health and productivity.
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Table 5. A case study showing maximum (MAX) vs. minimum (MIN) concentration (mg Kg−1 dry
weight) of HM elements in different livestock and poultry manures, and their fold differences (FD).
(Adapted from [42]).

Source Level Zn Cu Pb Cd Cr Hg As Ni

Pig

MAX 4639 1288 23 60 85 0.3 89 19

MIN 100 73 0.3 0.04 3.5 0.0 0.01 4.7

FD 46 18 77 1500 24 - 8900 4.0

Chicken

MAX 578 314 33 4.1 251 0.5 23 39

MIN 166 18 3.0 0.03 4.0 0.02 0.05 5.2

FD 3.5 17 11 137 63 25 460 7.5

Duck

MAX 682 199 41 2.5 64 0.07 6.8 16

MIN 98 35 4.5 0.3 7.0 0.03 0.01 8.4

FD 7.0 5.7 9.1 8.3 9.1 2.3 680 1.9

Poultry

MAX 682 314 41 4.1 251 0.5 23 39

MIN 77 15 2.0 0.03 2.5 0.02 0.01 5.2

FD 8.9 21 21 137 100 25 2300 7.5

Cattle

MAX 816 174 32 3.4 79 0.6 6.3 19

MIN 49 12 1.6 0.04 0.8 0.02 0.01 4.2

FD 17 15 20 85 99 30 630 4.5

Sheep

MAX 431 215 20 1.4 22 2.4 2.6 12

MIN 42 8.4 1.7 0.3 8.0 0.2 0.6 1.2

FD 10 26 12 4.7 2.8 12 4.3 10

Table 6. Regulatory limits for HM elements, commonly found in applied biosolids in the USA
(adapted from [55]).

Elements
Maximum

Permissible Level
(mg Kg−1)

Cumulative
Loading Rate

(Kg ha−1)

Monthly
Average

Concentrations
(mg Kg−1)

Annual
Loading Rate

(Kg ha−1)

As 75 41 41 2.0

Cd 85 39 39 1.9

Cr 3000 3000 1200 150

Cu 4300 1500 1500 75

Pb 840 300 300 15

Hg 57 17 17 0.9

Ni 420 420 420 21

Se 100 100 36 5.0

Zn 7500 2800 2800 140

2.5. Land Irrigation

The irrigation of agricultural lands with contaminated water from surface water bodies
as well as groundwater sources is another route of HM contamination in agricultural
soil. The above irrigation practices are more frequently followed in some developing
countries [9,15,16,56,57]. A review of many related articles published in a span of over
two decades (1994 to 2019) that determined the HM contamination in surface water bodies
throughout the world showed that the average content of Cr, Mn, Co, Ni, As, and Cd
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exceeded the permissible limits as prescribed by the WHO and the United States EPA [9,20].
Studies conducted to determine HM concentrations in irrigation water in several locations
of the Gazipur district of Bangladesh and the Gondar city of Ethiopia showed that in almost
all tests, the concentration of HMs exceeded the FAO (Food and Agriculture Organization)
prescribed admissible levels (Table 7).

Table 7. HM concentrations in irrigation water reported in some studies as compared to FAO
approved maximum permissible limits.

Elements Cr Cu Zn As Cd Pb Ni References

mg L−1

Max level
(FD) *

2.13
(21.3)

4.62
(23.1)

15.20
(7.6)

0.52
(5.2)

0.02
(2.0)

1.15
(0.2) - Ahmed et al. [16]

Max level
(FD)

0.94
(9.4)

0.61
(3.1)

0.86
(0.4) - 0.04

(4.0)
0.19

(0.04)
0.12
(0.6) Berihun et al. [58]

FAO limit 0.10 0.20 2.00 0.10 0.01 5.00 0.20

* Numbers in parentheses represent concentration FDs, calculated based on average concentration obtained
divided by FAO limits.

The causes for HM contamination in surface water bodies are both natural and anthro-
pogenic. The natural causes include, among others, atmospheric deposition, geological and
biological weathering, and climatic change. The anthropogenic causes include, but are not
limited to, discharge of HM-contaminated agricultural, municipal, domestic, and industrial
wastes. HM elements such as Pb, Ni, Cr, Cd, As, Hg, Zn, Cu, and others from diverse
sources are transported to surface water bodies and irrigation canals through runoff, and
to underground aquifers through vertical leaching with percolating rainwater [16,59–61].
Thus, irrigation of croplands using HM-contaminated water not only affects the growth
and productivity of crops [62], but can also threaten soil quality. It should, however, be
noted that the extent of crop damage will depend on the pH of the irrigation water, redox
potential, and water solubility of the contaminated HM elements.

3. Factors Affecting HM Interactions with Crop Plants

Several plant-, soil-, and metal-related factors can influence HM interaction with crop
plants [57,63–67]. The crop-related factors include crop type (species, variety, genotype);
growth stage and growth condition; metabolic activities; and uptake, translocation, and
bioaccumulation capabilities. The major soil-related factors include soil pH, organic mat-
ter (OM) content, cation exchange capacity (CEC), rhizosphere chemistry, and microbial
activity. The minor soil-related factors may include soil texture, hydration level, aeration
(compactness), and temperature. The HM-related factors include speciation (organic vs.
inorganic form), oxidation state, concentration, solubility, mobility, bioavailability, and
interaction with soil particles and with the essential (e.g., Mg, Ca, Zn) or non-essential
(e.g., Cd, Pb, Hg) ionic species.

3.1. Plant Responses to HM Toxicity
3.1.1. Plant Type, Growth Stage, and Growth Conditions

The above features can influence HM interaction with crop plants. A few examples
are cited below. Bean (Phaseolus spp.) plants exhibited tolerance to Cu toxicity at the early
stages of growth, as indicated by their primary photochemistry of photosynthesis [2,68].
The tolerance of alfalfa (Medicago sativa) plants to Cd, Cu, and Zn toxicities was shown
to be positively correlated with the plant age [69]. Tobacco (Nicotiana tabacum) plants
accumulated relatively high concentrations of HMs in the leaves [70]. Among many
vegetable species tested, specific species in the Brassicaceae family accumulated the highest
amounts of Cr, although Cr translocation from root to shoot was extremely limited in
almost all species tested [71,72]. An investigation of several African vegetable species
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showed that matembele (Ipomoea batatas) plants had the highest HM content, followed by
mchicha (Amaranthus hybridus), eggplant (Solanum melongena), and bamia (Abelmoschus
esculentus) [65]. Root and shoot tissues of winter wheat (Triticum aestivum) tolerated high
concentrations of Cd and can be used as an indicator for Cd contamination in agricultural
soils [73]. Cadmium absorption capabilities of different rice varieties differed under similar
growing conditions, as some Japonica rice varieties had lower Cd concentrations than most
Indica varieties, and certain African upland rice varieties had even lower Cd absorption
capabilities than the Japonica varieties [17]. Variability in HM absorption capabilities
among different plant species or varieties may be caused by differences in morphological,
physiological, anatomical, and genetic characteristics. The responses of several crop species
to HM toxicity in the soil/nutrient culture as reported in some studies are shown in Table 8.

Table 8. Responses of crop plants to HM toxicity with respect to certain growth parameters.

Crop
Species

HMs
Elements

Conc.
(mg Kg−1 Soil)

Height (cm) Dry wt. (g) Yield
Refs.

Shoot Root Shoot Root g/Plot

Helianthus
annuas

Pb

0 53 34 4.3 2.5 -

Alaboudi et al. [74] *

80 28 10 2.6 1.7 -

200 15 2 1.5 0.8 -

Cd

0 53 34 3.9 2.4 -

80 16 6 1.1 0.6 -

200 9 1.7 0.8 0.2 -

Brassica
juncea

Cu

0 20 - - - 70

Cu [75] **

100 15 - - - 50

200 13 - - - 33

Pb

0 20 - - - 70

100 13 - - - 35

200 11 - - - 31

Zn

0 20 - - 70

300 17 - - 64

500 16 - - 44

Oriza sativa Hg

mg L−1

nutrient
solution

Pot−1 Pot−1

Du et al. [76] ***
0 - - 0.52 0.19 -

0.5 - - 0.28 0.17 -

1.0 - - 0.22 0.12 -

2.5 - - 0.17 0.08 -

* Analytical grade HM salts dissolved in distilled water were mixed with air-dried loamy sand soil
(pH > 6.25; EC ~0.27 dSm−1; OM ~10.23%; HM status = under detection limits). ** HMs in the form of
CuSO4, Pb(NO3)2, and ZnSO4 were mixed with alluvial soil (pH 6.15; OM ~2.44%; CEC 23.46 Cmol/kg;
HM status (mg Kg−1 soil) = ~21.3; Pb~57.2; Zn~7.2). *** Different concentrations of HgCl2 were mixed with
nutrient solution (pH 5.5).

3.1.2. Plant Metabolic Activities

Plants have diverse mechanisms to prevent the harmful effects of HMs, including
binding of HMs with the cell wall, transporting of HMs to vacuolar compartments, and
synthesizing of metal binding proteins such as cysteine-rich metallothionein and phy-
tochelatins. These proteins perform metal ion homeostasis, chelation, sequestration, and
detoxification of excess HM elements in plant cells [77–80]. Reduced glutathione (GSH),
the amino acid derivative of glutamic acid, cysteine, and glycine has a strong affinity for
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HM elements such as Cd, Cu, Hg, Pb, Zn, Ni, and As and acts as a ligand to chelate HMs
to alleviate toxic effects on plants. Depending on their binding affinities with the GSH,
HMs can be ranked as follows: Cd > Pb > Zn > Hg > As > Cu [81–83]. Some proteins
belonging to mitogen-activated protein kinase (MAPK) are stimulated under Cu or Cd
accumulation. These Cu- or Cd-induced MAPKs enhance translation of transporters for
HM sequestration and removal from plant cells [84]. Based on proteomic and other anal-
yses, a study suggested that hemp plants can acclimate to high levels of Pb toxicity by
enhancing photosynthesis (primary photochemistry), cellular respiration, and intercellular
N and C assimilation; preventing unfolded protein aggregation and degrading misfolded
proteins; and increasing transmembrane ATP transport [85]. Plants also release chemical
messengers such as ethylene and jasmonic acid when grown in soil containing high levels
of HMs that reduce HM toxicity in plants [86,87]. However, further research is needed to
better understand how these signaling molecules interact with HM toxicity in plants.

3.1.3. Uptake, Translocation, and Bioaccumulation in Plants

HMs enter plant roots via passive (apoplastic) or active (symplastic) movements [88,89].
However, the degree of phytotoxicity depends not only on root absorption but also on
translocation to different parts and accumulation to toxic levels in plants. For instance, a
study showed that after 20 days of treatment, the translocation of Hg was <2% in the leaf
and <4% in the shoot as compared to the total quantity (µg g−1 DW) absorbed by roots of
tomato seedlings [90]. Metal transporters play important roles in the uptake, translocation,
and detoxification (by moving to vacuoles) of HMs in plants [91].

There are also antagonistic or synergistic interactions between HM elements during
absorption or translocation in plants. For example, the presence of Hg in the growth
medium significantly reduced As accumulation in the roots, indicating the antagonistic
effects of Hg against As absorption. However, the effect was synergistic when As was
translocated to the shoot, particularly at higher Hg concentrations [76]. Cadmium uptake
was reduced in rice plants when Fe plaque formed around roots, indicating antagonistic
effects of Fe on Cd uptake [92]. Another study showed that the Cr and Pb concentrations in
the locally grown vegetable species at HM-contaminated sites in Dhaka, Bangladesh was,
respectively, 10 and ~2 times higher than the FAO/WHO prescribed permissible limits in
plants [93]. Based on the observations in several vegetable species, some studies suggested
that differences in HM toxicity in plants can be attributed to their uptake and translocation
differences [93,94].

Nonetheless, the overall phytotoxicity of HMs depends on, in addition to other factors,
how plants carry out physiological functions such as phytostabilization (immobilization
of HMs in the soil that can reduce bioavailability), rhizofiltration (adsorption of HMs
with plant roots in the rhizosphere), phytoextraction (uptake and translocation of HMs
in plants), phytoaccumulation (accumulation of HMs inside plants in active forms), and
phytovolatilization (release of absorbed HMs in the atmosphere as volatile forms) [95–97].
However, the prevalence and bioavailability of HMs in the soils are basic requirements for
phytotoxic effects in plants.

3.2. Occurrence and Bioavailability of HMs

The occurrence of HMs in agricultural soils depends largely on the factors discussed
in Section 2. The bioavailability and extractable concentrations, however, appear to be
predominantly controlled by the solubility of HMs in the soil solution and the OM content
in the soil. Although there may be exceptions, in general the solubility of HMs in the soil
can be positively correlated with [H+] (acidity). For instance, the solubility of most HM
ions is lower in the basic pH range whereas it is higher in the range of acidic pH [54,98,99].
It was shown that a one-unit decrease in pH value resulted in about two-fold more increase
in the bioavailable concentration of certain elements such as Zn, Ni, Cd, Al, and Cu in the
soil solution [100,101]. Agricultural soils can be expected to be more acidic particularly
in the moderate to high rain fall areas due to loss of base forming ions (basic cations e.g.,
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Ca2+, Mg2+, K+, and Na+) from the farmlands because of prolonged leaching. Furthermore,
acidity can also buildup over time in the soil due to formation of inorganic acids such
as phosphoric acid, sulfuric acid, and nitric acid in the soil due to oxidation of applied
phosphorus, sulfur, and ammonium/nitrate fertilizers, respectively [102]. On the other
hand, the OM content in the soil appears to have a negative effect on HM uptake in plants,
perhaps due to chelation of HMs by forming metal–OM complexes [103,104]. The above
suggests that HM bioavailability can be reduced in soil containing high OM content.

3.2.1. Hypothetical Soil-Binding Diagrams of HMs

While the exact mechanism(s) by which the soil pH and OMs control the bioavailability
of HMs for plant uptake is (are) unclear, based on the above discussion we have formulated
a hypothetical soil-binding model, as displayed in Figure 3. It shows that in basic soils
containing a high OM content and low [H+], most metal cations can be tightly attached
to the negatively charged soil particles and become less available or unavailable for plant
absorption (Figure 3A). On the other hand, in acidic soil containing high [H+], these
metal cations can either not have the ability to compete with H+ to bind with the soil
particles or be released from soil particles in the presence high [H+] (Figure 3C). These may
consequently leave more HM elements in the soil solutions for plant absorption [105,106].
This diagrammatic model also suggests that soil OMs can play a crucial role in HM mobility
and bioavailability for plant absorption. Since OMs make soil particles more negatively
charged [107], most HM cations are attracted to, and perhaps bind tightly with, the soil
particles containing high OM (Figure 3A), becoming unavailable for plant absorption. On
the contrary, soil particles with low OM content will have less net negative charges to bind
with positively charged HM elements (Figure 3B), and this can result in the availability of
some free HM ions in the soil solutions for plant absorption.
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in free cationic form in the soil due to low OM content and low EFs; (C) (acidic soil): Cd2+ molecules
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The hypothetical model presented above is consistent with previous studies which
suggest that HMs can bind with organic molecules and become less biologically available
for plant uptake [103,108]. The above model also explains the reason why the bioavailability
of HMs applied in the form of manure and compost is lower than that of HMs applied
in salt forms [109]. A greenhouse study reported that application of chemical fertilizers
increased the accumulation and bioavailability of Cu, Ni, Pb, and Zn in the greenhouse
soil, and suggested that these HM elements were the contaminants of applied inorganic
fertilizers [24]. Long-term field research also showed that the metal concentration in plants
grown in soil amended with salt forms of HMs was higher than that in plants amended
with an equivalent quantity of HMs in organic or compost form [110].
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From the above discussion, it appears that inorganic forms of HMs are readily available
for plant uptake, whereas the organic and compost forms require microbial decomposition
and conversion to inorganic forms for plant absorption. However, care should be practiced
in adding processed sewage-sludge-based organic biosolids in farmlands because excessive
applications can cause soil structural modifications; deficiency of Zn, Mn, and Fe in plants
due to phosphorus over-loading in the soil; and a buildup of HM elements such as Cu,
Pb, and Zn to levels toxic for plant growth [111]. Further research would be needed to
clarify the role of OMs and pH on the binding interactions of different HM elements with
soil particles.

3.2.2. HM Precipitation in the Soil—Effect of pH

Other lines of research suggest that in basic soils, some HMs can be precipitated due
to transformation into insoluble forms such as oxides, hydroxides, sulfides, sulfates, phos-
phates, silicates, carbonates, etc., becoming biologically unavailable for plant absorption,
whereas in the acidic soil, they can remain in free cationic forms in the soil solution and be
biologically available for plant uptake [112–114]. The pH dependence of HM precipitation
can vary among different elements because in most cases it is dependent on the oxidation
states of the specific elements involved and the type reactions taking place in the soil
solutions [112,115]. In general, an element containing higher oxidation states is more acidic
than an element with lower oxidation states, e.g., Fe3+ salts are more acidic than Fe2+ salts.

It appears that the above reports are consistent with the hypothetical diagrams pre-
sented in Figure 3, which also suggest that acidic soil pH can increase the bioavailability of
certain metal cations, whereas basic pH reduces their availability for plant uptake. It has,
therefore, been a common practice in agricultural farmlands with acidic soil to apply lime
that elevates soil pH and perhaps alleviates metal toxicity to plants by converting them to
insoluble forms, as shown by the equation below [116].

CaCO3 + H2O→ Ca2+ + 2HCO3
− + 2OH− (1)

Al+3 + 3OH− → Al(OH)3 (insoluble) (2)

H+ + OH− → H2O (3)

However, it is important to keep in mind that over-liming can change soil physical,
chemical, and biological properties, resulting in a situation wherein plants can suffer most
notably from deficiencies of mineral nutrients such as Fe, Mn, Cu, and Zn [117,118]. This is
because the alkaline pH not only reduces uptake of toxic HM elements, but also the uptake
of essential mineral elements in plants. It is also worth mentioning that metal hydroxides
including Al(OH)3 can induce the generation of ROS if sprayed onto plants [119].

3.3. Rhizosphere Chemistry and HM Chelation

Plants’ rhizosphere chemistry plays an important role in HM–plant interactions. For
instance, under normal growing conditions, roots secrete organic molecules such as amino
acids (e.g., methionine, lysine, and histidine) and organic acids (e.g., oxalic acid, citric acid,
malic acid, tartaric acid, and succinic acid) that can bind with HMs and convert them to
non-toxic forms [120,121]. It was shown that under Cd stress conditions, the total amount
of organic acids secreted by the roots of Cd-tolerant rice varieties was ≥2 times higher than
that of Cd-sensitive varieties [122]. Roots of a non-crop plant species grown in nutrient
solutions containing Pb, Zn, Cu, and Cd salts secreted oxalic and malic acids in the media
that made the plants more tolerant to the toxicity of these elements, suggesting chelation of
HMs by these organic molecules [123]. The root-secreted organic molecules also provide
nutrient resources to rhizosphere microbial populations to generate metabolites that can
bind with the HMs and prevent them from root absorption [124]. For instance, a wide
range of beneficial as well as pathogenic bacterial and fungal populations produce organic
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acids such as gluconic acid, oxalic acid, acetic acid, and malic acid as natural chelating
agents for HM detoxification [125].

4. Key Mechanisms of Plant Growth Inhibition by HMs

Plants absorb HMs by roots from soil solutions in the form of ions and transport
them to various subcellular compartments through a diverse set of ion channels and
transporter proteins such as HM ATPase, ATP binding cassette transporter, and cation
diffusion facilitator [121]. If HMs exert detrimental effects on root growth, it will affect
water balance and mineral nutrient uptake and translocation to the above-ground shoot,
causing a negative impact on plant growth, biomass accumulation, and productivity.

On the other hand, if the concentration of HMs exceeds certain limits in the plants,
they will affect cellular ionic homeostasis across membranes; structure and function of
cell organelles (chloroplasts, mitochondria, nucleus, and vacuoles), and macromolecules
(carbohydrates, lipids, proteins, and nucleic acids); and physiological, biochemical, and
molecular processes in plants [11,79,80,126–131]. For instance, elevated levels of HMs
have been shown to negatively affect chloroplast fine structure, chlorophyll a/b ratios,
biosynthesis of photosynthetic machinery, pigment composition in grana and stroma
membranes, and the activities of catalytic enzymes and non-catalytic proteins associated
with various metabolic and developmental processes. The following sub-sections focus on
key mechanisms of plant growth inhibition by HMs.

4.1. Generation of Oxidative Stress

Plants respond to toxic levels of HMs by overproduction of reactive oxygen species
(ROS) such as superoxide radical (O2−), hydrogen peroxide (H2O2), hydroxyl radical
(OH−), and singlet oxygen (1O2) at several sites including mitochondria, chloroplasts, and
peroxisomes, and at the extracellular side of the plasma membrane [132–134]. Although
the redox active (Cr, Cu, Mn, Fe) and non-redox active (Cd, Ni, Hg, Zn, Al) elements
generate ROS by different mechanisms, the generated ROS induce oxidative stress in plants,
leading to a variety of damages to cellular macromolecules including lipids, proteins, and
nucleic acids. Some of the key consequences of cellular oxidative damage include lipid
peroxidation; protein carbonylation, chain oxidation, misfolding, and aggregation; and
breaks in DNA double strands [128,130,135–142].

While in some cases, ROS generated in plants due to biotic or abiotic stresses including
HMs can provide protection against certain fungal diseases [119,143], plants develop an
antioxidant defense system involving ROS-scavenging enzymes such as superoxide dismu-
tase, catalase, peroxidases, and glutathione reductase that can dissipate ROS [144] and can
protect plants from oxidative damage. However, certain HMs can disrupt the activity of
some enzymes involved in defense responses [138,145,146]. Thus, the information gener-
ated above suggests that contamination with elevated levels of HMs in agricultural soils
and accumulation at toxic levels in crop plants can affect crop health and productivity not
only by inducing oxidative stress, but also by disrupting the antioxidant defense system in
plants. However, further research is needed to clearly understand the specific relationship
between HM stress and antioxidant responses in plants.

4.2. Inhibition of Photosynthetic Phosphorylation

In the light-dependent reactions of photosynthesis, most HMs interfere with pri-
mary photochemistry, resulting in the inhibition of photosynthetic electron transport and
phosphorylation. These effects were demonstrated in isolated chloroplasts, thylakoid mem-
branes, and photosystem II (PSII) submembrane fractions [128,147,148]. PSII-mediated
electron transport was suggested to be more affected by these elements compared to photo-
system I (PSI)-mediated electron transport. However, the actual mechanism of inhibition
of PS II by HMs was unclear, except that the oxygen-evolving complex (OEC) of PSII was
suggested to be the probable target site [149]. By measuring the variable fluorescence of
intact PSII membrane preparations in the presence of Pb2+ and other additives, it was
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suggested that the principal site of action of HMs was located on the water oxidizing side
(WOS) of PSII [147]. The kinetics of variable fluorescence rise diminished as a function of
Pb2+ concentration, suggesting that the electron transport on the WOS of PSII was inhibited
by Pb2+.

The above observation was further verified by immunoblotting with antibodies recog-
nizing three extrinsic polypeptides of molecular masses, 16, 23, and 33 kDa, associated with
the oxygen evolution of PSII. This study showed that the tested HM elements (Pb2+ and
Zn2+) selectively dissociated the above polypeptides from the OEC [150]. It should be noted
that these three polypeptides act as a shield to protect the OEC from exogenous reductants
in PSII submembrane preparations. Since depletion of these three extrinsic polypeptides
from the OEC by either HMs or detergent treatments can inactivate PSII [147,151–153],
the generation of ATP and the high-energy reducing agent NADPH through noncyclic
phosphorylation (to facilitate reduction of CO2 to carbohydrate) is also expected to be
inhibited (Figure 4). However, it is possible that in the absence of fully functional non-
cyclic phosphorylation, plants can utilize the PSI-mediated cyclic electron flow to partially
generate ATP to continue CO2 fixation at a reduced rate [154].
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4.3. Inactivation of Enzyme Activities
4.3.1. Inactivation of Soil Enzyme Activities

Enzymes in soil originate mostly from microorganisms and plants. The activities of
these enzymes are a sensitive bioindicator of soil physical and chemical properties, includ-
ing nutrient cycling. These enzymes carry out many catalytic processes in the soil, including
the decomposition of OMs, to release mineral nutrients for plants. Some oxidoreductase
enzymes such as dehydrogenases, nitrate reductase, catalase, and peroxidases are involved
in the degradation of many organic contaminants in the soil [155].

HMs inhibit the activities of many soil-associated enzymes involved in the transfor-
mation of carbon, nitrogen, phosphorus, and sulfur [156,157]. For example, the activities of
catalase, urease, invertase, and phosphatase were inhibited in the soil upon the addition of
Pb, Zn, and Cu, resulting in the reduction of growth and grain yield of barley [156]. Another
study reported that the activity of seven enzymes was significantly reduced in response to
soil contamination of Pb, Zn, Cd, Cu, and As, and the order of inhibition of these enzymes
was ranked as follows: arylsulfatase > dehydrogenase > β-glucosidase > urease > acid phos-
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phatase > alkaline phosphatase > catalase [158]. This study further noted that clay content and
soil depth negatively impacted the HM inhibition of soil enzyme activities. HM-induced
inhibition of enzyme activities in the soil can occur due to multiple reasons, such as forma-
tion of HM–substrate complexes, interaction of HMs with the enzyme–substrate complexes,
binding of HMs with the active sites of the enzymes, denaturation of enzyme proteins,
and interference with the growth of microbial populations involved in the synthesis of
soil-borne enzymes [159,160].

4.3.2. Inactivation of Plant Enzyme Activities

HMs interfere with cellular metabolic and developmental processes by inactivation
of numerous enzymes and proteins in plants by binding to their active sites and func-
tional groups such as carboxyl, amino, carbonyl, and sulfhydryl groups [130,146,161].
For instance, certain HMs inhibit the activities of enzymes involved in carbohydrate and
phosphorus metabolism in plants (e.g., ribulose-1,5-biphosphate carboxylase, rubisco; phos-
phoenolpyruvate carboxylase; phosphoribulokinase; aldolase; fructose-6-phosphate kinase;
fructose-1,6-bisphosphatase; NADP+-glyceraldehyde-3-phosphate dehydrogenase; car-
bonic anhydrase; and phosphatases) through conformational modifications by binding to
their functional side chains [162–164]. Because of their strong affinity for the -SH group,
some HMs inhibit photosynthetic and water channel proteins by disrupting the disulfide
bonds responsible for their structure and activity [8,79,165–167]. Some HMs inhibit the
folding of nascent proteins, causing aggregation in living cells. Nickel and Cd can make
proteins non-functional by structural modifications such as unfolding, which is corrected by
the plant chaperone system [168]. Bivalent Zn can inactivate rubisco activity by replacing
bivalent Mg from the active site [169]. Lead and Zn can inactivate the water-oxidizing
enzyme of PSII by depleting Mn from the tetra-Mn complex along with 33kDa extrinsic
polypeptide [150]. Thus, HM-induced enzyme inactivation and protein denaturation can
cause multiple disturbances in crop plants, affecting growth and crop productivity [141].

4.4. Genetic Modifications
4.4.1. Effects on DNA Metabolism

HMs are genotoxic, but perhaps not mutagenic, as there has been no report suggesting
that HMs can induce gene mutations in plants, although Cr6+ is believed to be mutagenic to
mammalian cells [170]. It is to be noted that all mutagenic substances are genotoxic, but not
all genotoxic substances are mutagenic [171]. As discussed earlier, HMs can damage DNA
molecules through generation of ROS in both plants and animals. They can also impair
DNA replication and repair by inactivating enzymes involved in these processes [172].
For instance, As inhibits Poly-(ADP-ribose) polymerase-1 in humans, which is involved
in the process of DNA breakage repair caused by oxidative stress [173,174]. HMs such
as Cd, Hg, and Pb can exert genotoxic effects on plants, causing various types of lesions
in DNA molecules. Elevated levels of Cd and Pb induce significant breakages in DNA
double strands, causing genome instability in fava bean (Vicia faba). Soil contaminated with
Hg, Pb, Cu, Cd, and Zn caused increased levels of chromosomal abnormalities such as
bridges, laggards, stickiness, and fragmentation in chickpea (Cicer arietinum). Certain HMs
can damage DNA molecules by binding to phosphate backbones or nucleobases, causing
cleavage of DNA molecules. Mercury can form covalent bonds with DNA molecules,
resulting in the induction of sister chromatid exchange, a decrease in mitotic index, and an
increase in the frequency of chromosomal aberrations [175,176].

4.4.2. Effects on Gene Expression

HMs regulate up or down expressions of many genes, including the members of metal
ATPase (HMA2, HMA3, and HMA4), metal transporter (ZIPs, MTPs, NRAMPs, ABCs),
signal transduction (MAPKs), and metabolism-related families [177,178]. They can affect
gene expression through inactivation of transcription factors (TFs) by replacing metallic
components from metal-containing TFs. For example, Cd toxicity to Zn finger TF was
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significantly reduced in the presence of a sufficiently high level of Zn2+, suggesting a
protective effect of Zn2+ against Cd toxicity to Zn finger TFs [179]. TFs of diverse families
modulate plant responses to HM toxicity through positive or negative regulations of stress-
responsive genes [175,180]. For instance, barley plants overexpress dehydration-related
TFs to protect against toxic effects of Cd and Hg [10]. However, it was also shown that
constitutive overexpression of some genes caused enhanced uptake of HMs in plants. Some
genes expressed in response to metal exposure are encoded for proteins that perform
membrane transport functions for HM sequestration. Genetic modification of plants with
such genes may be useful to enhance phytoremediation efforts in HM-contaminated soil.
Plant cells also utilize various molecular mechanisms, such as signal transduction, gene
overexpression, RNA processing and transport, and post-translational modifications to
counter the toxic effects of HMs and other stress factors in plants [10,181–183].

4.5. Hormonal Deregulation

Among the plant hormones, auxins, cytokinins, gibberellins, abscisic acid (ABA), and
ethylene are predominantly involved in growth regulation. However, ABA and ethylene
also participate in stress responses along with defense hormones, salicylic acid (SA), jas-
monic acids (JA), and brassinosteroids (BSs) [184,185]. Several investigations involving
different crop species demonstrated that exogenous application of some hormones can
partially alleviate the toxic effects of certain HMs on selected plant growth parameters,
suggesting that HMs might exert a negative impact on endogenous hormone levels in
plants [186,187]. Several examples are cited below.

The exogenous application of kinetin (a cytokinin) was shown to reduce the inhibitory
effects of Cd on several physiological parameters of pea plant, Pisum sativum (Table 9),
suggesting that kinetin might have alleviated the toxic effect of Cd [188]. Exogenous GA3
reduced the inhibitory effects of Cd and Pb on soluble protein contents in both broad
bean (Vicia faba) and lupin (Lupinus albus), suggesting that GA3 might have relieved the
toxic effects of Cd and Pb on these vegetable species [189]. The auxin-induced alleviation
of Cd toxicity in Arabidopsis thaliana was suggested to be due to an increase in the level
of hemicellulose content in the cell that fixed Cd within the cell wall and lessened Cd
translocation from root to shoot [190]. Wheat plants treated with Cd exhibited a significant
reduction in growth, pigment content, and the activities of antioxidant enzymes (superoxide
dismutase, catalase, and peroxidase); however, pretreatment of these plants with indole
acidic acid (IAA) or SA remarkably reduced Cd toxicity. These observations suggest that
IAA and/or SA enhanced the antioxidant defense activities in Cd-stressed wheat [191].
Treatment of tomato plants with BSs partially alleviated the toxic effect of Cd on growth
and photosynthetic activity, which was suggested to be due to a BSs-induced improvement
of antioxidant activity in plants [192]. Based on these and similar observations in other
studies, it can be assumed that the defense hormones (SA and BSs) can stimulate the
antioxidant defense system in plants in conjunction with other growth hormones (auxins
and gibberellin) when exposed to HM toxicity [186,193,194].

In contrast, HMs can also influence the level of ABA, the negative growth regulator in
plants. For example, numerous studies have shown that the level of endogenous ABA is
elevated in the tissues of different plant species when exposed to toxic levels of HMs such
as Cd, Hg, Cu, Zn, Pb, and Ni [187,195]. Molecular analysis of plant tissues exposed to HMs
showed strong expression of ABA biosynthesis genes and up-regulation of several ABA
signaling genes [187]. Based on the above reports, it can be assumed that ABA perhaps
coordinates protection against HM toxicity in plants. However, a study conducted utilizing
ABA-deficient and ABA-sensitive mutants failed to establish such relationships, at least
at early stages of plant growth [196]. Thus, it is unclear as to how HMs and ABA interact
with each other in plants, although it has been established that ABA strongly reduced the
phytotoxicity of HMs in plants [197,198]. Because ABA acts as a negative regulator of plant
growth, it might be possible that ABA-induced inhibition of plant growth restricts HM
translocation in plants.



Agronomy 2023, 13, 1521 18 of 30

Table 9. Partial alleviation of toxic effects of cadmium on some physiological growth parameters in
pea plant (Pisum sativum) in the presence of a cytokinin hormone (adapted from [188]).

Physiological Parameters * Kinetin (µM)
Cadmium (µM)

0 25 50

Chla/Chlb content (%) 0
20

100
114/112

73/72
158/149

48/44
139/129

Photosynthesis rate (%) 0
20

100
124

88
146

42
80

Soluble sugars content (%) 0
20

100
180

67
226

49
249

Soluble proteins content (%) 0
20

100
72

119
61

133
50

Amino acid content (%) 0
20

100
132

73
179

65
200

* Control treatments as 100%.

While the exact mechanism of interactions between HMs and different growth and
defense hormones is not fully understood, based on the reports presented above, it can be
assumed that plant hormones can modify HM toxicity in plants. Further research can help
better establish the links between hormone signaling pathways and metal-binding ligands
in plants.

4.6. Inhibition of Soil Microorganisms

Beneficial soil microorganisms, including bacteria, fungi, actinomycetes and several
others are indispensable components for crop productivity. They contribute to soil fertility
and crop health in many different ways, such as releasing nutrients from organic matters,
recycling plant nutrients, and fixing atmospheric nitrogen to facilitate plant uptake; produc-
ing hormones, enzymes, and secondary metabolites to promote plant growth; degrading
pesticides and other pollutants in the soil; controlling soil-borne pathogens by colonizing
around plant roots to form physical barriers; producing antibiotics to inhibit pathogenic
microbes; and improving soil physical structure to sustain agroecosystems [199,200].

Although at low concentrations certain HMs can stimulate growth, at elevated levels
they severely inhibit the growth, proliferation, and diversity of soil microbial populations in-
volved in the beneficial activities stated above, thus indirectly affecting the crop health and
productivity. Previous studies indicated that microorganisms are in general more sensitive
to HM toxicity than other living organisms, including plants growing in the same edaphic
environment. However, the degree of toxicity of HMs to different microbial groups can
also vary because it is dependent on the inherent toxicity of the HM elements involved and
their bioavailability in the soil [103,201–204]. Furthermore, some plant-growth-promoting
bacterial species (e.g., Pseudomonas, Arthrobacter, Rhodococcus, Mesorhizobium, Agrobacterium,
Bacillus, Azoarcus, Azospirillum, Azotobacter, Burkholderia, Klebsiella, Alcaligenes, Serratia, Rhi-
zobium, and Enterobacter) are naturally tolerant to high concentrations of HMs; thus, they
can be used in bioremediation of HM-contaminated soils, provided the soil conditions are
favorable for their growth and proliferation [205,206].

HMs negatively affect soil microbial populations through enzyme/protein denatura-
tion and the destruction of cell membrane integrity. Many studies reported that HMs impair
substrate utilization in enzyme-catalyzed reactions, particularly during microbial respira-
tion. For instance, when microbial growth media were amended with Zn, Cu, and Pb, the
evolution of CO2 was significantly reduced; however, when the media were supplied with
an adequate source of organic carbon, the negative effect on respiration was substantially
reduced, confirming the effects on microbial respiration [203,207]. Despite some conflict-
ing reports, the microbiological characteristics, such as basal soil respiration; activities of
dehydrogenase enzymes, which are inactive outside microbial cells; and quantification of
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the phospholipid fatty acid (PLFA) molecule, which is decomposed upon microbial cell
death, can be used as sensitive indicators to approximately determine HM contamination
in agricultural soils [208]. However, for precise determination of microbial diversity in HM-
contaminated soils, various molecular techniques, including restriction fragment length
polymorphism (RFLP) and sequence analysis of microbial genetic constituents such as 16S
and 18SrRNA can be carried out [209].

5. Visual Toxicity Symptoms of HMs in Plants

Numerous studies have shown that at elevated levels HMs induce oxidative stress,
raise endogenous ABA levels, and interfere with many physiological and metabolic pro-
cesses, causing various growth abnormalities in plants, including crop plants [3,187,210].
Because these abnormalities often resemble nutrient deficiencies as well as damages caused
by diseases or pesticides [20,130,211–215], here we list toxicity symptoms of non-essential
HM elements that do not produce deficiency symptoms in plants (Table 10). Some of the
common visible symptoms of these HM elements include chlorosis, inhibition of seed
germination, stunting of root and shoot growth, reduction of biomass accumulation and
yield, and the occasional death of plants. Based on their degree of plant toxicity, these HMs
can be tentatively ranked as follows: Cd > As > Pb > Hg > Cr [216].

Table 10. Visual toxicity symptoms of HMs with no inherent symptoms of deficiency in plants.

Toxicity Symptoms Observed in Some Studies Involving Multiple
Plant/Crop Species References

Cadmium (Cd2+): solubility in water—high; mobility in soil colloids—high; bioavailability in soil—high; translocability in
plants—high, toxicity in plants—highly lethal.

Chlorosis, wilting, leaf epinasty, stunting of plant growth. [217]

Growth inhibition, leaf chlorosis and necrosis, and root browning. [218]

Leaf rolling and chlorosis. [219]

Leaf chlorosis with green coloration around veins; leaf rolling and growth stunting. [220]

Reduction in seed germination, plant growth, biomass accumulation, and crop quality. [221]

Chlorosis on newly expanded leaves, root growth inhibition. [216]

Growth stunting, chlorosis, root tip browning, and plant death. [20]

Stunting of growth, leaf chlorosis, reduction in fresh and dry biomass, plant death. [222]

Reduction in seed germination and shoot and root growth. [211]

Chlorosis, growth stunting, and necrosis. [223]

Stunting of plant growth and blackening of roots. [120]

Lead (Pb2+): solubility in water—low; mobility in soil colloids—poor; bioavailability in soil—limited; translocability in
plants—restricted; toxicity in plants—moderately lethal.

Inhibition of seed germination, early seedling growth, root and stem elongation, and
leaf expansion. [224]

Inhibition of seedling growth and secondary root growth. [225]

Inhibition of seed germination, seedling growth, root and stem elongation, and
leaf expansion. [130]

Inhibition of seed germination, seedling development, root elongation. [8]

Stunting of shoot and root growth. [20]

Plant growth inhibition. [85]

Inhibition of seed germination, root and shoot biomass, root elongation, and cell death. [226]

Inhibition of germination and seedling growth. [227]
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Table 10. Cont.

Toxicity Symptoms Observed in Some Studies Involving Multiple
Plant/Crop Species References

Inhibition of seed germination, seedling height, number of roots per plant, and dry
matter production. [228]

Arsenic (As3+ As5+): solubility in water—high; mobility in soil colloids—high; bioavailability in soil—high; translocability in
plants—high, toxicity in plants—lethal.

Reduction in leaf and root growth, wilting and violet coloration of leaves. [229]

Reduction in shoot and root length, and number of leaves per plant. [230]

Reddening of tips, blades, margins, and midribs followed by yellowing of entire leaves. [231]

Shortening of plant height, premature shedding of leaves, and reduction in the number
and size of nodules. [232]

Reduction in leaf area, leaf fresh weight, fruit yield, seed germination, seedling height,
and dry matter production; stunting of growth; chlorosis and wilting. [130]

Reduction in seed germination, seedling height, leaf area, dry matter production, crop
yield; chlorosis and wilting. [211]

Mercury (Hg2+): solubility in water—low; mobility in soil colloids—low; bioavailability in soil—moderate; translocability in
plants—limited, toxicity in plants—moderately lethal.

Abnormal germination, hypertrophy of root and coleoptile, inhibition of
seedling growth. [233]

Reduction in germination, plant height, tiller and panicle production, biomass
accumulation, and yield; chlorosis. [211]

Decrease in both root and shoot biomass. [76]

Inhibition of seed germination, shoot and root length, and fresh and dry
matter production. [227]

Reduction in seed germination, embryo growth, primary root elongation. [146]

Inhibition of root and shoot biomass. [234]

Inhibition of plant growth, biomass production, and leaf area. [235]

Inhibition of germination, seedling growth and development, biomass accumulation;
leaf chlorosis and necrosis. [236]

Chromium (Cr3+ Cr6+): solubility in water—moderate; mobility in soil colloids—moderate; bioavailability in soil—moderate;
translocability in plants—restricted; toxicity in plants—moderately lethal.

Inhibition of root and plant growth; leaf chlorosis. [186]

Inhibition of seed germination, root and shoot growth; reduction of plant biomass. [130]

Inhibition of seed germination, seedling and plant growth. [237]

Growth retardation, root discoloration. [216]

Chlorosis, necrosis; reduction in dry wight, nodulation, crop yield; inhibition of plant
growth, root length. [238]

Inhibition of seed germination and seedling development and reduction of plant
biomass and crop yield. [239]

Inhibition of germination, root and shoot growth, dry matter production, and yield. [240]

Decrease in seed germination, reduction in growth and yield. [241]

Leaf interveinal chlorosis and root browning. [242]

6. Conclusions and Perspectives

HMs are non-decomposable elements. Their contamination in agricultural soil is
therefore a major threat to sustainable crop production in agriculture worldwide. The toxic
effects of HMs on crop plants become visible when their concentrations exceed threshold
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limits in the soil and tolerance levels inside crop plants. The bioavailability of HM elements
toward crop uptake generally increases with acidic pH, lower amounts of OM, and lower
CEC of the soil. The HM-induced reduction in plant growth and crop productivity can be
attributed directly to, among other things, the generation of oxidative stress; perturbation
of ion homeostasis and water balance; decrease in mineral nutrient uptake and assimilation;
reduction in photosynthetic rate; inhibition of enzyme activities; hormonal deregulations;
and indirectly to the inhibition of beneficial microbial growth and proliferation in the soil.

However, plants have three major lines of defense against HM toxicity. The first line of
defense involves the prevention of HMs from entering the plants by forming extracellular
complexes with root-secreted organic molecules (e.g., amino acids, oxalic acid, citric acid,
malic acid, tartaric acid, and succinic acid) or with root-secreted secondary metabolites
(e.g., flavonoids, phenolics, alkaloids, and other S- and N-containing compounds), or with
microbial metabolites at the rhizosphere. The second line of defense includes chelation
of HMs with carboxyl, hydroxyl, amino, and aldehyde groups of cellulose, hemicellulose,
pectin, and proteins and compartmentalization inside cell vacuoles or osmotic adjustment
of HMs by soluble sugars and proteins in plants. The third line of defense involves the
detoxification of generated ROS by the antioxidant defense system in plants. Thus, if plants
fail to properly execute the above defense barriers against HMs or if HMs overcome these
barriers, then the latter can greatly harm the growth and productivity of plants, including
crop species.

To minimize crop injury from suspected HM buildup in agricultural soil, it is important
that producers keep good records of the application of pesticides, chemical fertilizers,
livestock manures and associated composts, and sewage-sludge-based biosolids, as well as
farmland irrigation. They should follow proper tillage practices (e.g., conservation tillage
can increase soil acidity [243]) and crop rotation, maintain good OM levels in the soil, and
adhere to the judicial use of chemical fertilizers and pesticides in farmlands. Since the
growth of microbial populations is considered as one of the most sensitive indicators for
monitoring metal toxicity, growers can test their soil samples using accredited commercial
microbiological laboratories to determine microbial growth, diversity, and biomass. Because
certain soil-related factors, particularly pH, OM content, and CEC, as stated above, can
influence HM solubility and bioavailability for plant uptake, producers can also test their
soil samples using certified chemical laboratories if crop injury is suspected from HM
toxicity. However, prior to performing the expensive tests listed above, it is advisable to
conduct a simple soil bioassay test utilizing HM-sensitive crop cultivars following a similar
procedure, described in [215]. If HM contamination is confirmed from the afore-mentioned
tests, it is important to follow proper remediation procedures.

For the research community engaged in molecular agriculture, it is important to
develop HM-tolerant crop cultivars by genetic manipulations of endogenous metal-binding
genes and the genes of the antioxidant defense systems of the target crop species. In
addition, the development of microbial biosensors for the rapid detection of contaminated
soil and the degree of contamination is also important for sustainable soil health and
improved crop production. To facilitate research in the above fields, the availability of
funding is crucial.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13061521/s1, Table S1: Maximum allowable concen-
trations of HM elements in agricultural soil in several countries. Table S2: HM contamination in
the soil of arable lands through suspected agricultural practices (cited in Section 2.1). Table S3:
A summary of concentration fold differences of several HM elements in the edible plant parts of a
number of crop and vegetable species reported in some studies. Table S4: Maximum allowable limits
of certain HM elements in food plants and plant-derived food commodities recommended by the
Codex Alimentarius commission. References [244–247] are cited in Supplementary Materials.
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