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Abstract: Counting the soybean pods automatically has been one of the key ways to realize intelligent
soybean breeding in modern smart agriculture. However, the pod counting accuracy for whole
soybean plants is still limited due to the crowding and uneven distribution of pods. In this paper,
based on the VFNet detector, we propose a deformable attention recursive feature pyramid network
for soybean pod counting (DARFP-SD), which aims to identify the number of soybean pods accurately.
Specifically, to improve the feature quality, DARFP-SD first introduces the deformable convolutional
networks (DCN) and attention recursive feature pyramid (ARFP) to reduce noise interference during
feature learning. DARFP-SD further combines the Repulsion Loss to correct the error of predicted
bboxse coming from the mutual interference between dense pods. DARFP-SD also designs a density
prediction branch in the post-processing stage, which learns an adaptive soft distance IoU to assign
suitable NMS threshold for different counting scenes with uneven soybean pod distributions. The
model is trained on a dense soybean dataset with more than 5300 pods from three different shapes
and two classes, which consists of a training set of 138 images, a validation set of 46 images and a
test set of 46 images. Extensive experiments have verified the performance of proposed DARFP-SD.
The final training loss is 1.281, and an average accuracy of 90.35%, an average recall of 85.59% and a
F1 score of 87.90% can be achieved, outperforming the baseline method VFNet by 8.36%, 4.55% and
7.81%, respectively. We also validate the application effect for different numbers of soybean pods
and differnt shapes of soybean. All the results show the effectiveness of the DARFP-SD, which can
provide a new insight into the soybean pod counting task.

Keywords: crowded soybean; object detection; deformanble convolution; attention pyramid

1. Introduction

Soybean is an important crop, containing rich protein and fat, whose safe production
contributes to economic development and social stability. As the most effective way to
improve yield, cultivating high-quality soybean varieties has attracted many breeders’
research interests. In actual breeding, the number of pods per plant is one of the most
important indicators to evaluate the quality and yield of soybean varieties. However, the
number of pods per plant is mainly obtained through manual counting, which is time-
consuming and laborious, limiting the development of large-scale and high-throughput
soybean breeding. In this case, it is urgent to find a fast and efficient method for automatic
pod counting.

Thanks to the rapid development of image acquisition equipment and artificial in-
telligence algorithms, counting the harvest organ based on object detection models has
been proved to be a promising artificial alternative, which has been applied to various
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field objects such as soybeans [1], wheat ears [2–4], rice panicles [5,6], fruits [7–12], etc. For
example, gulzar et al. [11,12] carry out a series of work focus on the fruits classification
based on deep learning. Lyu et al. [10] replace the convolution layer of YOLO V5 with the
attention convolution module to extract more spatial and semantic information of green
oranges, which effectively reduces the missed detection caused by the confusion between
oranges and the environment. Sun et al. [13] introduce the AugFPN to narrow the semantic
gap between features of different scales and reduce the information loss of the feature map,
which improves the detection capability of small wheat ears. For soybean pod counting
tasks, Uzal et al. [14] train the pod detection model after manually disassembling pods.
Though reducing the work intensity of manual counting to a certain extent, destructive
sampling makes the sample unable to maintain the original structural information, which
is not conducive to obtaining the phenotypic information of the whole plant. To solve the
above problem, Guo et al. [15] directly detect pods on the whole soybean plant and achieve
a speed of 240 plants/hour, greatly improving the detection efficiency. Li et al. [16] further
propose the SPM-IS, which acquires a material soul type based on instance segmentation.

Existing soybean pod detection works advanced both the counting accuracy and speed,
while their performances still cannot meet the actual application demand for counting
pods, especially for the following scenes: (1) Crowded pods. A large number of pods are
often crowded in a certain area of a single soybean image because of the cluster growth
characteristics of soybean pods. The pods with uncertain posture are shielded by the
stems and surrounding pods. When the convolution neural network extracts the feature of
pods, it will inevitably mix with noise, affecting the final detection accuracy. (2) Uneven
distribution of pods. The multi-branched structure of soybean makes the pod density
change obviously in different local areas. The detection model not only generates anchors
of a fixed size and number for each spatial position uniformly when generating candidate
proposals, but also fuses predicted bounding boxes with a given threshold. Both two
aspects make it is impossible to achieve adaptive detection according to the pod density,
resulting in some pods being missing from the count.

To improve the soybean pod counting accuracy, in this paper, we first adopt the dense
anchor-free detection algorithm VarifocalNet [17] as the baseline and qualitatively analyze
the advantages when applying the VarifocalNet in the soybean pod detection. Different
from previous efforts that mainly follow the Faster-RCNN or YOLO series, VarifocalNet
includes an IoU-aware Classification Score (IACS) in the classification branch and a star-
shaped bounding box representation method in the regression branch, respectively. IACS
multiplies the original classification score and IoU between the predicted bbox and its
ground truth, whose output will be used as the class label value to improve the reliability
of the prediction box ranking. Compared with the classification scores used by existing
algorithms such as YOLO, IACS helps integrate the spatial information of the bounding box
into the classification score, which can simultaneously evaluate the classification confidence
and positioning quality of the box. The star-shaped box representation method selects
eight fixed points around the sampling points on the feature map. For pods with variable
shapes, this representation method can better capture the geometric shape of the bounding
box and the local context information than the diagonal point coordinate representation
method used by other algorithms. At the same time, to alleviate the issues of crowded
and uneven pods, we further propose a deformable attention recursive feature pyramid
network (DARFP-SD) for soybean pod counting based on the VarifocalNet. DARFP-SD
first introduces the deformable convolutional networks (DCN) and attention recursive
feature pyramid (ARFP), which aims to reduce noise interference during feature learning.
DARFP-SD further combines the Repulsion Loss to correct the error of predicted boxes
coming from the mutual interference between dense pods. DARFP-SD finally designs
a density prediction branch in the post-processing stage, which learns an adaptive soft
distance IoU to assign a suitable NMS threshold for different counting scenes with uneven
soybean pod distributions.
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In summary, our contributions are as follows: (1) A detailed review is conducted to
examine the most notable work in soybean pods based on deep learning, and challenges of
crowding and uneven distribution in practical applications of pod counting are summarized.
(2) A deformable attention recurrent feature pyramid network is specifically designed,
which adaptively extracts fine-grained soybean features and assigns suitable NMS threshold
to improve the counting performance of crowded and uneven soybean pods. (3) Extensive
experiments are conducted on the constructed soybean pods dataset. Quantitative and
qualitative results validate the effectiveness of the proposed method, which significantly
outperforms baseline methods in different scenarios and can achieve a state-of-the-art
performance compared to previous counting methods.

The layout of this paper is arranged as follows: Section 1 (this section) introduces the
background of the research and to highlight the problem statement. The main contribution
of this paper is presented in Section 2, where the principles and designs of the DARFP-SD
algorithm are described. Section 3 discusses the results and in Section 4 the conclusion of
this work is drawn and future work along the line is proposed.

2. Materials and Methods
2.1. Image Acquisition and Annotation

The soybean plants are placed on the non-reflective black suede (1.5 × 1.5 m) and
occurs in the middle of the camera field of view with the basic growth shape. We use a
tripod to keep the camera off the ground about 1 m and the angle of the camera is about
75 degrees to the horizontal ground. The shooting scene is shown in Figure 1a. For each
soybean plant, we collect 3 images and artificially select the clearer one as the representative
image of the plant. According to the opening angle among the main stem, branch and
petiole, as shown in Figure 1b–d, we further divide soybean shapes into: (1) Open: The
angle is generally above 45◦. (2) Convergent: The angle is generally 15◦. (3) Semi-open: The
angle is between 15◦ and 45◦. In this study, a plant will be classified as convergent when
all the branches have an angle of less than 15◦ with the main stem, while it is classified as
open as long as there is a branch with an angle greater than 45◦ with the main stem.

(a) shooting scene (b) convergent (c) open (d) semi-open

Figure 1. Shooting scene and collected images.

The final soybean dataset contain 230 images with a resolution of 3456× 5184. The
pods are yellowish brown with a relatively different shape, whose number ranges from
10–70 in a single picture. We then manually label the image through the tool of Labelme,
marking the pods with a rectangular box and recording the coordinates of the upper
left vertex (Xmin, Ymin) and the lower right vertex (Xmax, Ymax) of the labeling box. For
individual pods, the minimum circumscribed rectangle is marked with a rectangular box.
For pods covered by stems, the area where the stems are located is regarded as a part of
the pod and marked. For crowded pods, the pods visually in the upper layer are labeled
as individual pods, while the pods visually in the lower layer are labeled as a whole by
considering the different parts separated by the upper pods. We split the original images
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into training, validation, and test sets in a ratio of 3:1:1, and the number of pictures in a
different set is shown in Table 1.

Table 1. Detail of the soybean detection data set.

Type Training Set Val Set Test Set Total

Convergent type 48 16 16 80
Semi-open type 12 4 4 20

Open type 78 26 26 130
Total 138 46 46 230

2.2. Design of DARFP-SD

The DARFP-SD algorithm mainly includes the Deformable Attention Recursive Fea-
ture Pyramid (DARFP) and the Bounding box Refinement (BR). The DARFP module firstly
extracts features through the ResNet-50 backbone with the deformable convolution ker-
nel [18], which aims to increase the size of the effective receptive field so that the sampling
point of the convolution operation can avoid the interference of stems to a certain extent
and improve the quality of the learning network for sheltered pod features. To select the
appropriate feature map to construct a recursive pyramid, DARFP then quantifies the
relationship between the pod size and receptive field, increasing the recursive feedback
connection with the feature learning network. BR designs an adaptive SDIoU-NMS branch,
where the local area density will be predicted to help adaptively assign the NMS threshold.
BR is supervised with the Repulsion loss [19] and GIoU loss, which constrains the predicted
box close to the corresponding ground truth and away from labeled boxes of other targets,
which can improve the position accuracy of the candidate proposals. We will describe the
detail of each module step by step in the following subsections.

2.2.1. Deformable Attention Recursive Feature Pyramid

Feature extraction based on deformable convolution. Traditional convolution op-
eration learns the features through window sliding. When the size and stride of the
convolution kernel are determined, the receptive field is fixed and its specific weight value
will be determined in the network training process. Taking the 3× 3 convolution kernel
and input image X as an example, the pixel p0 on the feature map F can be calculated as
Equation (1):

F(p0) = ∑
pn∈R

w(pn) · X(p0 + pn) (1)

where w(pn) represents the weight of convolution kernel in position pn. pn is the 8 neigh-
borhood positions of p0 and can be formulated as pn ∈ {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}.
Due to the uncertainty of the growth direction of pods in a single soybean plant, as shown
in the blue area of the local pod feature map in Figure 2, the fixed receptive field has a
large number of sampling points outside the pods during feature learning, which will
amplify the interference of background noise (such as stems) on pod features and restrict
the quality of the feature map and candidate regions generated based on the feature map.
To this end, we add an additional deformable convolution layer to predict the horizontal
and vertical offsets for each pixel in the feature map. The whole feature extraction process
of the deformable convolution for pods is shown in Equation (2):

F(p0) = ∑
pn∈R

w(pn) · X(p0 + pn + ∆pn) (2)

where ∆pn is the offset of the predicted pixel pn. For each pixel, its final offset is the super-
position of the offset components in the horizontal and vertical direction. X(p0 + pn + ∆pn)
is obtained through the bilinear interpolation. As shown in the green area of the local
pod feature map in Figure 2, for pods with an uncertain attitude, deformable convolution
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can adaptively capture various shape and scale information of pods, effectively reducing
noise interference.

Figure 2. Feature extraction based on deformable convolution.

Feature enhancement based on attention. For the feature map F ∈ RC×H×W , before
constructing the DARFP, we introduce the channel attention and spatial attention based
on the convolutional block attention module (CBAM) to enhance the feature quality, as in
Equation (3):

F
′′
= MS(F

′
)
⊗

F
′
= MS(MC(F)

⊗
F)
⊗

(MC(F)
⊗

F) (3)⊗
means the element-wise multiply, and Ms and Mc are the channel attention and

spatial attention. For the original channel-wise feature F, channel attention helps to capture
the discriminative information of the object by learning the response relationship between
channel features and the category label. For the crowed pods in our research scene, with
semantic dependency between different channels, the features are guided to pay more
attention to the pod areas rather than the complex background. The feature enhancement
process based on channel attention is modeled through a max pooling Maxpoool() and
average pooling Avepoool(), as in Equation (4):

Mc(F) = σ(W0(Avepoool(F)) + W1(Maxpoool(F))) (4)

Here, W0 and W1 are the learned weight of a shared Multilayer Perceptron. σ means a
Sigmoid activation function. For the uneven pods, fully embedding their spatial position
information into the features is obviously helpful to improve the accuracy of detection and
counting. Different from channel attention mechanism, we further utilize the spatial depen-
dency between features to generate the spatial attention map, which can complementarily
mine the spatial location information of pods ignored by the channel attention module.
We calculate the spatial attention based on the feature maps enhanced with the channel
attention. Similar to the channel attention, a max pooling and average pooling operation
will be added to output FS

Max ∈ R1×H×W and FS
Avg ∈ R1×H×W . Then, the two feature maps

will be fused through a convolution operation f 7×7 with a 7× 7 kernel, as:

MCBAM(F) = σ( f 7×7([Avepoool(F); Maxpoool(F)]) (5)

To make the most use of the semantic and spatial dependency between different
channels captured by the MS(F) and MC(F), we add the channel attention and spatial
attention to each layer of the recursive feature pyramid.
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Selection of feature maps. The area of the input image corresponding to any pixel on
the feature map is described as the receptive field. The image information in the receptive
field area directly affects the quality of the features learned by the network. The calculation
method of thereceptive field in each layer is shown in Equation (6):

SRF(t) = (SRF(t− 1)− 1)Ns(t) + S f (t) (6)

SRF(t) is the size of the receptive field of the convolution layer t, and Ns(t) and S f (t)
are the stride and kernel size of layer t, respectively. For the soybean pods distributed
by leaves or branches, to suppress the interference of background, we would like to let
the receptive field be equivalent to the pod size. According to Equation (6), the receptive
field sizes of the C2, C3, C4 and C5 layer of ResNet50 are 35× 35, 91× 91, 267× 267 and
427× 427. For the images of the single soybean plant collected in this study, the average
size (length × width) of a single pod is about 100× 53 pixels after randomly selecting and
manually counting 50 images. In order to make the sheltered pod feature learning network
universal for pods of different sizes, without adding additional convolution layers, we
select the output of C3, C4 and C5 layer so that the original receptive field of the shallowest
feature map is close to the average pod size. Similar to DCNV2 [20], our DARFP introduces
the deformable convolution with a 3 × 3 kernel to conv2, conv3, conv4 and conv5 of
ResNet50, so that the feature extraction can improve the noise immunity at different scales.

Feature fusion based on recursive feature pyramid. The information contained in the
feature maps output by different convolution layers is different. To fully exploit the limited
pod features, the classical FPN [21] fuses features of different scales along the top-down
direction. However, the feedforward propagation is only conducted between the backbone
and the pyramid structure, which means the gradient optimization information obtained
during the pyramid constructing process cannot be fed back to the backbone to help the
parameter learning. Motivated by DetectoRS [22], we add cross layer feedback links for
different feature pyramids. The feature map output from the previous recursive pyramid is
first followed by a convolution operation. Then, the original feature and output feature will
be stacked together as the feature layer of the next recursive pyramid. The transmission
and calculation between the feature layers of the recursive feature pyramid are shown in
Equation (7):

f l
i = Fl

i ( f l
i+1, xl

i), xl
i = Bl

i (xl
i−1, Rl

i( f l−1
i )) (7)

Rl
i represents the feature transformation operation with a 1× 1 convolution kernel.

For any layer i = 1, 2, . . . , S, Bl
i and Fl

i represent the feature maps of i layer and the i-th top-
down operation of the FPN in recursions’ step l. After introducing recursions’ parameter l,
the residual FPN can be expanded into a continuous network to extract and fuse features
repeatedly, which can effectively improve the utilization of the priority feature information.
The feedback also makes the parameter update optimize the feature extraction. In order to
balance the feature quality and model training speed, the maximum number of recursions
is set as 2.

2.2.2. Bounding Box Refinement

Non-maximum suppression is a common post-processing for object detection, which
aims to suppress redundant predicted boxes in the detection results. However, limited by
the cluster growth habit of the pod, only part of the pods can be successfully detected among
the crowded multiple pods. Intuitively, the correct predicted bounding box belonging to one
pod may be regarded as the offset predicted bounding box of another adjacent pod, which
will be suppressed as a redundant predicted bounding box by the NMS algorithm [23].
Increasing the NMS threshold can reduce the missed detection rate of pods theoretically,
while it is challenging to manually set an appropriate threshold to handle the uneven
pods with different densities at different locations. To this end, we design the adaptive
SDIoU-NMS and Repulsion Loss to refine the bounding box.
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Adaptive SDIoU-NMS. Adaptive SDIoU-NMS first introduces the DIoU [24] to the
Soft-NMS algorithms, which can measure the similarity and overlap between the two
predicted boxes better. Compared with classical Soft-NMS, the adaptive SDIoU-NMS also
considers the distance RDIoU between the center points of the two boxes. The suppression
function in SDIoU-NMS can be calculated as Equations (8)–(10).

Si =

{
Si, DIoU(M, Bi) < T
Si(1− DIoU(M, Bi)), DIoU(M, Bi) ≥ T

(8)

DIoU(M, Bi) = IoU(M, Bi)− RDIoU(M, Bi) (9)

RDIoU(M, Bi) = (ρ2(b, bgt))/C2 (10)

For the i-th object, Si is the classification scores of all predicted boxes. M and Bi are
the box with the highest score and other predicted boxes. b and bgt represent the center
points of the predicted box and the ground truth box, and ρ is the Euclidean distance
between these two center points. c is the diagonal distance of the minimum closure area
that contains both the predicted box and the ground truth box. T is the threshold indicating
the maximum IoU with all ground truth boxes.

For pods with an uneven number distribution, we expect a small threshold for sparse
pods to remove more redundant boxes while a large threshold for dense pods to improve
recall. To this end, based on SDIoU-NMS, the adaptive SDIoU-NMS further designs an
independent density prediction branch to estimate the pod density, so that threshold T
can be dynamically adjusted according to the pod density. The density prediction branch
adopts the VGG16 as the backbone, whose network structure is shown in Figure 3. Note
that, in order to consider more context information around the objects, 5× 5 convolution
kernel is used in the final convolution layer to increase the receptive field. The degree of
density at the first target is defined as Equation (11):

di := max(IoU(bi, bj))bj∈G,i 6=j (11)

bi and bj are the generated bounding box and ground truth. At the inference stage,
the density prediction network outputs the object density at each position. Substituting
the entire density value back into Equations (8) and (11), the adaptive SDIoU-NMS finally
completes the operation of non-maximum suppression.

Figure 3. Network structure of density prediction branch.



Agronomy 2023, 13, 1507 8 of 17

2.2.3. Loss Function

Bounding box refinement further introduces the Repulsion Loss [19] to optimize the
regression of the bounding box. For the predicted pod bounding boxes close to each other,
the Repulsion loss LRep can constrain each predicted box to stay away from surrounding
real boxes belonging to other objects while being close to its corresponding real box. Then,
the overall loss of DARFP-SD is defined as Equation (12):

L = Lcls + αLGIoU + βLRep (12)

Lcls =

{
−q(qlog(p) + (1− q)log(1− p)), q > 0
−pγlog(1− p), q = 0

(13)

LGIoU = 1− (IoU − |C(A
⋃

B)|
C

) (14)

α and β are used to adjust the proportion of the GIoU loss LGIoU and Repulsion
loss LRep. Here, we set both of them to 0.5. GIoU loss can reflect the overlap between
the predicted box and the ground truth box while retaining all the properties of the IoU.
C represents the smallest rectangular area, including two different boxes, A and B. The
classification loss Lcls is based on VariFocal Loss, which can significantly improve the
quality of candidate regions and pod recognition accuracy in crowded regions. p is the
predicted IoU-aware classification score. For positive samples, q is the IoU between the
predicted bounding box and the ground truth box; for negative samples, the value of q is 0.

2.3. Counting Pods Based on DARFP-SD

Based on the proposed DARFP-SD, we further train the pod counting model, whose
framework is illustrated in Figure 4. In order to improve the generalization ability of the
model, an adaptive training sample selection strategy is adopted, and topk = 9 is set to keep
the balance of positive and negative samples. The parameters of the backbone is initialized
using a model pre-trained on the Imagenet dataset. The model is trained for 200 epochs
with a batch size of 4 and an initial learning rate of 0.00125. The learning rate is adjusted
based on the cosine annealing algorithm and Warmup. The density estimation module
of the adaptive SDIoU-NMS is initialized with random network parameters. The other
training strategies are consistent with those used to train pod object detection networks.

Figure 4. Pipeline of pod counting based on DARFP-SD.
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3. Results
3.1. Evaluation Index

The accuracy, recall and F1 are selected as the evaluation indicators to measure the
model performance, which can be calculated as:

Pt = 1− Nerr

Ndect
(15)

Pc =
Ncor

Nreal
(16)

F1 =
2× Pc × Pt

Pc + Pt
(17)

Ncor and Nerr are the number of pods detected by the model correctly and wrongly,
respectively. Nreal is the actual number of pods contained in the test image, and Ndect is the
number of detected pods.

3.2. Comparison with SOTA Methods

To verify the effectiveness of the proposed DARFP-SD for soybean pod detection, we
first compared the results of DARFP-SD with other representative detection algorithms,
whose accuracy, recall and F1 are shown in Table 2. For pods with different postures,
our DARFP-SD can achieve the best performance with an average accuracy of 90.35%,
recall of 85.59% and F1 of 87.90%, which are 8.36%, 4.55% and 7.81% higher than the
baseline method VFNet, respectively. The above results first validate the effectiveness of
the deformable attention recurrent pyramid. By capturing multi-scale pod information,
the deformable recurrent pyramid can significantly enhance the model’s ability to express
pods with different poses, and further improve feature quality and classification accuracy.
As shown in Figure 5d,e, for individual pods or dense pods missed by VFNet due to
stalk interference, DARFP-SD can improve the quality of candidate bounding boxes after
introducing the repulsion loss.

Table 2. Comparison of soybean detection performance with different models.

Method TP FP Pt% Pc% F1%

Faster R-CNN 1136 141 88.95 64.34 74.67
RetinaNet 1301 259 82.70 74.10 78.17
YOLO V4 1327 253 83.50 75.69 79.40
YOLO V5 1408 733 66.70 84.76 74.13

VFNet 1422 345 81.04 81.53 81.28

DARFP-SD + VGG16 1335 300 80.52 82.23 81.36
DARFP-SD + AlexNet 1250 314 79.05 76.63 77.15

DARFP-SD + DarkNet53 595 117 83.23 39.07 51.05
DARFP-SD + MobilenetV3 841 214 79.03 51.79 60.26
DARFP-SD + ResNet(ours) 1502 179 90.35 85.59 87.90

(a) Faster R-CNN (e) DARFP-SD (ours)(b) RetinaNet (c) YOLO V4 (d) VFNet

Figure 5. Detection effects of soybean pod based on different models.
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We also conduct a set of experiments to study the counting performance with various
backbones in Table 2, such as VGG16, AlexNet, DarkNet53 and MobilenetV3. Compared
with the well-designed ResNet, the counting results demonstrate a slight drop to varying
degrees. Compared with Faster R-CNN, DARFP-SD achieves a similar detection accuracy
rate, while improving the recall rate by more than 10%. As shown in Figure 5a, though
Faster R-CNN performs better in areas where pods are sparsely distributed, it misses
more for smaller pods or pods with occlusions, which seriously inhibits its recall rate.
For RetinaNet that also incorporates feature pyramids, the average accuracy, recall and
F1 of our DARFP-SD outperforms by 6.42%, 11.19% and 8.99%, respectively. With the
collaboration of deformable recursive attention pyramid and box optimization, DARFP-SD
can alleviate the changing of pod posture and uneven distribution of pod quantity, which
meets the actual application requirements of soybean counting per plant.

3.3. Effectiveness Analysis of ARFP

To quantify the improvement of the attention deformable recursive pyramid (ARFP)
on model feature quality and counting accuracy, the feature extraction module based on
deformable convolution and the feature fusion module based on the attention recursive
feature pyramid were used to train the pod counting model, whose experimental results
are shown in Table 3. After introducing the deformable convolution and attention recursive
feature pyramid, the average accuracy, recall and F1 increased to 87.57%, 85.06% and 86.30%,
which improved the detection performance far more than only using the deformable
convolution or recursive pyramid. The results verify the effectiveness of the deformable
attention recursive feature pyramid in this study, where the feature expression ability of
individual soybean pods with indeterminate posture can be better improved with ARFP.

Table 3. Detection results with various feature extraction and fusion module, where ’
√

’ and ’×’
means with/without the corresponding module. ’/’ means the missing of results.

VFNet DCN RFP CBAM Pt% Pc% F1% ∆Pt% ∆Pc% ∆F1%
√

× × × 81.04 81.53 81.28 / / /√ √
× × 81.84 84.23 83.02 +0.80 +2.7 +1.74√

×
√

× 85.67 83.87 84.76 +4.63 +2.34 +3.48√
×

√ √
87.09 84.67 85.86 +6.05 +3.14 +4.58√ √ √ √
87.57 85.06 86.30 +6.53 +3.53 +5.02

× ×
√

× 79.46 78.28 78.87 −1.58 −3.25 −2.41

Effectiveness of deformable convolution for feature extraction. To verify the improve-
ment of deformable convolution, we replace the conv2, conv3, conv4 and conv5 layer of
ResNet50 with deformable convolution. Compared with the baseline method using the
traditional convolution module, after introducing the deformable convolution module, the
average accuracy, recall and F1 are increased by 0.80%, 2.70% and 1.94%, respectively. As
shown in Figure 6a,b, the receptive field can avoid the stalk area. By adaptively capturing
the various shape and scale information of pods, the deformable convolution can effectively
suppress noise interference and improve the feature quality of pods with uncertain poses
and the recall of positive samples.

Effectiveness of attention module for feature enhancement. After combining CBAM in
the recursive feature pyramid, the average accuracy, recall and F1 can increase by 1.42%,
0.8% and 1.1%. Adding the CBAM can effectively improve the detection effect of pods
blocked by stalks. As shown in Figure 6c,d, adding the CBAM can effectively improve
the detection effect of pods blocked by stalks. In addition, the accuracy of crowded small-
sized pods is also significantly improved. We suppose the improvement comes from the
interaction relationship between multi-scale features captured by CBAM, which helps to
dynamically assign the optimal weight for the feature fusion of different layers.
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(a) VFNet+CN

(b) VFNet+DCN

(c) VFNet+RFP

(d) VFNet+RFP+CBAM

Figure 6. Visualization of detection improvement with DCN and CBAM.

Effectiveness of attention recursive feature pyramid for feature fusion. To verify the
effectiveness of the recursive feature pyramid, we construct a traditional feature pyramid
and a recursive feature pyramid (the number of recursions is set to 2) based on the feature
distribution output by the C3, C4, and C5 layers of ResNet50. It can be seen from Table 3
that the average accuracy, recall and F1 of recursive feature pyramid can improve by
4.63%, 2.34% and 3.48%. Visualization results in Figure 7 demonstrate the recursive feature
pyramid benefits to the small-sized pods. We also visualizes the feature maps obtained by
different backbone networks. The color indicates the weight of the feature in the region. It
can be found that the feedback information acting on the backbone network can improve
the utilization of feature information after adding the RFP structure. Specifically, areas of
pods and stems are evenly covered without differences in Figure 7a, while more areas are
activated in Figure 7c.

(a) VFNet (b) VFNet+RFP (c) DetectoRS+RFP

Figure 7. Detection effects and feature visualization of different models.

3.4. Effectiveness Analysis of BR

Effectiveness of repulsion loss. To verify the effectiveness of the bounding box re-
finement, we conduct a set of experiments based on repulsion loss and the adaptive
SDIoU-NMS, whose results are reported in Table 4. Compared with the VFNet, the increase
of accuracy is only 1.33% when introducing the DIoU loss to optimize the bounding box.
After using the repulsion loss, the average accuracy for pods can significantly increase
to 86.69%. A similar performance increase trend also occurs in other baselines, such as
Faster R-CNN or RetinaNet. As shown in Figure 8, the repulsion loss can guide the model
to effectively eliminate the interference of other similar candidate regions when the box
returns, while it may exist as a performance boundary for more than four pods.
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Table 4. Performance comparison of different loss.

Methods Backbone Loss Function Post Processing Pt% Pc% F1%

VFNet ResNet50 + FPN GIoU Loss NMS 81.04 81.53 81.28
VFNet ResNet50 + FPN DIoU Loss NMS 82.37 81.62 81.99
VFNet ResNet50 + FPN Repulsion Loss NMS 86.69 81.59 84.06

Faster R-CNN ResNet50 + FPN GIoU Loss NMS 88.95 64.34 74.67
Faster R-CNN ResNet50 + FPN Repulsion Loss NMS 89.82 64.78 75.28

RetinaNet ResNet50 + FPN GIoU Loss NMS 82.70 74.10 78.17
RetinaNet ResNet50 + FPN Repulsion Loss NMS 84.57 75.78 79.94

(a) VFNet
+ GIoU Loss

(b) VFNet
+ DIoU Loss

(c) VFNet
+ Repulsion Loss

(d)  Faster R-CNN
+ Repulsion Loss

(e) RetinaNet
+ Repulsion Loss

Figure 8. Detection effects of pods with various losses.

Effectiveness of adaptive SDIoU-NMS. From the results in Table 5, the average recall
rate of the model increased by 0.3% and 1.57% after the introduction of Soft-NMS and
SDIoU-NMS, respectively. For our adaptive SDIoU-NMS, a best F1 of 83.57% can be
obtained based on VFNet. The results first verify the effectiveness of our SDIoU-NMS, that
is, for pods with large differences in quantity distribution, setting the threshold according
to DIoU can more finely evaluate the quality of the predicted boxes. We also visualize the
detection results of different NMS strategies in Figure 9. For local scenes with clustered
growth, relatively scattered and many stalks, the horizontal comparison detection results
demonstrate that SDIoU-NMS can not only retrieve the detection frame that was wrongly
removed by NMS, but also reasonably distinguish Soft-NMS errors. When using the
adaptive SDIoU-NMS strategy for non-maximum suppression, the average accuracy rate,
recall and F1 are 82.83%, 84.33% and 83.57%, respectively, which are further improved by
0.39%, 1.23% and 0.80% compared with SDIoU-NMS. It shows that adaptively learning the
density to the set threshold can improve the recall. As can be observed in Figure 10, the
adaptive SDIoU-NMS outputs less multi-inspection, maintaining a reasonable evaluation
and screening of pods in dense areas. Thanks to the dynamic adjustment of the threshold,
there is no missed detection in sparser areas due to higher thresholds such as SDIoU-NMS
(yellow box). In addition, the accuracy is still stable for different plant shapes such as
semi-open and open pods.

(b)VFNet+Soft-NMS(a)VFNet+NMS (c)VFNet+SDIoU-NMS

Figure 9. Pod detection effect of NMS algorithm in different scenarios.



Agronomy 2023, 13, 1507 13 of 17

(a)VFNet+NMS
（Convergent type）

(b)VFNet+Soft-NMS
（Convergent type）

(c)VFNet+SDIoU-NMS
（Convergent type）

(d)VFNet+Adaptive 
SDIoU-NMS

（Convergent type）

(e) Faster R-CNN+Adaptive 
SDIoU-NMS

（Convergent type）

(g) VFNet+Adaptive 
SDIoU-NMS

（Semi-open type）

(f) RetinaNet+Adaptive 
SDIoU-NMS

（Convergent type）

(h) VFNet+Adaptive 
SDIoU-NMS

（Open type）

Figure 10. Comparison of detection effects in different areas of a single image.

Table 5. Pod test results under different post-processing methods.

Methods Backbone Loss
Function Post Processing Pt% Pc% F1%

VFNet ResNet50 + FPN GIoU
Loss NMS 81.04 81.53 81.28

VFNet ResNet50 + FPN GIoU
Loss Soft-NMS 80.91 81.83 81.37

VFNet ResNet50 + FPN GIoU
Loss SDIoU-NMS 82.44 83.10 82.77

VFNet ResNet50 + FPN GIoU
Loss Adaptive SDIoU-NMS 82.83 84.33 83.57

Faster R-CNN ResNet50 + FPN GIoU
Loss NMS 88.95 64.34 74.67

Faster R-CNN ResNet50 + FPN GIoU
Loss SDIoU-NMS 89.06 64.51 74.82

Faster R-CNN ResNet50 + FPN GIoU
Loss Adaptive SDIoU-NMS 89.51 64.98 75.30

RetinaNet ResNet50 + FPN GIoU
Loss NMS 82.70 74.10 78.17

RetinaNet ResNet50 + FPN GIoU
Loss SDIoU-NMS 83.86 75.32 79.36

RetinaNet ResNet50 + FPN GIoU
Loss Adaptive SDIoU-NMS 84.04 76.24 79.95

4. Discussion

For the soybean pod counting task, it is a common phenomenon to deal with varieties
of soybeans. The soybeans with different plant shapes and numbers of pods result in a
different complexity of detection scenarios. To analyze the robustness of our DARFP-SD,
we discuss the deviations in the counting accuracy for the different number of pods and
different plant shapes.

Robustness for different number of pods. We divided the test images according to
the number of pods per plant with a stride of 10. We counted the detection results of the
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model in each number range and compared them with other algorithm models. The results
are shown in Figures 11 and 12. For sparse scenes with less than 30 pods per plant, our
DARFP-SD is comparable to the baseline VFNet and far exceeds the results of the Faster-
RCNN and RetinaNet methods. For scenarios where the number of pods per plant is 30–60,
the average accuracy and recall of DARFP-SD are 90.35% and 85.59%, which are 8.36% and
4.55% higher than VFNet, respectively. For dense or overlapping scenes with more than
60 pods, the proposed DARFP-SD has an average accuracy of 90.33%, which is similar to
sub-dense scenes with 50–60 pods, showing better stability. The average recall rate and
F1 of DARFP-SD are significantly improved compared with other counting methods. The
above results demonstrate that DARFP-SD can more effectively meet the counting task of
the single soybean plant with variable pod density.

0.7

0.75

0.8

0.85

0.9

0.95

1

Pt

Number of pods per plant 

ours VFNet fasterrcnn retinanet

(a) Accuracy for different numbes of  pods

0.5

0.6

0.7

0.8

0.9

1

Pc

Number of pods per plant

ours VFNet fasterrcnn retinanet

(b) Recall rate for different numbes of  pods

<20           20--30         30--40        40--50         50--60           >60 <20           20--30         30--40        40--50         50--60           >60

Figure 11. Performance comparison between DRFPBR-SD and other detection algorithms under
different pod numbers per plant.

(a) <20 (b) 20~30 (c) 30~40 (d) 40~50 (e) 50~60 (f) >60

Figure 12. Detection effect of DARFP-SD for pods with different numbers.

Robustness for different shapes. To better meet the high-throughput pod counting
requirements of different soybean varieties, we further discuss the difference in the counting
accuracy of DARFP-SD for soybeans of different plant shapes. We divided the test images
into convergent, semi-open and open, and the counting performances are shown in Table 6
and Figure 13. Taking the convergent soybean plant as an example, the average accuracy,
recall and F1 of DARFP-SD are 88.87%, 86.37% and 87.60%, and the three evaluation
indicators are all improved by more than 5% compared with the baseline method VFNet.
The improvement was also evident in the semi-open and open soybean plants. All the
results demonstrate that DARFP-SD can better deal with the soybean counting scenarios of
different plant shapes, indicating that DARFP-SD can be applied to the task of counting
soybean pods in a single plant to solve the change of plant type.
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Table 6. Performance comparison for pods with different shapes.

Methods
Convergent Open Semi-Open

Pt% Pc% F1% Pt% Pc% F1% Pt% Pc% F1%

Faster R-CNN 88.49 65.30 75.15 88.55 65.68 75.42 89.30 63.54 74.25
RetinaNet 83.02 74.84 78.72 86.34 76.62 81.19 81.96 73.26 77.37

VFNet 83.39 81.57 82.47 88.98 75.34 81.60 78.38 82.42 80.35
DARFP-SD (Ours) 88.87 86.37 87.60 90.53 83.93 87.10 89.07 84.81 86.89

(a) Convergent type (b) Open type (c) Semi-open type

Figure 13. Detection effect of DARFP-SD for pods with different shapes.

Combination with more fine-grained pod phenomics. Although pod counting is
important for both breeding and cultivation tasks, considering the combination with other
fine-grained pod phenomics measurements shows a more promising future. The method
proposed in this paper can accurately identify and locate dense small-sized pods, which
can provide instance-level research objects for the further detailed analysis of pod length,
thickness, shape, color, maturity, and disease conditions. In addition, the pod counting task
can also be extended to the prediction of the number of pod seeds [25] or even the number of
pod fluff, which is of great significance for the breeding of high-yield and disease-resistant
soybean varieties. However, we also note the difficulty in constructing the above multi-task
models, especially in terms of imaging quality and algorithm performance. For example, for
dense small-sized pods, the pixel-level deviation of the predicted foreground area will lead
to huge fluctuations in the length of the pod. The thickness of the pod requires additional
spatial information from 3D point clouds or RGB-D images or multi-view RGB images.
From the perspective of algorithm design, a conventional solution is to directly construct a
regression model by combining the measured data of specific traits, which is cost-effective
for the pod length and thickness that are easy to measure manually. Meanwhile, the design
of the multi-phenomics algorithm can introduce the ensemble learning, contrastive learning,
weakly supervised learning and multi-modal learning. In order to improve the accuracy
and generalization of the model, we also try to embed agricultural expert knowledge into
the learning of vision tasks. What is more, combined with some related latest research [26],
mining the relationship between phenotypic trait results and gene sequences can also
be considered.

5. Conclusions

Counting the soybean pods efficiently and accurately has been a challenging task,
especially for the crowded small-sized pods with uneven distributions in quantity. In this
paper, we propose a novel method termed as DARFP-SD to realize the pods counting of the
whole soybean plant. The main contribution of this work is to design a deformable attention
recursive feature pyramid network with an additional bounding box refinement module.
Through experimental design and results analysis, the conclusions can be summarized
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as follows: (1) The proposed DARFP-SD can significantly improve the counting accuracy
for the scene containing crowded small-sized pods in a single image, which can achieve
an average accuracy of 90.35%, recall of 85.59% and F1 of 87.90%, respectively. (2) The
attention recursive feature pyramid constructed in DARFP-SD benefits the feature quality,
while the bounding box refinement module can alleviate the missing detection issue for
dense pods. With the collaboration of the attention recursive feature pyramid and bounding
box refinement, DARFP-SD has better stability in counting accuracy for the increasing
number of soybean pods. (3) DARFP-SD shows a strong robustness in different scenarios
with different pod numbers per plant, different plant shapes and different density levels,
which provides a new insight in the soybean pod counting task and can be applied in high-
throughput soybean breeding. We believe the proposed DARFP-SD can give some new
insights in the automatic counting task of crop organs, and relieve the manual workload
when measuring the pods number per plant during soybean breeding. In the follow-up
work, we will build a counting model that integrates more fine-grained phenotypic traits
and mine the potential genetic relationship between these traits and gene sequences.
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