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Abstract: Adequate management of agricultural crops requires, among other things, accessible
and sufficiently accurate methods for assessing plant nutrition and crop vegetation status and
for agricultural production estimation. Sustainable technologies are based on correct decisions,
prompt interventions and appropriate works, and correct information in real time, and the obtaining
information methods can be simple, accessible, and appropriate in relation to different user categories
(e.g., farmers, researchers, decision makers). This study used mineral fertilization (NPK), with
11 experimental variants, to ensure a controlled differentiated nutrition of the wheat plants, “Alex”
cultivar. Regression analysis was used to obtain models in estimating wheat production, by methods
based on: (a) NPK fertilizers applied (F) in the 11 experimental variants; (b) physiological indices
(PI), represented by the chlorophyll content (Chl), and plant nutrition status on the experimental
variants, in terms of macroelement content in the leaves, evaluated by foliar diagnosis (Nfd, Pfd,
Kfd); (c) imaging analysis (IA) based on digital images of the wheat experimental variants, and
calculated indices. A set of models was obtained, with different precision levels and statistical safety:
R2 = 0.763, p = 0.013 for the model based on applied fertilizers (NPKF); R2 = 0.883, p < 0.01 for the
model based on foliar diagnosis (NPKfd); R2 = 0.857, p < 0.01 for the model based on chlorophyll
content (Chl); R2 = 0.975, p < 0.01 for the model based on normalized rgb color parameters (RGB color
system); R2 = 0.925, p < 0.01 for the model based on the DGCI calculated index. The model based
on applied fertilizers (F model) was tested in relation to wheat production data, for a period of six
years, communicated by other studies. Fit degree analysis between predicted yield based on the F
model and real yield (six-year average) was confirmed by R2 = 0.717, compared to R2 = 0.763 for the
F model in this study. The models obtained in this study, related to the “Alex” wheat cultivar, can be
used for other studies, but with a certain margin of error, given the coefficient values, specific to the
obtained equations. The approach concept, methods, and models presented can be opportunities for
other studies to facilitate their comparative analysis, their adaptation, and/or development in the
form of new models that are useful in different studies, research, or agricultural practices, for their
integration into crop management strategies.

Keywords: digital camera; fertilizers; foliar diagnosis; imaging analysis; photosynthetic pigments;
prediction models; wheat production

1. Introduction

In current and future agronomic practices, tools and methods that can provide real-
time information on plants and crops’ vegetation status and facilitate production estimation
are very useful for proper crop management through the appropriate adjustment of agricul-
tural technologies [1–3]. The rapid technological progress and high performance in the field
of sensors and cameras with digital image capture over a wide spectral range [4,5], com-
bined with information technology for storage, transmission, and image processing [6,7],
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has increasingly attracted the scientific community around the world [8,9]. Imaging analy-
sis methods are based on the good correlation of plant color, in different vegetation stages,
with their specific physiological properties, such as nutrient supply levels, and especially
nitrogen content [10,11], chlorophyll content [12,13], photosynthetic activity [14,15], stress
factors [16,17], plant health status [18,19], and plant properties that ultimately determine
quantitative and qualitative production [20,21].

Soil and plant analysis are basic techniques (classical methods) for assessing soil
fertility, nutrient available content for plant nutrition, and fertilizer interventions [22,23], but
they are disadvantageous in terms of time, human resources, and costs. At the same time,
imaging methods based on remote sensing, UAV, or terrestrial images provide very accurate
real-time information on soil quality and fertility [24,25], crops’ response to fertilizer
application [26,27], and plants’ nutrition status [10,28,29]. The use of vegetation indices
by imaging analysis can remove or mitigate disturbing factors in crop evaluation, such
as differences in plant species, canopy coverage, soil background, atmospheric condition,
illumination, shadowing, solar angle, etc. [30,31].

Starting more than four decades ago, research into plants’ physiological parameters by
spectral techniques (or various analyses of the natural plant carpet, especially of agricultural
crops) has led to the proposal and used of various specific indices, such as the Ratio
Vegetation Index (RVI) [32,33], Normalized Difference Vegetation Index (NDVI) [34,35],
Difference Vegetation Index (DVI) [36], Soil Adjusted Vegetation Index (SAVI) [37,38],
Green Normalized Difference Vegetation Index (GNDVI) [39,40], and many others [41,42],
being indices that use other spectral bands in addition to the visible spectrum. The DGCI
index was proposed by Karcher and Richardson [43], by converting RGB values into the
more intuitive hue, saturation, and brightness (HSB) color spectrum, which is based on
human perception of color. Dark Green Color Index values were a more consistent measure
of green color than were individual RGB values across all turf varieties, corn and cotton,
and N treatments [44,45]. For wheat (Triticum aestivum L.), corn (Zea mays L.), cotton
(Gossypium sp.), and turf grass (Lolium sp.), strong relationships between processed digital
photos, in the form of Dark Green Color Index (DGCI) and N concentration, have also been
identified [44–47].

Recent technological developments in photo-electronics and computer science have
also established themselves in the field of image processing and analysis [48,49]. This has
facilitated some research in the direction of imaging approaches in the visible spectrum,
which are also possible with commercial digital cameras [4,50], of some aspects regarding
the quality of the vegetal carpet, nutrition, and plant development as an alternative to
spectral, multispectral, or hyperspectral investigation methods, which are more precise but
at the same time, much more expensive.

Management in agriculture, from the micro-plot level to the farm level, benefits from
the facilities offered by imaging and informatics in soil and agricultural crops’ knowledge,
planning of technological works, and specific interventions for obtaining economically
efficient yields [51,52]. Estimating production using accessible and safe methods is of
interest in relation to crop technologies and influencing factors, including harvesting,
transport and production storage, products’ market, and other segments in the agri-food
chain [53–55].

In the context of the research directions presented, the objectives of this study were to
evaluate different accessible methods and models for wheat production estimation based on
(i) applied fertilizers (F), (ii) physiological indices (PI) of wheat plants, (iii) imaging analysis
(IA), with information representation in different color systems and some calculated specific
indices. The model based on applied fertilizers (F model) was verified in relation to other
wheat production data, and the safety of results was evaluated comparatively in order of
ranking the models obtained based on wheat production prediction safety.
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2. Materials and Methods
2.1. Field Experiment Location

The experiment was performed at the Didactic and Experimental Resort (DER) of
the University of Life Sciences’ “King Mihai I” from Timisoara, Romania (ULS Timisoara).
The experimental field was located in plot A 363, topographic coordinates 45◦28′30.9′′ N,
21◦7′9.8′′ E, shown in Figure 1. The biological material was represented by the “Alex”
wheat cultivar, with high production potential and good quality indices. The “Alex”
wheat cultivar is semi-early and has very good tillering capacity. The plants’ height varies
between 85 and 100 cm. The ear is ridged, cylindrical–pyramidal, semi-compact, and
6–9 cm long. The grain is ovoid, red in color, and semi-crystalline, with TKW = 45–50 g
(TKW—the weight of a thousand grains). The “Alex” wheat cultivar shows good resistance
to wintering, good resistance to sprouting in the ear, and medium resistance to lodging, and
has good baking indices. The genetic potential of grain production is 7000–8000 kg ha−1.
Sowing was performed in autumn (first decade of October), with a 270 kg ha−1 seed
rate. The wheat culture was in a non-irrigated system, with an appropriate maintenance
technology (herbicide in the spring; no other phytosanitary treatments were applied). The
maintenance of the space (access roads) between the repetitions of the experimental variants
was performed with a milling machine.
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2.2. Experimental Conditions

The specific climatic conditions of the area are characterized by a multiannual average
rainfall of 603.3 mm and an average temperature of 10.9 ◦C, specific to the temperate conti-
nental climate with Mediterranean influences. During the experimental period, 2011–2012
agricultural years, the precipitation regime (527.4 mm precipitation) was below the multi-
annual average and the thermal regime was 1.3 ◦C above average.

The October 2011–March 2012 period, which represented the first part of the wheat
crop vegetation period, recorded an 84.4 mm rainfall deficit compared to the multiannual
average, associated with an average temperature 0.6 ◦C higher than the multiannual
average. The second part of the wheat vegetation period (April–July 2012), the most active
in terms of plant growth, development, and nutrient consumption, recorded an 11.5 mm
slight rainfall surplus compared to the multiannual average and temperatures 2.1 ◦C above
the multiannual average.

The soil within the experimental field is of the cambic chernozem type, with medium–
high fertility, expressed by pH = 6.87, H = 3.12% (good insurance, H—humus content),
Pmobile = 23.41 mg kg−1 (average insurance), and Kmobile = 178.37 mg kg−1 (good insurance).
Pmobile and Kmobile represent phosphorus and potassium assimilable forms, respectively, ac-
cording to the Egner–Rhiem–Domingo method [57]. The soil samples were taken randomly
at a depth of 25 cm (0–25 cm from the ground level), from 50 points on the surface of the
experimental field, to estimate the soil fertility level before the placement of the experiment.
An agrochemical soil sampler was used as a soil sampling tool.

Given the medium–high level of soil fertility in the experimental field, nitrogen was dif-
ferentiated into doses between 0–200 kg ha−1, on four PK levels (0, 50, 100, and 150 kg ha−1).
Thus, 11 experimental variants resulted (Figure 2), in three randomized repetitions. The
size of an experimental plot was 30 m2, being 10 m long and 3 m wide. In the fall, a basic
fertilizer was applied with phosphorus, potassium, and one-third of the dose of nitrogen
(in the form of granulated complex fertilizer). The nitrogen difference was applied in the
spring before the stem elongation phase, in the form of urea. Quantitative macroelement
values from fertilizers (NPKF) were used in the regression analysis to obtain models for
wheat production prediction based on the applied fertilizers’ method (F).

2.3. Sampling and the Plant Samples’ Analysis

In growth stage 3, stem elongation, code 32–33, BBCH-scale for cereals [58] (in the
second decade of April 2012), from each experimental variant, 3 sub-samples of plants (top
of plants; 50 plants in each experimental plot) were randomly collected, based on which
the average sample for chemical analysis (foliar diagnosis) was formed.

Moisture was determined on the wheat plant samples harvested, by drying in an oven
at 70 ◦C (Heraeus). The dried plant material was used for the analysis of nitrogen, phos-
phorus, and potassium content total forms. Total nitrogen content (Ntotal) was determined
by the Kjeldahl method (Velp Scientific UDK 127 Distillation Unit). Total phosphorus
content (Ptotal) was determined calorimetrically with molybdenum blue (Cintra 101 UV-VIS
Spectrophotometer, V3793 series). Total potassium content (Ktotal) was determined by
flame atomic absorption spectrometry (Varian AA 240, Fast Sequential Atomic Absorption
Spectrophotometer) [57]. A portable instrument, SPAD 502Plus (Konica Minolta Sensing
Inc., Tokyo, Japan), was used to determine the chlorophyll content of wheat plant leaves,
which expressed the chlorophyll content in a numerical SPAD value, in proportional rela-
tion to the amount of chlorophyll present in the leaves (measurement area: 2 mm × 3 mm,
accuracy within ±1 SPAD unit). The chlorophyll content determination was performed
in the field (non-destructive method), at the same time as plant samples’ collection, by
repeated readings on 20 different plants, chosen randomly in each variant. The chlorophyll
reading was performed on the third leaf (last developed at this stage).

At physiological maturity (July 2012), mechanized harvesting on each plot, for all
three repetitions (Hege 125B Small Plot Combine, Stuttgart, Germany), and quantitative
determination (laboratory technical balance with ±0.100 kg accuracy) were performed
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(14% humidity at the time of determination). The values of chlorophyll content (Chl) and
macroelement content in wheat plants evidenced by foliar diagnosis (NPKfd) were used
in the regression analysis to obtain models for wheat production prediction based on the
physiological indices’ method (PI).
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2.4. Capturing Digital Images and Calculating Specific Indices

Digital images were captured with a Nikon D80 camera with 10.2 MP DX resolution.
Digital images were taken in identical positioning and setting conditions of the device for
all variants, simultaneously with SPAD measurements and plant sampling. The camera was
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mounted at a constant height of 1.3 m (tripod) on a custom-made frame. Images were taken
at the nadir position, between 13:00 and 14:00 h, with the following settings: auto-focus,
f-stop 5.6, exposure time 1/200 s, exposure bias + 2 steps, ISO 100, focal length 22 mm,
mattering mode pattern, manual white balance (clouds), and resolution 300 DPI, shown in
Figure 2. Images were analyzed from the original digital capture format with Optika Vision
Pro v. 2.7 software (Optika s.r.l., Italy). Each image was uploaded to the program and fully
processed with the Measure/Grid/Line options. The whole image processing, and not
just a fraction of it, was chosen in order to ensure a natural mediation of the parameters
related to the incident solar radiation and wheat canopy reflection. The image analysis
was performed both in the Cartesian colors space (RGB, CMYK) and using the cylindrical
coordinates specific to the CIE L*a*b*, HSB, and HSL systems, whose calculation was
performed through online software [59].

Based on the current RGB values, resulting from the primary image analysis, the
normalized values were calculated, in the form r, g, and b, according to [60], shown in
Equation (1).

r = R
(R+G+B)

g = G
(R+G+B)

b = B
(R+G+B)

(1)

Based on the calculated normalized values (rgb), two synthetic indices were calculated:
NDI (Normalized Difference Index), to better highlight the contrast between plant and
soil color [61], and INT (Intensity), which allows a better differentiation of a light color
from a dark one [62]. The calculation of the two synthetic indices (NDI and INT) was
made on the basis of Equations (2) and (3), according to [60]. The two indices were used
successfully to track the nitrogen status of rice and to generate formulas for estimating
nitrogen requirements by analyzing digital images [60].

NDI =
(r− g)

(r + g + 0.01)
(2)

INT =
(R + G + B)

3
(3)

Moreover, for estimating the nitrogen supply of cereal plants, Karcher and Richard-
son [43] proposed the use of the DGCI index (Dark Green Color Index), calculated on the
basis of HSB indices (H—hue, S—saturation, B—brightness) [44], shown in Equation (4).

DGCI =
[
(H− 60)

60
+ (1− S) + (1− B)

]
/3 (4)

The parameter values in different color systems, and of the three calculated syn-
thetic indices, were used in the regression analysis to obtain models for wheat production
prediction based on an imaging analysis method (IA).

2.5. Mathematical Analysis and Modeling

The experimental data obtained regarding the production (Y, kg ha−1), the contents
in macroelements from the leaves, determined by the foliar diagnosis (Nfd, Pfd, Kfd), the
chlorophyll content (Chl, SPAD), imaging parameters in different color systems, and calcu-
lated indices (NDI, INT, DGCI) were mathematically and statistically processed using the
mathematical module from Excel 10 (Microsoft Office) and Past software [63]. Regression
analysis was used to obtain the equations, as independent models, which described the esti-
mation of wheat production in relation to the applied fertilizers’ method (F), physiological
indices’ method (PI), and parameters considered for the imaging analysis method (IA). For
statistical certainty of the results, appropriate statistical parameters such as the regression
coefficient (R2), parameter p (95% confidence), RMSEP parameter (root mean square error
of prediction), and REP parameter (relative error of prediction) were considered.
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3. Results
3.1. Wheat Production Estimation Based on Applied Fertilizers’ Method (F)

In the context of the experimental conditions, the mineral fertilization applied deter-
mined the wheat production variation, “Alex” cultivar, between 2625 ± 217.46 kg ha−1

(V1) and 6625 ± 324.04 kg ha−1 (V9). In soil conditions with good agrochemical proper-
ties, specific to the experimental field location, only the application of nitrogen fertilizers
generated a substantial increase in wheat production, from 2625 ± 217.46 kg ha−1 in the
control variant (V1) to 6000 ± 273.86 kg ha−1 in the V2 variant and 6525 ± 131.49 kg ha−1

in the V3 variant, respectively. Under the conditions of a lower level of phosphorus in the
soil, a favorable influence on wheat production was registered in the case of phosphorus
provided by fertilization. At the same time, the good intake of potassium in the soil caused
the potassium in the fertilizers to have a minor influence on wheat production (Table 1).

Table 1. Experimental results on applied fertilizers and wheat production, “Alex” cultivar.

Trial
Applied Fertilizers

(kg a.s. ha−1)
Real Yield

Kg ha−1 (Average Values ± Std. Error)
NF PF KF

V1 0 0 0 2625 ± 217.46
V2 100 0 0 6000 ± 273.86
V3 200 0 0 6525 ± 131.49
V4 50 50 50 4600 ± 147.19
V5 100 50 50 6150 ± 95.74
V6 200 50 50 6025 ± 332.60
V7 100 100 100 5575 ± 217.47
V8 150 100 100 6400 ± 147.19
V9 200 100 100 6625 ± 324.04

V10 150 150 150 6200 ± 103.08
V11 200 150 150 6430 ± 365.14

Note: a.s.—active substance; NF—nitrogen from fertilizer; PF—phosphorus from fertilizer; KF—potassium
from fertilizer.

The wheat production estimation method, based on the macroelements (N, P, K) from
the applied fertilizers (F), is given by Equation (5), in statistical safety conditions (R2 = 0.763;
p = 0.013).

YNPKF = 3742.57 + 14.2071NF + 1.8485PF + 0KF (5)

The values of the Equation (5) coefficients highlighted the different weight with which
each nutrient applied by fertilization (NF, PF, KF) contributed to the production formation,
in the specific experimental conditions. Nitrogen from fertilizers (NF) had the highest
contribution (14.2071, NF coefficient value), followed by phosphorus (1.8485, PF coefficient
value), while potassium from fertilizers (KF) was shown not to influence wheat production,
under the specific experimental conditions. This estimation method and Equation (5) type
model (with statistical safety parameters) shows the real behavior of the production in
relation to the doses of applied fertilizers and nutrients. The soil, climatic, and technological
conditions determined that the nutrient use efficiency from fertilizers is very variable. The
efficiency of the nutrients’ use from fertilizers is of interest, with the most frequently
studied being the nitrogen use efficiency, in relation to the production, or other agronomic,
economic, or ecological elements. In this sense, this approach and model, which expresses
the production in relation to the nutrients in applied fertilizers, can be considered and
integrated with other studies and objectives in order to optimize agricultural technologies.
It can be used to predict wheat production for the coming year, and can also be adjusted in
relation to the feedback received.

Model Based on Applied Fertilizers (F) in Agricultural Practice

As a result of the importance in agricultural practice of models based on applied
fertilizers, from the perspective of optimizing agricultural inputs and estimating yields,
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an analysis of the F model behavior was made in relation to wheat production values
communicated by other studies.

For this purpose, the F model based on the applied fertilizers, in Equation (5), was
used to estimate the production of wheat, Ciprian cultivar, in relation to the applied
fertilization (25 experimental variants with N and P), within a study communicated by
Agapie et al. [64]. To verify the F model, wheat production data for four years and the
average data for the study period (2016–2021) according to [64] were considered for analysis.
Wheat production was estimated based on the F model in Equation (5), and the prediction
errors were calculated, shown in Table 2.

Table 2. Verification of the F model for agricultural practice.

Applied Fertilizers
Predicted

Yield Based
on F Model

Prediction Error (PE), as Difference between Predicted Yield Based on F
Model and Real Yield Communicated by Agapie et al. (2023) [64]

P N Equation (5) 2016 2018 2019 2020 Average
2016–2021

(kg ha−1 Active Substance) (kg ha−1)

0 0 3742.57 −0.43 −576.93 348.43 −457.43 −729.38
0 30 4168.78 −302.22 −481.72 196.22 −195.52 −697.26
0 60 4595.00 −605.00 −472.50 −10.00 −124.00 −774.22
0 90 5021.21 −741.79 −317.59 −308.21 537.96 −463.89
0 120 5447.42 −350.58 3.92 −674.42 1189.67 −111.66
40 0 3816.51 −253.49 −641.99 266.49 54.51 −831.89
40 30 4242.72 −207.28 −597.78 −82.72 90.22 −707.29
40 60 4668.94 −687.06 −848.56 −180.94 206.44 −732.73
40 90 5095.15 −709.85 −513.60 −655.15 585.40 −406.27
40 120 5521.36 −274.64 422.86 −931.36 1405.36 120.54
80 0 3890.45 −329.55 −903.80 82.55 −238.55 −998.02
80 30 4316.66 −183.34 −689.64 503.34 −88.34 −854.89
80 60 4742.88 −624.12 −861.12 −57.88 −145.62 −847.87
80 90 5169.09 −726.91 −457.16 −356.09 423.84 −590.46
80 120 5595.30 −336.70 38.80 −755.30 1454.55 −75.41

120 0 3964.39 −405.61 −1251.61 618.61 −288.11 −1110.60
120 30 4390.60 −236.40 −1035.20 469.40 −402.15 −943.99
120 60 4816.82 −581.18 −974.68 386.18 214.32 −984.55
120 90 5243.03 −647.97 −571.97 −275.03 835.28 −515.39
120 120 5669.24 −398.76 −46.51 −564.24 1883.24 4.62
160 0 4038.33 −659.67 −1361.67 276.67 276.33 −1090.84
160 30 4464.54 −235.46 −755.46 335.46 −109.21 −836.42
160 60 4890.76 −309.24 −921.24 −55.76 395.26 −816.79
160 90 5316.97 −443.03 −683.03 −296.97 555.22 −582.58
160 120 5743.18 −492.82 −456.82 −1048.18 1543.18 59.26

From the fitting analysis (linear equations) of the values of the predicted production
with those of the real production, for the years considered in the comparative analysis, the
following variable values of the regression coefficient resulted: R2 = 0.930 in the case of
2016; R2 = 0.574 in the case of 2018; R2 = 0.457 in the case of 2019; R2 = 0.717 in the case of
average values for 2016–2021.

The value of the regression coefficient R2 = 0.717 resulted from the fitting analysis be-
tween predicted yield based on the F model, Equation (5), and real yield, the average value
over six years communicated by Agapie et al. [64], with another wheat cultivar (Ciprian),
and cultivation conditions indicate that the model obtained has a realistic construction,
stability, and safety (R2 = 0.763 in this study).
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3.2. Wheat Production Estimation Based on the Physiological Indices’ Method (PI)
3.2.1. Wheat Production Estimation Based on Leaves’ Nutrient Content (Foliar Diagnosis)

Wheat production can be considered as a synthetic expression of plant metabolism, of
the way in which plants convert solar radiation into useful biomass, on the background
of a differentiated nutrition, in relation to the doses of applied fertilizers (NPK). Plant
metabolism is mainly significantly influenced by the macronutrients level, and this results
in foliar diagnosis, in certain wheat crop vegetation’s stages, being considered as an effective
method of grains’ production estimation, due to its direct relationship with the state of plant
nutrition [65]. Wheat plants’ nutrition status is the basis for the physiological indices and
metabolic processes manifestation, with high importance in quantitative and qualitative
production formation. Evaluation of the wheat plants’ nutrition status, in terms of leaves’
nutrient content (Nfd, Pfd, Kfd), was made in the growth stage 32–33 BBCH code (growth
stage 3, stem elongation), in the specific conditions of this experiment, with the results
presented in Table 3. Associated with wheat plants’ nutrition status, as an effect of applied
fertilizers, variable values of chlorophyll content (Chl) in the experimental variants were
registered, as shown in Table 3.

Table 3. Assessment of nutritional status and chlorophyll content of winter wheat plants, “Alex”
cultivar.

Trial
Average Content of Plant Macronutrients Chlorophyll Content
Nfd (%) Pfd (%) Kfd (%) Chl (SPAD Units)

V1 2.17 1.66 5.84 40.26
V2 4.60 1.90 4.44 52.78
V3 5.98 2.18 3.73 51.38
V4 5.07 1.77 4.00 48.69
V5 5.67 2.07 4.05 50.64
V6 6.62 2.16 4.41 52.31
V7 5.93 2.16 4.82 51.47
V8 6.69 2.20 5.13 52.10
V9 7.68 2.31 5.31 52.41
V10 7.13 2.21 5.11 54.04
V11 7.27 2.44 5.51 55.57
SE ±0.47 ±0.07 ±0.21 ±1.20

Note: Nfd—nitrogen content in wheat plants; Pfd—phosphorus content in wheat plants; Kfd—potassium content
in wheat plants.

The wheat production (Table 1) estimation method, based on foliar diagnosis, respec-
tively, based on the leaves’ nutrient content (Nfd, Pfd, Kfd, Table 3), as plants’ physiological
response to differentiated nutrition provided by fertilization, was given by Equation (6), in
conditions of R2 = 0.883; p < 0.01 (p = 0.0011).

YNPKfd = 988.31 + 246.8347Nfd + 2983.035Pfd − 620.87Kfd (6)

3.2.2. Wheat Production Estimation Based on Chlorophyll Content

As a physiological index, the chlorophyll content is a good indicator for reflecting the
general plants’ vegetation status, and especially the plants’ nitrogen supply level, which is
the macroelement with a decisive role in the production formation [66,67]. The values of
the wheat plants’ chlorophyll content on the experimental variants (Table 3), determined by
the non-destructive method (SPAD 502Plus), were used for wheat production estimation.
Wheat production, as a dependent variable by the chlorophyll content (Chl), is given by
Equation (7), under conditions of R2 = 0.857; p < 0.01.

YChl = −8204.21 + 273.1262Chl (7)
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3.3. Wheat Production Estimation Method by Imaging Analysis Method (IA)

In the stem elongation stage (BBCH-scale for cereals, growth stage 3, stem elongation,
code 32–33), digital images captured the wheat crop vegetation state in relation to applied
fertilizers, as shown in Figure 2. From an analysis of the digital images, the RGB spectral
values were obtained. Based on calculations (Equation (1)), the normalized values, in
rgb form, were obtained and were converted into complementary values in other color
representation systems (HSB, HSL, CIE L*a*b*, CIMIK), as shown in Table 4. Based on
the normalized values (rgb) and the specific relations (Equations (2) and (3)), the NDI and
INT indices were calculated, and based on the values from the HSB system (Table 4) and
Equation (4), the DGCI index was calculated (Table 5).

Table 4. Color parameter values in different color systems, based on images’ analysis.

Trials
RGB HSB HSL CIE L*a*b* CMYK RGB Normalized

R G B H S B H S L L a b C M Y K r g b

V1 125 147 57 75 0.61 0.58 75 44 40 58 −21 44 9 0 35 42 0.380 0.446 0.173
V2 87 116 70 98 0.40 0.45 98 25 36 46 −20 22 11 0 18 55 0.319 0.425 0.256
V3 84 114 69 100 0.39 0.45 100 25 36 45 −20 22 12 0 18 55 0.316 0.427 0.258
V4 91 123 52 87 0.58 0.48 87 41 34 48 −24 35 13 0 28 52 0.342 0.461 0.197
V5 85 115 67 98 0.42 0.45 98 26 36 45 −20 23 12 0 19 55 0.319 0.430 0.252
V6 74 101 56 96 0.45 0.40 96 29 31 40 −19 22 11 0 18 60 0.319 0.438 0.242
V7 91 121 63 91 0.48 0.47 91 32 36 47 −22 28 12 0 23 53 0.331 0.441 0.228
V8 84 113 68 99 0.40 0.44 99 25 35 44 −20 22 11 0 18 56 0.316 0.426 0.258
V9 80 108 66 100 0.39 0.42 100 24 34 42 −19 20 11 0 16 58 0.314 0.426 0.260

V10 83 113 59 93 0.48 0.44 93 31 34 44 −21 26 12 0 21 56 0.326 0.443 0.231
V11 78 105 67 103 0.36 0.41 103 22 34 41 −18 18 11 0 15 59 0.313 0.420 0.267

Table 5. Average values of the calculated specific indices.

Trials NDI INT DGCI

V1 −0.079 109.770 0.353333
V2 −0.141 91.017 0.594444
V3 −0.147 89.000 0.608889
V4 −0.147 88.650 0.463333
V5 −0.146 88.873 0.587778
V6 −0.155 76.977 0.583333
V7 −0.140 91.413 0.522222
V8 −0.147 88.387 0.603333
V9 −0.150 84.727 0.618889
V10 −0.150 84.973 0.543333
V11 −0.145 83.467 0.648889

Using regression analysis, the wheat production estimation equations were obtained,
based on different color systems’ parameters (Table 4) and the calculated indices (Table 5).
The mathematical expressions of the obtained equations and the values of the statistical
parameters (R2, p 95% confidence, RMSEP, REP) that reflect their safety are given in
Tables 6 and 7.

The value series’ matching degree regarding the estimated production and the mea-
sured production was evaluated, for an additional verification and confirmation of the
accuracy level for the production prediction, based on the methods considered and the
models obtained (Supplementary Figure S1).

Moreover, Cluster Analysis (paired group algorithm, Euclidean similarity measure [63])
was used to evaluate the level of similarity of the methods and models used in relation
to the estimated production values, compared to real production, for each variant. The
dendrogram in Supplementary Figure S2 was the result based on the analysis, under
conditions of statistical safety (Coeff. Corr. = 0.967). Several sub-clusters resulted, in which
the variants (estimated production in relation to the used model, and real production)
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were associated based on similarity. In the same cluster with real production (Y-Real), the
productions estimated based on RGB color parameters, Y(RGB), rgb normalized Y(rgb),
CMIK parameter Y(CMIK), and CIE L*a*b* parameter Y(Lab), were associated. Associated
with this sub-cluster, there was a sub-cluster that included production estimated based on
HSB color parameters Y(HSB), HSL color parameters Y(HSL), and the DGCI index Y(DGCI).
The other production estimation models occupied other positions within the dendrogram,
in relation to their level of similarity. Additionally, the values of the similarity and distance
indices (SDI) were calculated (Supplementary Table S1), and from the analysis of the
obtained values, the positioning in ascending order compared to the real production (Y-
Real) of the other production estimation models is graphically presented in Supplementary
Figure S3 (the smallest SDI value is preferable). All these were considered to be arguments
that support the safety of the methods and models used in wheat production estimation, as
well as their classification order regarding the safety of the estimated production, compared
to the real recorded production.

Table 6. Equations for wheat production estimating “Alex” cultivar based on color parameters and
calculated indices.

Color System
and Indices Equation Equation

Number R2 p
(95% Confidence)

RGB YRGB = 6564.515− 93.9023R + 25.933G + 69.4359B (8) 0.972 <0.01
HSB YHSB = −2730.85 + 116.205H + 871.30S− 6409B (9) 0.941 <0.01
HSL YHSL = −630.961 + 106.1994H− 27.108S− 81.785L (10) 0.936 <0.01

CIE L*a*b* YLab = 6715.791− 7.7203L− 186.204a− 172.228b (11) 0.969 <0.01
CMYK YCYK = 8360.784 + 256.291C− 199.564Y− 25.2077K (12) 0.973 <0.01

rgb Yrgb = −54, 693.9 + 22, 172.6r + 78, 655.12g + 79, 660.37b (13) 0.975 <0.01
NDI YNDI = −1242.23− 49657NDI (14) 0.773 <0.01
INT YINT = 16, 315.86− 119.027INT (15) 0.665 <0.01 (p = 0.002)

DGCI YDGCI = −1706.35 + 13, 369.42DGCI (16) 0.925 <0.01

Table 7. Statistical parameters of models used in wheat yield prediction.

No. Methods and Model of Wheat Yield
Prediction Based on:

Statistical Parameters
RMSEP REP (%)

1 Fertilizers (NPKF) 568.6368 9.90
2 Foliar diagnosis (NPKfd) 382.7230 6.67
3 Chl 424.5404 7.39
4 RGB 186.3311 3.25
5 HSB 272.4006 4.74
6 HSL 283.5978 4.94
7 CIE L*a*b* 195.7694 3.41
8 CMYK 182.8688 3.19
9 rgb 177.1267 3.09
10 NDI 534.5405 9.31
11 INT 649.7845 11.32
12 DGCI 306.7523 5.34

The analysis of these data reveals that the equation based on the normalized values (rgb) facilitated the most
reliable prediction of wheat production (R2 = 0.975), and among the calculated indices, the equation based on the
DGCI index highly facilitated wheat production prediction (R2 = 0.925).

4. Discussion

To estimate wheat production, different criteria were considered, such as applied
fertilizers (NF, PF, KF), physiological indices (plant nutrition status in the form of Nfd,
Pfd, Kfd, and chlorophyll content Chl, SPAD units), color parameters obtained by imaging
analysis (RGB; rgb; HSB; HSL; L*a*b*; CMYK), and the calculated indices (NDI, INT, DGCI).
This resulted in several methods for estimating wheat production, and within each one,
different models were obtained in the form of equations. To evaluate the safety of the
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results obtained by different methods, and corresponding models in the form of different
equations, representative statistical parameters were used: root mean square error of
prediction (RMSEP) and relative error of prediction (REP), presented in Table 7.

The methods, tools, and models of plant analysis for assessing the vegetation sta-
tus of agricultural crops and production estimation, in relation to different influencing
factors, have devolved over time depending on the knowledge level and available tech-
niques [68–70]. Technological and IT facilities have been developed and diversified, so
that they have been implemented with increasingly accessible equipment and devices that
facilitate real-time evaluation and estimation of crops and yield, or certain quality parame-
ters, based on physiological indices, or based on plant vegetation status (eco–physiological
plants’ properties) [71,72]. Agricultural crops’ yield prediction is of interest and has been
studied in relation to climatic and soil conditions, different crops, and agricultural tech-
nologies, yields, methods, and techniques of approach, etc. [72]. Prediction methods based
on soil and environmental parameters, in relation to agricultural crops, are important due
to the direct plants–soil environmental relations, which influence the physiological plants’
processes [73].

From the comparative analysis of the fit level between the predicted productions on
each obtained model, and the real production measured Y (M), different fit levels were
found. The values of the statistical safety parameters (p, R2) recorded for each fitting
analysis highlighted and confirmed the safety level of each model. Thus, the safety of the
models evaluated based on RMSEP and REP (Table 7) was also confirmed by parameters p
and R2 related to the fitting lines between the predicted production and the real production,
measured Y (M).

The best fit was recorded for the model based on rgb parameters (normalized values),
in which case R2 = 0.975; p < 0.001 were recorded. The respective model was also con-
firmed by Cluster Analysis (Supplementary Figure S2), respectively based on SDI values
(Supplementary Table S1, Supplementary Figure S3).

Fertilizers represent a category of inputs with a decisive role in defining agricultural
productions, their quality, economic yields, differentiated in relation to the crop plant,
the category of agricultural products, and the level of analysis [74,75]. Strong (and very
strong) correlations were found between fertilizers and wheat production, respectively, and
production quality indices, in different experimental conditions, regarding the location, soil
types, cultivated wheat genotypes, types of fertilizers, and cultivation technologies [76–78].
Based on the strong correlations between biomass, grain production, and wheat quality
indices, it has been suggested that biomass can be used as an indicator of cereal response
to N in terms of yield [79]. Zhou et al. [80] reported definite results on the prediction of
spatial variability of production and quality indices for wheat in relation to fertilizers, in
terms of the obtained prediction models’ statistical safety (based on r and RMSE). Models
of production prediction based on fertilizers’ rate (or other inputs) have been studied in
wheat [81], but also in other crops or interest plants (such as wild oats) [82]. In the context
of the present study, wheat production estimation based on the applied fertilizers was
possible, in statistical safety conditions, according to R2 = 0.763; p = 0.013. This safety
level registered suggested that the use of nutrients from fertilizers was influenced by a
number of factors, with reference to soil, environmental conditions, and plant genotype.
The regression coefficient value (R2 = 0.717), resulting from the fitting analysis between
predicted yield based on the F model, Equation (5), and real yield, average value over six
years [64], with another wheat cultivar (Ciprian) and growing conditions, indicates that the
model has a realistic construction, stability, and safety (R2 = 0.763 in the case of the F model
in this study).

Different fertilizers and fertilization rates were evaluated and quantified in relation
to wheat plants’ nutrition status and the distribution of some mineral elements in plants’
organs [83], or in relation to plants’ nitrogen uptake [84,85]. In addition to the analytical
methods for determining the nutrient content in wheat plants (e.g., N), the imaging meth-
ods, based on reflectance, have been successfully used and present multiple perspectives for
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precision agriculture, smart agriculture, and agriculture of the future [23]. Foliar diagnosis
is primarily a method of assessing and controlling the state of plants’ nutrition, in order
to make corrections in the sense of nutrients provided (especially nitrogen) at the level
of plant consumption corresponding to a certain level of expected harvest [86,87]. In the
present study, yield prediction based on macronutrients’ content determined in wheat
leaves by foliar diagnosis (NPKfd) was possible under conditions of R2 = 0.883; p < 0.01.
The safety level for yield prediction based on foliar diagnosis (NPKfd) was superior to the
applied fertilizers’ method (NPKF), which suggests that the plant’s nutrition status is a
safer indicator in estimating production than nutrients applied to the soil by fertilizers.

Chlorophyll a is a physiological index that expresses the plant’s nutrition state (espe-
cially with N), as well as the vegetation state in relation to soil organic matter and nitrogen
availability [67], or in relation to different vegetation factors such as light/shading of wheat
plants [88]. Production estimation based on physiological indices has been a long-time
concern, so Reeves et al. [89] predicted wheat grains’ production based on the chlorophyll
content determined during the vegetation period, growth stage 5. Liu et al. [90] reported
the results on the use of production prediction models for six rice varieties, based on
chlorophyll content and foliar indices (LAI) and N indicators (LNA and PNA), respectively.
According to authors, the production prediction was possible in statistical safety conditions
(p < 0.001; R2 = 0.81 to R2 = 0.94; RRMSE = 0.078 to RRMSE = 0.196), in relation to the
obtained models and predicted elements. Liu et al. [91] reported production prediction
models based on chlorophyll content in rice, in relation to various doses of fertilizers that
induced variation in nutrition and chlorophyll content in plants, and production predic-
tion was possible under high statistical safety conditions (r = 0.88, RMSE (95%) = 0.48
for Model1, and r = 0.91, RMSE (95%) = 0.39 for Model2, respectively). Walsh et al. [92]
reported that the variation in spring wheat yield can be explained based on SPAD and
NDVI indices (80% and 84%, respectively), and this fact suggested the possibility of wheat
production prediction based on the respective indices. Under the conditions of the present
study, the estimation of wheat production based on chlorophyll content was possible under
conditions of R2 = 0.857; p < 0.01, values that fall within safety intervals communicated by
other authors for similar studies.

Imaging-based wheat production potential prediction has been found to be useful for
adjusting fertilizer doses (N) during the growing season [36]. Using regression analysis,
models were obtained in different color systems (RGB, HSI, La ∗ b*) in order to evaluate the
chlorophyll content and the plant’s nutrition status, in statistical safety conditions [93,94].
Liu et al. [95] reported results on the rice yield estimation in relation to the N rate and plant
density, and in relation to plant color indices and normalized values (NRI, NGI, and NBI).
The authors reported the high statistical safety of the fitting equations obtained for the
purpose of predicting production (p < 0.05). Regression models based on color parameters
(RGB, rgb), or DGCI–rgb combination, facilitated good prediction of chlorophyll content
(Chl) relative to actual chlorophyll content in rice. The artificial neural network model
facilitated a better prediction of Chl based on RGB compared to regression models [96].
Ali et al. [97] used determinations based on the leaf chlorophyll meter and GreenSeeker
sensor to evaluate nitrogen supply and wheat grain production, and the obtained models
were independently validated on other crops, in statistical safety conditions (R2 = 0.61
and R2 = 0.85, respectively). Based on the information in a multicolored fusion space,
regression models were obtained for the Chl content prediction in wheat plants in relation
to the N doses used, in statistical safety conditions (R2 = 0.794, RMSE = 4.304) [98]. Zhou
et al. [80] reported results on the prediction of spatial variability, production, and quality
indices for wheat in relation to fertilizers, in terms of prediction models’ statistical safety
obtained (based on r and RMSE). In the present study, different levels of statistical safety
were obtained when predicting wheat production based on color parameters (different
color systems), and the highest level of statistical certainty was recorded in the case of
models based on rgb normalized parameters, according to R2 = 0.975; p < 0.01.
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Rorie et al. [44] found that there was a close relationship of the Dark Green Color
Index (DGCI) calculated from digital images with LNC in maize (R2 = 0.80 to R2 = 0.89),
which suggested that color image analysis was a suitable tool for evaluating the state of
N supply of corn plants, field-scale. The DGCI index used chlorophyll content prediction
in soybean plants [99], in statistical safety conditions (R2 ≥ 0.87, RMSE ≤ 3.1 SPAD units).
In the present study conditions, the DGCI index facilitated the wheat crop production
prediction under conditions of R2 = 0.925; p < 0.01. Production prediction is of interest
for technical and economic reasons, but the prediction accuracy and degree of confidence
are equally important and were evaluated in various studies in relation to prediction
methods, techniques, and algorithms [100]. With the same input data (e.g., fertilizer doses),
regression analysis will lead to other coefficients of the obtained equations, in relation to
the production level which is variable in relation to the climate conditions, the cultivated
variety, and the crops’ technology applied. The interaction of the factors is also considered.

Therefore, the contribution of this study can be appreciated through the concept and
the opportunities it opens up in the construction of wheat production estimation models
in relation to different genotypes, environmental conditions (soil, climate), technological
conditions, and the rate of fertilization.

The results obtained and communicated in this study are in line with the trend of
concerns and research for production prediction, for proper crop management during the
vegetation period and for the management of production harvesting, transportation, stor-
age, and capitalization processes in relation to processing, industrialization, or the market.

5. Conclusions

The concept and the experimental module (NPK macroelements, 11 experimental
variants) ensured in a controlled way the differentiated supply of wheat plants with
nutrients (foliar diagnosis), which was reflected in the chlorophyll content (Chl), in the
state of plant development (BBCH stage 31), and in production levels, respectively. The
digital images taken captured the eco–physiological properties of the wheat plants (BBCH
stage 31), quantified numerically in different color systems, and synthetically expressed in
specific indices.

Wheat production prediction models obtained by regression analysis, based on applied
fertilizers (F), physiological indices (PI), and imaging analysis (IA) methods, facilitated
wheat production estimation under different conditions of accuracy and statistical safety.
Some models based on foliar diagnosis (NPKfd) or chlorophyll content (Chl), as represen-
tative physiological indices (PI), involve certain costs related to equipment (chlorophyll
meter) or costs of laboratory analysis (foliar diagnosis). In the case of models based on
color parameters (RGB, rgb, and various convertible color systems), or specific indices (e.g.,
DGCI), they are obtained based on digital images and facilities provided by accessible
cameras, in high-resolution conditions.

Imaging analysis (IA) provided the most reliable prediction (of all the models that ob-
tained the study conditions), through the model based on rgb normalized values (R2 = 0.975;
p < 0.01), in the category of models based on color parameters. The prediction model based
on the DGCI index (R2 = 0.925; p < 0.01) was highlighted in the case of models based on
specific indices. In the category of models based on physiological indices (PI), the model
based on foliar diagnosis (NPKfd) was highlighted (R2 = 0.883; p < 0.01). The prediction
model based on applied fertilizers (F) showed a lower accuracy and safety compared to the
other models (R2 = 0.763; p = 0.013). The lower value of the prediction safety in the case of
models based on applied fertilizers can be associated with the variable rate of nutrients
used from fertilizers, in relation to conditions of soil, climate, technology, and cultivated
genotype. The model based on applied fertilizers, which resulted in this study (F model),
was tested on external wheat production data. Fit degree analysis between predicted yield
based on the F model, and real yield (six-year average), was confirmed by R2 = 0.717
compared to R2 = 0.763 for the F model in this study.
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The models obtained in this study, related to the “Alex” wheat cultivar, can be used
for other wheat varieties, but with a certain margin of error given the coefficient values of
the obtained equations. The approach concept, methods, and models presented can be op-
portunities to approach other studies regarding the estimation of grass cereals’ production.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/agronomy13061500/s1, Figure S1: Fittings between measured
and estimated production: (a) Y(F)—applied fertilizers; (b) Y(NPK-fd)—foliar diagnoses; (c) Y(Chl)—
physiological indices (Chl); (d) Y(RGB)—color parameter RGB system; (e) Y(HSB)—color parameter
HSB system; (f) Y(HSL)—color parameter HSL system; (g) Y(Lab)—color parameter CIE L*a*b*
system; (h) Y(CMK)—color parameter CMIK system; (i) Y(rgb)—normalized values’ RGB system; (j)
Y(NDI)—normalized difference index; (k) Y(INT)—intensity; (l) Y(DGCI)—Dark Green Color Index;
Figure S2: Dendrogram of the wheat production estimation models’ association, based on similarity
according to the production values estimated on the experimental variants, and real production;
Figure S3: Graphic distribution of the SDI values, in relation to the production estimation models and
real production (the lower DSI value is preferable); Table S1: Similarity and distance indices’ values to
quantify the similarity level between real production and production estimated by different models.
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69. Kitić, G.; Tagarakis, A.; Kselyuszka, N.; Panić, M.; Birgenmajer, S.; Sakulski, D.; Matović, J. A new low-cost portable multispectral
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