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Abstract: The harlequin ladybird, Harmonia axyridis, is a valuable asset in integrated pest management
(IPM); however, issues related to low-temperature storage and transportation have resulted in low
hatching rate, while the use of pesticides may lead to non-target effects against this natural enemy
during field application. Fluctuating thermal regimes (FTR) have been shown to be beneficial during
the low-temperature storage, and the type and concentration of insecticides used are crucial for
field application of H. axyridis. Despite this, little research has been conducted on the effects of FTR
on the hatching rate of ladybird eggs, and the impact of pesticides on their egg viability remains
unclear. To address these gaps, we investigated the effects of different thermal temperatures, recovery
frequencies (the number of changes in temperature conditions per unit time), and recovery durations
(the duration of the treated temperature condition) on egg hatching under constant low-temperature
conditions. We also examined the toxicity and safety of seven commonly used insecticides on egg
hatching. Our results indicate that the temperature during FTR application did not significantly affect
egg hatching, but the interaction between temperature and recovery frequency can significantly affect
egg hatching. Moreover, the recovery frequency and recovery duration had a significant impact on
hatching. Under specific conditions, the hatching rate of eggs subjected to FTR was similar to that of
eggs stored at 25 ◦C. Furthermore, we found that matrine (a kind of alkaloid pesticide isolated from
Sophora flavescens) had low toxicity to ladybird eggs and is a safe pesticide for use in conjunction with
this natural enemy. The study provides valuable information on effectively managing H. axyridis by
taking into account both storage temperature and pesticide exposure.

Keywords: fluctuating thermal regime; pesticide; Harmonia axyridis; egg hatching

1. Introduction

Insect pests have caused significant losses to agricultural production worldwide, and
the situation is being exacerbated by the environment and climate change [1]. An effective
insect pest management strategy is therefore crucial to minimize losses and maximize
agricultural yields. Chemical pesticides have been widely used in pest management, but
they have numerous negative impacts on the environment and human health and also lead
to the development of pesticide resistance in target pests [2]. As a result, there is an urgent
need for environmentally friendly alternatives to chemical pesticides and biocontrol is one
of the most promising solutions [3]. Previous studies have demonstrated that the use of
eco-friendly methods, such as employing natural enemies or entomopathogens in crop
fields, could have complementary effects in reducing the population density of targeted
insect pests [4,5]. Thus, by using natural enemies as a complementary resource, insect pest
populations can be effectively decreased, reducing the use of pesticides and improving the
number of biological interactions in a specific agriculture and agroforestry ecosystem [6].
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The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera Coccinellidae), is a
species of ladybird originating from Asia that primarily feeds on aphids [7]. It is considered
an effective biocontrol agent for aphids, which are destructive crop pests globally [8,9]. For
example, an effective integrated pest management program was reported for managing
pecan aphid, in which H. axyridis adults and other predators were released [10]. In China,
H. axyridis is generally applied in the field by releasing egg cards [11]. Nevertheless, the
eggs of H. axyridis are usually stored at low-temperature (normally 5 ◦C) before field
application [12], which significantly decreases their survival rate and limits the application
range and commercial mass production [13]. Fortunately, previous studies have shown
that a short high temperature pulse (fluctuating thermal regime [FTR]) treatment during
low-temperature storage of pupae could significantly increase adult emergence rate and
survival [13,14]. Nevertheless, the effect varies with the frequency of the FTR [15,16].
However, it remains unknown whether the FTR treatment could increase the hatching rates
of H. axyridis eggs and which frequency of FTR would be the most optimal.

In addition to the challenges in storage, the eggs of H. axyridis released in the field are
also likely to come into contact with pesticides and their residues as they are often used in
conjunction with other biocontrol methods and chemicals [17,18]. Recently, the negative
effects of chemical pesticides on non-target insect have been well documented, including
increased mortality, slowed growth and development, and reduced reproduction [19–21].
Not surprisingly, insecticides have a detrimental effect on the egg hatching of some non-
target insects with varying levels of toxicity and have been shown to have a negative effect
on the hatching rate of eggs in the ladybird Eriopis connexa (Germar) [22]. Although the
impact of certain insecticides on the eggs of H. axyridis has been documented [7,17], the
effect of other pesticides sprayed on eggs remains an open question.

In this study, we focused on the two major issues hindering the application of
H. axyridis as a biocontrol agent; our objective was to assess the impact of different FTR
and the toxicity of some common insecticides on the hatchability of H. axyridis eggs. We
hypothesized that an optimal FTR treatment would result in an increased hatching rate,
while the pesticides would have adverse effects on the eggs with varying levels of toxicity.

2. Materials and Methods
2.1. Insect Rearing and Egg Collection

Adult H. axyridis were collected from garden plants in Wuhan City for laboratory
study and overwintering. The insects were reared on the wheat aphid, Rhopalosiphum padi,
under controlled conditions of 25 ± 1 ◦C, 50–60% relative humidity, and a 16:8 (light:dark)
photoperiod. For the experiment, newly laid eggs (<24 h) were collected on egg cards
(6 mm × 3 mm) and used after three days.

2.2. Effects of Fluctuating Thermal Regimes on Egg Hatching Rate

The study employed 36 storage protocols and two groups. Specifically, a constant
low-temperature (CLT) of 5 ◦C [23] and a constant high temperature (25 ◦C) were set as
control groups. The treatment groups were defined by three fluctuating thermal regimes
(FTRs) with distinct temperature profiles. Each FTR (15, 20, or 25 ◦C) was characterized
by a CLT phase and a recovery phase with duration of 0.5 h, 1 h, 2 h, or 3 h, at specific
recovery frequency (24 h, 48 h, and 72 h). All experiments were conducted under complete
darkness [24,25]. Therefore, a total of 36 different protocol combinations were tested,
resulting from the 3 (FTRs) × 4 (recovery durations) × 3 (recovery frequencies). The
experiment included five replicates for each treatment, and in each replicate, we used a
piece of egg card (~26 eggs on one card). After five days of treatment, egg cards were
removed from the treatments, and transferred to a standard hatching protocol of 25 ◦C,
constant darkness, and 70% relative humidity [26]. The number of incubated eggs was
recorded daily for six days (Figure 1).
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2.3. Effects of Pesticides on Egg Hatching Rate

Seven pesticides were evaluated (Table 1). The pesticides and concentration were
selected based on their current and potential use for controlling aphids and scale insects.
Seven concentration levels were set for each tested pesticide, with distilled water used as
solvent. The concentration levels were set in a doubling fashion, with each level being
twice the concentration of the previous level. H. axyridis egg cards were exposed to the
pesticides by topical application using spray bottles, simulating the conditions that eggs are
likely to encounter in the field after pesticide application. The spray volume per application
from the spray bottle was approximately 0.15 mL, and the distance of application was 5 cm.
As a result, the liquid spread covered an area of approximately 17.16 cm2 after spraying.
Each treatment was replicated five times, with 20–30 eggs per replicate. After spraying, the
eggs were kept at the same hatching condition as described in Section 2.2. The hatching
assessments were conducted until no more larvae emerged (Figure 1).

Table 1. Insecticides tested for toxicity to the Harmonia axyridis.

Insecticides Formulation
Recommended
Concentrations

(mg/L)
Toxicity Families

Initial
Concentration

(mg/L)

Final
Concentration

(mg/L)

3% Emamectin
benzoate ME 2000 Low Microbial

pesticide 125 8000

5% Abamectin EW 1000 Moderate Microbial
pesticide 50 3200

30%
Thiamethoxam SC 666.67 Low

Second
generation

nicotine
62.5 4000

20% Acetamiprid SL 1000 Low Nicotine chloride
compounds 62.5 4000

20% Imidacloprid SL 1000 Low Neonicotinic
insecticides 84 5336

1.3% Matrine EW 1000 Low Alkaloid 125 8000
0.3%

Azadirachtin SC 1000 Low Biological
insecticide 125 8000
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The pesticides were compared by the index of relative toxicity, which was calculated
by dividing the LC50 of a pesticide by the LC50 of the 1.3% matrine EW [27]. Since the
1.3% matrine EW has the largest numerical value of LC50, using it as a test agent for
this calculation allows for toxicity comparisons between different pesticides. The safety
of a pesticide to a natural enemy is indicated as relative safety factor [28]. The relative
safety factor (Sr) was calculated by dividing the LC95 of a pesticide by the recommended
concentration of that pesticide for field application. The level of risk was divided into four
grades, low risk means relative safety factor > 5, medium risk means 5 ≥ relative safety
factor > 0.5, high risk means 0.5 ≥ relative safety factor > 0.05 [29].

2.4. Statistical Analysis

A three-way ANOVA analysis was conducted to assess the effects of recovery tem-
perature, recovery duration, and recovery frequency, as well as their interactions on the
egg hatching rate in order to identify the optimal storage conditions [30]. After that, the
differences in hatching rate between every group were analyzed using analysis of variance
(ANOVA) followed by Tukey’s HSD tests. Toxicity analysis was conducted by using the
log10 of pesticide concentration in each treatment as the independent variable (X) and the
egg hatching failure rate as the dependent variable (Y). The probit regression model was
used to fit the toxicity regression curve, and the LC50 (median lethal concentration) and
LC95 (95% lethal concentration) values of the eggs were estimated by the probit mode. All
statistical analyses were performed using IBM SPSS Statistics 20 software.

3. Results
3.1. The Influence of Fluctuating Thermal Regimes on the Hatching Rate of Eggs

There were no observed effects of temperature on hatching rate (p = 0.461, Table 2),
suggesting that the temperature of the FTR has no statistical impact on egg hatching.
Compared to temperature, the recovery frequency and recovery duration of the thermal
fluctuations were significantly affected egg hatching (recovery frequency: p = 0.027; recov-
ery duration: p = 0.048; Figure 2A, Table 2). Additionally, there was a significant interaction
between recovery frequency and temperature on egg hatching, which warrants further
analysis (p = 0.007; Figure 2B, Table 2).

Table 2. The correlation and interaction significance between the factors of FTRs on egg hatching rate.

Factors df MSE F p-Value

Recovery frequency (1) 2 0.229 3.722 0.027
Temperature (2) 2 0.048 0.778 0.461
Recovery duration (3) 3 0.166 2.698 0.048
Between (1) + (2) 4 0.225 3.661 0.007
Between (1) + (3) 6 0.067 1.091 0.370
Between (2) + (3) 6 0.105 1.713 0.122
Between (1) + (2) + (3) 12 0.057 0.929 0.520
Error value 144 0.062
Total 180

The data were analyzed using the three-way analysis of variance (ANOVA) and Tukey’s post hoc tests to detect the
effects of the independent variables (recovery frequency, temperature and recovery duration) and their interactions
on the egg hatching (p = 0.05). All statistical analyses were conducted using software. Statistically significant
difference at p < 0.05.

The hatching rate of eggs under different FTRs are shown in Figure 2. The observed
means, standard deviations, statistical differences, and ranges of temperature, recovery
frequency, and recovery duration are given in Table 3. The hatching rate of H. axyridis eggs
was high (99.00%) when incubated at a constant temperature of 25 ◦C, but significantly
decreased to 54.29% at a constant temperature of 5 ◦C (Table 3, p < 0.05). The eggs stored
under a 24-hour recovery frequency with a 20 ◦C temperature and a recovery duration of 1,
2, or 3 h showed a significantly higher hatching rate for H. axyridis than other treatments
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(Figure 2, Table 3). Meanwhile, a negative effect on egg hatching rate was observed under
long recovery duration (72 h) for each temperature (15, 20, or 25 ◦C) (Table 3). Although
there was no statistically significant difference between some treatments, the egg hatching
rate of H. axyridis tended to increase with longer recovery duration (Table 3).
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Figure 2. Egg hatching under different condition and interaction effects between factors. (A) Hatching
rates of eggs exposed to different condition. Control eggs were maintained at a constant temperature
of 25 ◦C or 5 ◦C. (B) Interaction effects plot showing the interactions between recovery frequency
and temperature, recovery frequency and recovery duration, and temperature and recovery duration.
Parallel lines indicate no interaction, while intersecting lines indicate the presence of an interaction.
The degree of intersection reflects the strength of the interaction.
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Table 3. The difference between the rate of egg hatching for Harmonia axyridis under different recovery
frequency and recovery duration.

Recovery
Temperature

Recovery
Frequency

Recovery Duration

0.5 h 1 h 2 h 3 h

15 ◦C
24 h 44.78 ± 7.34 19.69 ± 4.47 46.96 ± 13.80 a 52.78 ± 20.10
48 h 33.55 ± 4.09 Ab 38.33 ± 10.46 AB 56.43 ± 1.62 Bb 75.70 ± 3.48 AB
72 h 29.45 ± 9.53 33.27 ± 8.51 52.77 ± 7.91 a 50.45 ± 10.54

20 ◦C
24 h 48.86 ± 4.12 Aa 97.49 ± 1.38 A 97.30 ± 0.29 A 98.41 ± 1.59 B
48 h 25.18 ± 5.64 Ab 52.81 ± 3.33 B 61.49 ± 9.32 AB 63.86 ± 1.76 B
72 h 35.51 ± 8.42 a 42.36 ± 4.11 51.09 ± 9.02 57.70 ± 5.79

25 ◦C
24 h 57.12 ± 3.90 A 57.76 ± 14.60 AB 58.85 ± 0.64 B 64.70 ± 5.55 AB
48 h 37.07 ± 2.14 57.69 ± 12.31 65.09 ± 7.67 68.75 ± 4.93
72 h 39.59 ± 3.67 44.20 ± 13.15 51.26 ± 0.67 40.28 ± 15.24

Constant low temperatures 54.29 ± 7.52 a
Control group 99.20 ± 0.72 b

Data (mean ± SE) followed by different letters indicate significant at the 0.05 level. Significant differences
between different recovery duration under the same temperature and frequency are represented by capital letters;
significant differences between different recovery frequencies under the same temperature and recovery duration
conditions are represented by lowercase letters.

3.2. Effects of Seven Pesticides on the Hatching Rate of H. axyridis

A linear relationship between pesticide concentration and hatching rate was obtained,
and the resulting linear regression equation and coefficient of determination were displayed
in Table 4. Generally, the model fit the hatching rate distributions well, with an R2 value of
over 0.9. Based on the LC50 of the pesticides on the eggs, 1.3% matrine EW was the least
toxic compound (LC50 = 10,752.25), while 20% acetamiprid SL showed the highest toxicity
to eggs (LC50 = 158.35) (Table 4). The toxicity of pesticides showed a similar pattern when
based on LC95 of pesticides on the eggs (Table 4). A comparison between groups sprayed
with different pesticides showed a significant difference in toxicity based on the index of
relative toxicity (index of relative toxicity > 1.5; Table 4) [27]. Among the pesticides, matrine
showed the highest value of Sr (Sr = 10.75), while acetamiprid displayed the lowest Sr,
indicating a high risk for H. axyridis (Sr = 0.16). Imidacloprid, abamectin, azadirachtin, and
abamectin-aminomethyl exhibited a medium risk (Sr = 0.36, 0.56, 3.68), while thiamethoxam
and matrine displayed a low risk (Sr = 10.45) for relative safety. (Table 4).

According to the relative safety factor, the risk level of pesticides to natural ene-
mies is divided into four levels. Safety factor > 5 is considered low risk, 5 ≥ safety
factor > 0.5 is considered moderate risk, 0.5 ≥ safety factor > 0.05 is considered high risk,
and safety factor ≤ 0.05 is considered extremely high risk.

Table 4. Acute toxicity of the seven insecticides to eggs for Harmonia axyridis.

Insecticide Regression Equation LC50/mg/L LC95/mg/L Correlation
Coefficient

Relative Safety
Factor

Index of Relative
Toxicity

20% acetamiprid SL Y = −1.411 + 0.009X 158.35 342.89 0.914 0.16 67.90
20% imidacloprid SL Y = −4.362 + 1.708X 358.15 3290.17 0.923 0.36 30.02
5% abamectin EW Y = −10.334 + 3.765X 555.87 1520.19 0.948 0.56 19.34
0.3% azadirachtin SC Y = −5.406 + 1.516X 3679.67 44,744.10 0.971 3.68 2.92
3% abamectin-aminomethyl ME Y = −8.773 + 2.339X 5630.88 28,430.59 0.902 2.82 1.91
30% thiamethoxam SC Y = −4.687 + 1.219X 6969.76 155,604.83 0.904 10.45 1.54
1.3% matrine EW Y = −4.870 + 1.180X 107,52.25 263,162.094 0.911 10.75 1.00

Data for toxic regression equation, LC50, and LC95 were analyzed using probit analysis program.

4. Discussion

Insects, as poikilothermic animals, are greatly influenced by temperature, which plays
a critical role in various biological aspects of insects [31]. These aspects include feeding
behavior, survival, and morphological characteristics [32–34]. The effective rearing and
preservation of beneficial insects, such as pest predators, pose challenges that need to be



Agronomy 2023, 13, 1470 7 of 10

addressed in practical production practices [35]. Eggs of H. axyridis are often stored at
low temperatures during storage and transportation [36], which can negatively impact
the hatching rate and larval development [37]. Similarly, we have previously observed a
significant decrease in the hatching rate of H. axyridis eggs under low temperature storage
conditions. FTR has been extensively employed to enhance the quality of eggs or pupae
during the storage and transportation of natural enemies. However, it is important to note
that the effects of FTR treatments may vary across different species and FTR factors, such as
temperature and recovery frequency. We found that FTR treatment had a positive effect on
the hatching of H. axyridis eggs exposed to low temperatures. Additionally, the FTR-based
protocols with a temperature of 20 ◦C, recovery frequency of 24 h, and recovery duration of
1 h, 2 h, or 3 h showed significantly higher hatching rates compared to the control group.

According to the physiological recovery hypothesis, which is widely accepted to
explain the effect of FTR on survival, insects benefit from periodic physiologically recovery
to counteract the chilling injuries that accumulate during constant low temperature [38].
These recovery processes encompass various aspects, such as restoration of ion gradients,
metabolic homeostasis, detoxification, and more [39]. Intriguingly, our study on H. axyridis
revealed a negative effect associated with several types of FTRs, resulting in a lower egg
hatching rate compared to the CLT group. This phenomenon was particularly prominent
under high temperatures and long recovery frequency (refer to Figure 2 and Table 3). The
reduced hatching rate of eggs may be attributed to unfavorable conditions that hinder or
reverse the normal physiological repair process. Future research should aim to explore the
specific pathways that lead to decreased egg hatching under high temperature and long
frequency conditions. On the other hand, we revealed a novel role of different three factors
and their interaction in FTR on egg hatching of H. axyridis. Specifically, we showed that
the recovery frequency and recovery duration had a significant impact on egg hatching.
While temperature alone did not show a statistically significant effect on egg hatching,
we observed a significant interaction between recovery frequency and temperature in
influencing egg hatching. This suggests that temperature alone may not directly affect
egg hatching, but it does interact with frequency within a certain range to influence the
process; however, exposure to high temperatures and long fluctuation frequency resulted
in significantly lower hatching rates compared to the control. In the short term, FTR-based
protocols could be a viable option for maintaining the stockpiling of biocontrol agents.
However, given the limited duration of thermal time, the frequency of heating intervals,
and the small scale of storage, future research should focus on exploring optimal conditions
for storing H. axyridis eggs that are less dependent on specialized equipment, making them
more practical for commercial growers [40].

It is vital to investigate the toxicity of pesticides on natural enemies so as to determine
the specificity of pesticides for target or non-target insects and identify compounds that
are less harmful to non-target insects [41]. Furthermore, this information is crucial for
the implementation of integrated pest management, where the goal is to take advantage
of the control effect of natural enemies while minimizing the impact on the non-target
organisms [42]. Here, we found that the exposure to pesticides through surface contact
resulted in decreased hatching rates and concentration-dependent mortality in H. axyridis
eggs, similar to other Coleoptera species, such as Harpalus pennsylvanicus [43], Coccinella
undecimpunctata [44], and Serangium japonicum [45]. In the study, we examined the impact of
seven common pesticides on H. axyridis egg hatchability and evaluated their safety towards
H. axyridis. All the tested pesticides had adverse effects on the H. axyridis eggs, with the
hatched number varying according to pesticide concentration and type. Additionally, 20%
acetamiprid SL with the lowest LC50 was the most toxic compound, and this pesticide
is relatively high-risk in terms of relative safety. matrine was found to be low risk for
relative safety, which is suitable for applying with H. axyridis. The 30% thiamethoxam SC
displayed a similar risk compared to the 1.3% matrine, making it a potential for integration
with natural enemy. However, thiamethoxam exhibited higher toxicity compared to 1.3%
matrine. Therefore, we maintain that the latter (1.3% matrine) is more appropriate for



Agronomy 2023, 13, 1470 8 of 10

application. Meanwhile, we found that the larvae hatching in insecticide-treated eggs had
lower survival rates than larvae hatching in untreated eggs (unpublished data), possibly
due to residual pesticides that remained in the larvae and lead to negative impacts [46–48].
Hence, a future direction of study should be to detect the impact of pesticide residues
in larvae hatching from pesticide-treated eggs and to assess the combination of natural
enemies and pesticides in another aspect.

Taken together, in this study, we aimed to examine the effect of fluctuating thermal
regimes (FTRs) and seven common pesticides on the hatching rate of H. axyridis. The
research presented here reinforces that FTR is a versatile tool with many potential benefits
including long-term storage with high rate of hatching of insects in scientific collections.
One possible application of FTR-based protocols is the small-scale storage of biocontrol
agents for production [49]; however, to effectively store larger volumes of insects, FTR
protocols require further refinement. By exploring storage conditions and suitable pesticide
types and concentrations, our findings provide a theoretical guidance for the integration of
pesticides with the biological control method. For example, when we have identified the
varied toxicity of different pesticides towards predator eggs, we can prioritize the use of pes-
ticides with lower toxicity to predator eggs in integrated pest management strategies, where
predators and pesticides are used together for pest control. Nonetheless, research about
determining the potential impact of FTRs on pesticide resistance is needed. Consequently,
this study provides valuable information on the selective toxicity of pesticides to non-target
insects, and highlights the importance of considering both temperature conditions and
pesticide exposure in the management of H. axyridis.
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