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Abstract: The classification that distinguishes whether machines are driving on roads or working in
fields based on their global navigation satellite system (GNSS) trajectories is essential for effective
management of cross-regional agricultural machinery services in China. In this paper, a novel
field–road classification method utilizing multiple deep neural networks (MultiDNN) is proposed
to enhance the accuracy of field and road point classification. The MultiDNN model incorporates a
bi-directional long short-term memory network (BiLSTM), a topology adaptive graph convolution
network (TAG), and a self-attention network (ATT) to effectively extract spatio-temporal features
for field–road classification. The BiLSTM is used to capture temporal relationships along the time
axis of a trajectory, providing global contextual information for each point. Then, the TAG network is
used to obtain the spatio-temporal relationships between adjacent points in a trajectory, offering local
contextual information for each point. Finally, the ATT network assigns varying weights to features
to emphasize important characteristics. The performance of the MultiDNN model was evaluated
using a wheat harvesting trajectory dataset, and the results showed that it achieved a high degree of
accuracy, up to 89.75%, outperforming the best baseline method (GCN) by 2.79%.

Keywords: operation decomposition; field–road classification; deep learning; combination strategy;
GNSS tracked trajectories

1. Introduction

The management of cross-regional agricultural machinery services in China requires
accurate and up-to-date information on the operation of agricultural machinery. The service
was established two decades ago to reduce farmers’ mechanization costs, and has been
plagued by inefficiencies in the migration of agricultural machinery, leading to overuse or
underuse of the machinery [1–3]. To resolve this issue, the creation of effective migration
plans based on current supply–demand information and machinery operation statistics is
necessary. For example, some works [4,5] have calculated the operational costs of different
in-field and out-of-field activities, so that effective migration plans can be developed to
optimize cross-regional farm machinery services.

The calculation of agricultural machines’ operation statistics relies on its operation
classification, which is a process that breaks down the overall operation into constituent
activities such as in-field effective working and non-working operation, and out-of-field
activities (e.g., on-road driving). For example, Grisso et al. combined yield monitor data and
GNSS trajectory data to quantify the field performance of combine harvesters and seeders,
and then compared operational efficiency for each traffic mode in fields (steering, straight
ahead, etc.) [6]. Bochtis et al. used a fertilizer transporter combined with its GNSS trajectory
data to compare and analyze the effect of different traffic modes on operational efficiency [7].
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In practice, the operation classification is often performed on GNSS recordings due to
GNSS, allowing for efficient and effective data collection. Moreover, in the entire operation
classification process, field–road operation classification that automatically distinguishes
in-field and out-of-field activities serves as the first step. Many studies [4,5] carry out the
field–road operation classification relying on an existing field boundary database; however,
in China, there is no available field boundary database, making it necessary to develop
a field–road operation classification method that can function without the input of field
boundaries for assisting in the calculation of agricultural machines’ operation statistics.

Currently, a number of methods for field–road operation classification have been
presented without the need for field boundaries, which aim to automatically identify the
category (field or road) of each point in GNSS trajectory. Chen et al. developed an approach
for identifying field and road GNSS points based on DBCAN clustering algorithm and
inference rules [8]. The DBCAN clustering algorithm is used as the first step to identify
field and road GNSS points through point density (a kind of spatial relationship); then,
inference rules based on the temporal relationships between points in the same field are
used to correct the identification results. The DBSCAN + Rules achieved a high F1-score
of 95.6% on a dataset of 60 GNSS recording trajectories collected from different tractors.
Poteko et al. developed a decision-tree-based method to automatically detect field and
road GNSS points [9]. The method utilizes recorded parameters such as speed and course
over ground, to develop derived parameters that reflect the temporal relationship between
points such as acceleration, curve radius, and angular speed. These parameters are then
fed to a supervised decision tree to classify each point as either “field” or “road”. Although
their method achieved an accuracy over 90% on two datasets (EGNOS and the RTK dataset),
it was based on high-quality GNSS data, such as the application of data correction (e.g., RTK
correction, satellite-based data augmentation), and a high sampling rate (e.g., 5 Hz). Chen
et al. proposed a novel method which applies graph convolutional networks (GCNs)
for field–road classification [10]. This method involves constructing a spatio-temporal
graph based on the relationships between each point and its neighboring points, and such
relationships involve both temporal relationship and spatial relationships. The results of
these studies suggest that leveraging spatio-temporal information between points is crucial
for accurate field–road classification. An accuracy of 88.14% and 85.93% was achieved
on two datasets, wheat and paddy, respectively. Zhang et al. proposed a novel approach
for field-road segmentation that leverages multimodal information [11]. Two field–road
classification results were obtained using two distinct clustering methods independently;
one is DBSCAN, which partitions a trajectory based on point density, and the other is
the object detection (OD) method, which clusters pixels in an image generated from the
trajectory. The final result is one with a higher Davis–Bouldin Index (DBI) [12]. Their
experimental results revealed that the DBSCAN + OD + DBI approach yielded superior
performance compared to the individual methods, with an accuracy of 85.97%. These
studies showed that leveraging spatio-temporal information between points is crucial for
accurate field–road classification.

In order to improve the accuracy of “field” and “road” points classification in a GNSS
trajectory, we proposed a method called MultiDNN that combines multiple deep neural
networks by leveraging each’s advantage to capture spatial and temporal relationships at
different levels. Firstly, a bi-directional long short-term memory (BiLSTM) network, a type
of recurrent neural network, was used to extract global temporal information along the time
dimension by modelling a GNSS trajectory as a sequence of temporal points. BiLSTM has
been shown to perform very well in time series prediction [13]. However, one-dimensional
data modeling is insufficient to reveal local spatio-temporal information such as speed
and the direction of distribution of points in the neighboring regions of a point. Thus,
a topology adaptive graph convolution (TAG) network was used to extract local spatio-
temporal information for a point [14], in which a trajectory is modeled as a spatio-temporal
graph similar to the one used in Chen et al. [10]. Likewise, TAG has also been shown
to achieve relatively good performance in trajectory prediction [15]. Finally, to fuse the
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spatio-temporal information according to its importance, a self-attention network (ATT)
was employed to emphasize the significance of the local feature [16]. BiLSTM combined
with ATT has been shown to perform well in the field of natural language processing and
computer vision [17,18].

The subsequent sections of this paper are structured as follows. Section 2 provides
an overview of the data utilized in this study and outlines our proposed method for field–
road classification. Our proposed approach utilizes a combination of BiLSTM, TAG, and
ATT neural networks to effectively extract spatio-temporal features for each GNSS point.
Section 3 presents a comprehensive analysis of the experimental results, which demonstrate
the higher accuracy achieved by our proposed MultiDNN-based approach in comparison
with the best baseline method (GCN). Finally, Section 4 summarizes our main contributions
and suggests future research directions for field–road classification.

2. Materials and Methods
2.1. Dataset

Our proposed method was trained and tested using GNSS trajectory data collected by
China’s agricultural machinery operation big data system [19]. The dataset used in this
study consists of 150 wheat harvesting trajectories, which were acquired during the wheat
harvesting season (June–July) in 2021 using 65 different harvesters produced by Jiangsu
Tiandian Agricultural Machinery Co. These trajectories span seven provinces in China, as
shown in Figure 1.
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Figure 1. Spatial distribution of the trajectory data. Figure 1. Spatial distribution of the trajectory data.

Each GNSS trajectory point is comprised of five essential parameters: longitude and
latitude in the WGS84 coordinate system, velocity (in meters per second), direction (in
degrees), and timestamp (in the format YYYY/MM/DD hh:mm:ss). These points were
collected at an interval of approximately 5 s, and the acquisition accuracy of used GNSS
receivers was 5 m (CEP). Furthermore, the collected trajectory data were manually labeled
as ground truth data, representing the “field” or “road” category for each point. We
observed that far fewer points were labeled as “road” than were labeled as “field”, as
shown in Figure 2. Specifically, the ratio of “road” points to “field” points is 1:3.97.
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Figure 2. Trajectory points distribution.

2.2. Overview

The proposed MultiDNN method (as depicted in Figure 3) includes three components:
input feature extraction; multi-layered spatio-temporal feature extraction that comprises
BiLSTM for temporal feature extraction, TAG for spatio-temporal feature extraction and
ATT for feature fusion; and linear classification.
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where Pj(j = i − 2, . . . , i, . . . , k − 2, . . . k + 2) is a GNSS point, and a trajectory is split into segments
segk(k = 1, . . . , m) of constant size.

1. Input feature extraction was performed to prepare the data for subsequent processing.
Each point in the dataset was represented by a seven-dimensional vector, derived
from the five parameters recorded for that point. This vectorization approach was
adopted to enhance the subsequent feature extraction process.

2. Temporal feature extraction using BiLSTM was performed using a BiLSTM network.
This approach facilitates the extraction of global motion information for each point in
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the dataset, taking into account the temporal relationships among all points within
a trajectory. By modeling the sequence of points along the timeline of a trajectory,
the BiLSTM network represents each point as a feature vector, which encapsulates its
associated motion information.

3. Spatio-temporal feature extraction using TAG: TAG is a cutting-edge neural network
that has been designed to extract spatio-temporal information by analyzing the neigh-
boring regions of a given point. The TAG network plays a pivotal role in generating a
feature vector that encapsulates the spatio-temporal relationships between the point
and its neighbors. The TAG network adapts to the topology of the graph to detect
spatial and temporal information, ensuring that the network effectively captures the
underlying motion patterns in the data. The generated feature vector serves as the
input to the subsequent ATT network.

4. Feature fusion using ATT: The ATT network employs a weighted fusion strategy based
on the importance of each feature in the input vector to obtain a final feature vector.
By incorporating the ATT network, certain features can be selectively emphasized
or suppressed based on their relevance, thus improving the overall accuracy of the
model.

5. Linear classification uses a fully connected layer and a softmax function to perform
linear classification on the feature vectors generated by the ATT network. The primary
objective of the classification stage was to discern the category of each point in the
dataset. In other words, this classification aimed to determine whether each point
belonged to the “road” or “field” category.

Moreover, input feature extraction can be regarded as a feature dimension expansion
process, expanding an original five-dimensional feature vector to a seven-dimensional
feature vector to represent each point in a trajectory. Next, the trajectory was segmented
into constant length (e.g., 512 points), and these segments were fed into BiLSTM one-by-one
to produce a new feature vector for each point based on the whole temporal information
of a segment, where the segment is the one containing the point. Then, a spatio-temporal
graph was constructed, which captures the spatio-temporal information of each point in a
trajectory. Based on the graph and the feature vectors output from BiLSTM, a new feature
vector is generated for each point using TAG-based graph convolution. Furthermore, the
features in a feature vector were fused using ATT, which learns and utilizes the importance
of each feature. Finally, a linear function was used to perform binary classification between
the “road” and “field” categories.

2.3. Input Feature Extraction

To gain deeper insight into the motion, these GNSS points were transformed into a
seven-dimensional vector, including speed, and six derived parameters: longitude dif-
ference, latitude difference, direction difference, acceleration, jerk, and bearing rate. The
calculation method for these derived parameters can be found in the study by Dabiri and
Heaslip [20].

2.4. Temporal Feature Extraction Using BiLSTM

BiLSTM, a popular recurrent neural network that has a strong ability to capture the
temporal relationship in sequences, was utilized to extract temporal features for each
point. BiLSTM, an extension of LSTM [21], utilizes two separate forward and backward
hidden states to capture the past and future information for each point, and then uses the
connection of the two hidden states as the temporal feature representation of that point.

Furthermore, to overcome the issue of varying lengths of trajectories in the data and
the requirement of a constant length of input sequence for BiLSTM, we divided each
trajectory into smaller segments of a predetermined number of consecutive GNSS points,
as seen in seg1 and segm in Figure 3, where a segment is a consecutive series of GNSS points
in the trajectory. If the length of the last segment was not equal to the desired length, a
zero-padding was added to make all input sequences the same length. As a result of using
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the BiLSTM network, each point was then represented by a feature vector that encapsulated
the temporal relationships between points within the segment.

2.5. Spatio-Temporal Feature Extraction Using TAG

To capture the spatio-temporal relationship between a point and its neighboring
points, the TAG network was utilized. As illustrated in Figure 3, there are two specific
components: spatio-temporal graph construction and TAG-based graph convolution. The
spatio-temporal graph construction generated a local spatio-temporal graph for each point
in a trajectory, considering the spatial and temporal relationships between the point and
its neighboring points. Then, taking the temporal feature representation of each point
from BiLSTM as the input, the graph convolution was carried out through a topology
adaptive graph convolution network (TAG), a state-of-the-art graphic neural network,
which propagated the features in accordance with the graph’s topology, thereby generating
a feature vector for each point.

2.5.1. Spatio-Temporal Graph Construction

Based on a study by Chen et al. for a trajectory with N GNSS points [10], a graph
G = (V; E; R) was built based on the spatio-temporal relationship between each GNSS point
and their neighbors, where V represents a set of N nodes (with each node corresponding
to a GNSS point), E is a set of edges (with each edge signifying a relationship between
two nodes), and R is a set denoting the type of relationships for these edges. Specifically,
there are three types of relationships: a temporal edge linking two nodes with adjacent
relationships in the timeline of the trajectory; a spatial edge connecting two points with
adjacent relationships in the spatial distance; and a self-loop edge connecting a node to
itself. For example, as illustrated in Figure 3, node pi and its four neighbors (pi−2, pi−1,
pi+1, pi+2) are connected by temporal relationship edges, and node pi and its two neighbors
pis1 and pis2 are connected by spatial relationship edges. For further information on the
construction of the spatio-temporal graph, refer to Chen et al. [10].

2.5.2. TAG-Based Graph Convolution

The topology adaptive graph convolution network (TAG) adapts to the graph topology
to derive the spatial information of each node within that graph [14]. It uses a set of fixed-
size filters that can be learned to perform convolutions on the graph, and these filters are
designed to be adaptable to the graph’s topology. Specifically, a k-size filter is used to
extract the local features of a node based on its k-localized neighbor, where the k-localized
neighbor is a set of nodes that can be reached from node pi through k edges in the graph.
For instance, as illustrated in Figure 3, six nodes (pi−2, pi−1, pi+1, pi+2, pis1 , and pis2) are
considered 1-localized neighbors of node pi thanks to connections via both temporal and
spatial relationship edges. In the end, a feature vector is generated to represent a point,
which is the concatenation of all features obtained by the filters for that point.

2.6. Feature Fusion Using ATT

To emphasize the significance of the extracted features, the self-attention (ATT) net-
work proposed by Vaswani et al. [16] is utilized to fuse the features by assigning weights to
each feature according to its significance, resulting in a weighted representation of each
point. The ATT network models the interdependencies between features, indicating the
strength of association among features. Specifically, for each feature in a feature vector,
a weight is learned that reflects the importance of the feature to other features. Then, a
weighted feature vector is generated to represent the point.

2.7. Linear Classification

A fully connected layer was utilized to categorize a GNSS point, using its feature
representation as the output of the ATT network. Subsequently, the softmax function
proposed by Banerjee et al. was applied to calculate the predicted probability distribution
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between the two categories (“field” and “road”) for each point [22]. The category with the
highest probability was chosen as the final predicted category for that point.

3. Results and Discussion
3.1. Experimental Settings
3.1.1. Baseline Method

Our proposed methodology, MultiDNN, was evaluated against four existing field–
road classification techniques, including DBSCAN + Rules [8], decision tree (DT) [9],
random forest (RF) [23], and a graph convolutional network (GCN) [10]. Moreover, to
show the effect of extracting temporal information along a trajectory for field–road clas-
sification, a method based only on BiLSTM was developed [13]. These state-of-the-art
approaches were chosen as benchmarks to gauge the effectiveness and competitiveness of
our proposed method.

3.1.2. Model Training and Validation

Our evaluation methodology for the proposed field–road classification model con-
sisted of three primary phases: data splitting, model training, and model testing. In the
data splitting phase, the entire dataset was randomly partitioned into three subsets: 80% for
training, 10% for validation, and 10% for testing. During the model training phase, the
parameters of the selected neural network were optimized using the training data, while
the performance of the trained network was evaluated on the validation set. The model
that achieved the best performance on the validation set was then selected. In the final
phase, the performance of the selected model was evaluated on the test data using four
commonly used evaluation metrics: precision, recall, F1-score, and accuracy [24]. To ensure
the reliability of our results, we repeated the experiments ten times, and reported the
average performance across the ten trials.

3.1.3. Implementation Details

We conducted comparative experiments between our proposed MultiDNN method
and five state-of-the-art field–road classification methods: DBSCAN + Rules, DT, RF,
BiLSTM and GCN. DBSCAN + Rules, proposed by Chen et al., was directly applied [8]; DT
and RF were implemented by Scikit-learn (a Python-based machine learning library) [25],
and GCN, BiLSTM and MultiDNN were implemented using the PyTorch framework
(Python’s deep learning library) [26]. Due to the differences in input requirements among
these algorithms, input samples were generated according to each algorithm’s specifica-
tions. Specifically, for DT and RF, an input sample is a GNSS point in the input trajectory.
For DBSCAN + Rules, GCN, BiLSTM, and MultiDNN, an input sample is the entire
GNSS trajectory.

In MultiDNN, the input for BiLSTM consists of segments of constant length (as
described in Section 2.4), resulting in the partitioning of a trajectory into segments. Each
segment (i.e., an input sample) constitutes a sequence of a predetermined number of
consecutive GNSS points. In this study, the segment length and the hidden state size were
set to 512 and 256, respectively. Additionally, for TAG, the number of aggregation layers in
the graph convolution process was set to 8.

In the case of DBSCAN + Rules, an unsupervised learning method, the training
data were used to determine the optimal input parameter settings through grid search.
In contrast, for DT, RF, GCN, BiLSTM, and MultiDNN, which are supervised learning
methods, the training data were used to learn the parameter values. Moreover, for the
methods based on deep neural networks (DNNs), i.e., BiLSTM, GCN and MultiDNN, their
model learning used the Adam optimizer with a fixed learning rate of 0.003 [27].

3.2. Method Comparisons and Analysis

The results of the field–road classification methods on the dataset are presented
in Table 1. Among these methods, our proposed MultiDNN method achieved the best
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performance, exhibiting an impressive accuracy of 89.75%. This result is notably superior
to those of the baseline methods, displaying a remarkable 2.79% accuracy improvement
over the best baseline method, GCN. These results suggest that our MultiDNN method
is highly effective in differentiating field points from road points. The superiority of our
MultiDNN can be attributed to the abilities of the three DNNs; they are capable of revealing
complex spatio-temporal relationships between GNSS points, which have been proven to
be important for field–road classification [13,14,16]. To be specific, BiLSTM can capture
the global temporal relationship of points in a trajectory, and TAG can capture the local
relationship of a point encoded in the spatio-temporal graph. Considering that the input
of TAG is the results produced by BiLSTM, the TAG used in our MultiDNN can capture
rich spatio-temporal information, and identifying critical features via the ATT network
can further enhance the feature extraction process. The success of our MultiDNN also
highlights the importance of combining different DNNs for field–road classification to
exploit their strengths effectively.

Table 1. The overall performances of the seven methods on the data.

Method Pre Rec F1 Acc

DBSCAN + Rules 77.84 65.50 68.31 84.65
DT 68.16 52.10 49.48 81.37
RF 73.75 52.69 50.43 81.97
BiLSTM 81.06 70.11 72.82 86.34
GCN 80.66 72.92 75.14 86.96
MultiDNN 85.62 78.37 80.80 89.75

Pre: average precision; Rec: average recall; F1: average F1-score; Acc: accuracy.

Furthermore, the three methods based on DNNs, BiLSTM, GCN and MultiDNN,
outperformed the ones based on traditional machine learning, such as DBSCAN + Rules,
DT, and RF. For instance, even the weakest DNN method, BiLSTM, showed a 1.69% accu-
racy improvement over the best traditional machine learning method DBSCAN + Rules,
indicating that the field–road classification method based on DNNs represents a promising
research direction. On the other hand, among the DNN-based field–road classification
methods, the accuracy achieved by BiLSTM in capturing only temporal relationships is
noteworthy, reaching 86.34%. Notably, this performance is only 0.62% lower than that
of GCN, which captures local spatio-temporal relationships, suggesting that temporal
information along the whole trajectory is no less important than spatial information in
the classification of field and road points. This indicates that the cornerstone of the high
accuracy of field–road classification may rely on the method’s ability to capture as many
temporal and spatial relationships as possible in the trajectory data.

Moreover, Table 2 presents the comprehensive performance results of these methods
on the two categories (“field” and “road”) on the dataset, respectively. We observe that
regardless of the method used, the classification performance of the road points was
consistently lower than that of the field points. For instance, when using MultiDNN, the
F1-score for the “road” category is 26.15% lower compared to the score for the “field”
category. We postulate that the variation in classification efficacy between “road” points
and “field” points in our study may be due to the limited availability of road points in the
trajectory data (as discussed in Section 2.1). The relative scarcity of “road” points compared
to “field” points may result in an insufficient number of informative samples for the model
to learn from. This may impede the optimal determination of parameter settings, leading
to suboptimal classification outcomes for road points. In addition, the methods based on
DNNs achieved much better performances on the “road” category than the ones based
on traditional machine learning. This shows that the strong model capability of these
DNNs can alleviate the effect caused by the data imbalance (i.e., the limited availability of
road points).
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Table 2. The performances of the seven methods on “field” and “road” classification for the data.

Field Road

Method Pre Rec F1 Pre Rec F1

DBSCAN + Rules 86.47 96.19 91.03 69.21 34.81 45.59
DT 82.07 98.79 89.60 54.25 5.42 9.36
RF 82.27 99.29 89.94 65.22 6.09 10.91
BiLSTM 88.15 96.29 91.97 73.97 43.93 53.67
GCN 89.19 95.67 92.26 72.13 50.16 58.03
MultiDNN 91.34 96.67 93.88 79.91 60.08 67.73

Figure 4 shows an example of the classification results of the six algorithms. It can be
intuitively seen that compared to the ground truth (a), our proposed algorithm (MultiDNN)
performs the best, classifying both field points and road points accurately, while the
slightly lesser performing DBSCAN + Rules, BiLSTM and GCN methods have more or
less misclassified trajectory points, such as identifying a small number of field points as
road points (or identifying road points as field points). The worst-performing DT and RF
algorithms almost completely identify road points as field points, indicating that traditional
machine learning methods are effectively applicable due to the data imbalance of the
dataset.
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4. Conclusions

This paper presents the development of MultiDNN, a novel field–road classification
method that is designed to improve the accuracy of GNSS-based trajectory classification
for agricultural machines. The proposed approach harnesses the power of deep learning
by combining three different deep neural networks, BiLSTM, TAG, and ATT, to effectively
leverage spatio-temporal information for the feature extraction of each GNSS point. Experi-
mental results demonstrate that the MultiDNN-based field–road classification approach
achieved high accuracy, with up to 89.75% for the wheat dataset, outperforming the best
baseline method (GCN) by 2.79%. The findings further highlight the strong ability of deep
neural networks in capturing the complex relationships between points in a GNSS trajec-
tory. The proposed approach also showcases the effectiveness of combining different deep
neural networks to improve the accuracy of field–road classification for GNSS recorded
trajectories of agricultural machines.
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In our future work, we aim to boost the accuracy of the MultiDNN-based field–road
classification approach by exploring advanced feature representation techniques that can
effectively capture both local and global information using more sophisticated deep neural
networks. Additionally, we plan to investigate a robust field–road classification method
that can effectively handle data imbalance in trajectories. Specifically, we intend to explore
the use of data augmentation techniques and machine learning algorithms that can balance
the dataset for improved classification accuracy. We believe that these efforts will further
enhance the MultiDNN-based field–road classification approach, making it more effective
for real-world applications in agricultural machines.

Author Contributions: Conceptualization, methodology, formal analysis, supervision, writing—
original draft, Y.C.; methodology, data curation, investigation, validation, software, writing—original
draft, G.L.; supervision, conceptualization, formal analysis, writing—review and editing, K.Z.;
supervision, funding acquisition, resources, C.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Development and Reform Commission. Funding
project: Integrated Data Service System Infrastructure Platform Construction Project. Grant number:
JZNYYY001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: As this research was funded by the project fund, the data is confidential
and cannot be released for the time being.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China. Am.

J. Agric. Econ. 2013, 95, 1245–1251. [CrossRef]
2. Wang, X.; Yamauchi, F.; Huang, J. Rising Wages, Mechanization, and the Substitution between Capital and Labor: Evidence from

Small Scale Farm System in China. Agric. Econ. 2016, 47, 309–317. [CrossRef]
3. Zhang, X.; Yang, J.; Thomas, R. Mechanization Outsourcing Clusters and Division of Labor in Chinese Agriculture. China Econ.

Rev. 2017, 43, 184–195. [CrossRef]
4. Jeon, C.W.; Kim, H.J.; Yun, C.; Gang, M.S.; Han, X. An Entry-Exit Path Planner for an Autonomous Tractor in a Paddy Field.

Comput. Electron. Agric. 2021, 191, 106548. [CrossRef]
5. Paraforos, D.S.; Hübner, R.; Griepentrog, H.W. Automatic Determination of Headland Turning from Auto-Steering Position Data

for Minimising the Infield Non-Working Time. Comput. Electron. Agric. 2018, 152, 393–400. [CrossRef]
6. Grisso, R.D.; Kocher, M.F.; Adamchuk, V.I.; Jasa, P.J.; Schroeder, M.A. Field Efficiency Determination Using Traffic Pattern Indices.

Appl. Eng. Agric. 2004, 20, 563–572. [CrossRef]
7. Bochtis, D.D.; Sørensen, C.G.; Green, O.; Moshou, D.; Olesen, J. Effect of Controlled Traffic on Field Efficiency. Biosyst. Eng. 2010,

106, 14–25. [CrossRef]
8. Chen, Y.; Zhang, X.; Wu, C.; Li, G. Field-Road Trajectory Segmentation for Agricultural Machinery Based on Direction Distribution.

Comput. Electron. Agric. 2021, 186, 106180. [CrossRef]
9. Poteko, J.; Eder, D.; Noack, P.O. Identifying Operation Modes of Agricultural Vehicles Based on GNSS Measurements. Comput.

Electron. Agric. 2021, 185, 106105. [CrossRef]
10. Chen, Y.; Li, G.; Zhang, X.; Jia, J.; Zhou, K.; Wu, C. Identifying Field and Road Modes of Agricultural Machinery Based on GNSS

Recordings: A Graph Convolutional Neural Network Approach. Comput. Electron. Agric. 2022, 198, 107082. [CrossRef]
11. Zhang, X.; Chen, Y.; Jia, J.; Kuang, K.; Lan, Y.; Wu, C. Multi-View Density-Based Field-Road Classification for Agricultural

Machinery: DBSCAN and Object Detection. Comput. Electron. Agric. 2022, 200, 107263. [CrossRef]
12. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227.

[CrossRef]
13. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of

the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292.
14. Du, J.; Zhang, S.; Wu, G.; Moura, J.; Kar, S. Topology Adaptive Graph Convolutional Networks. arXiv 2017, arXiv:1710.10370.
15. Biswas, A.; Morris, B.T. TAGCN: Topology-Aware Graph Convolutional Network for Trajectory Prediction. In Proceedings of the

15th International Symposium, ISVC 2020, San Diego, CA, USA, 5–7 October 2020; pp. 542–553.

https://doi.org/10.1093/ajae/aat027
https://doi.org/10.1111/agec.12231
https://doi.org/10.1016/j.chieco.2017.01.012
https://doi.org/10.1016/j.compag.2021.106548
https://doi.org/10.1016/j.compag.2018.07.035
https://doi.org/10.13031/2013.17456
https://doi.org/10.1016/j.biosystemseng.2009.10.009
https://doi.org/10.1016/j.compag.2021.106180
https://doi.org/10.1016/j.compag.2021.106105
https://doi.org/10.1016/j.compag.2022.107082
https://doi.org/10.1016/j.compag.2022.107263
https://doi.org/10.1109/TPAMI.1979.4766909


Agronomy 2023, 13, 1415 11 of 11

16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
In Advances in Neural Information Processing Systems; Mit Press: Cambridge, MA, USA, 2017.

17. Liu, G.; Guo, J. Bidirectional LSTM with Attention Mechanism and Convolutional Layer for Text Classification. Neurocomputing
2019, 337, 325–338. [CrossRef]

18. Fukui, H.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Attention Branch Network: Learning of Attention Mechanism for Vi-
sual Explanation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 10697–10706.

19. Wu, C.; Li, D.; Zhang, X.; Pan, J.; Quan, L.; Yang, L.; Yang, W.; Ma, Q.; Su, C.; Zhai, W. China’s Agricultural Machinery Operation
Big Data System. Comput. Electron. Agric. 2023, 205, 107594. [CrossRef]

20. Sina Dabiri, K.H. Inferring Transportation Modes from GPS Trajectories Using a Convolutional Neural Network.
21. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
22. Banerjee, K.; Gupta, R.R.; Vyas, K.; Mishra, B. Exploring Alternatives to Softmax Function. In Proceedings of the Proceedings of

the 2nd International Conference on Deep Learning Theory and Applications, Online, 7–9 July 2021; SCITEPRESS—Science and
Technology Publications: Setúbal, Portugal; pp. 81–86.
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