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Abstract: Powdery mildew (PM) is the main disease that afflicts bottle gourd. Previous studies on
PM mainly focused on its effects on pumpkin, melon, and other crops; however, the exact molecular
mechanism of bottle gourd resistance to PM remains unclear. RNA sequencing (RNA-Seq) technology
was used to investigate the dynamic changes in leaf transcriptome profiles between resistant and
susceptible gourd at 12, 24, 48, and 72 h post-inoculation with powdery mildew. Compared with a
susceptible variety (G3), the expression levels of the differentially expressed genes of phenylpropanoid
biosynthesis, starch, and sucrose metabolism, and plant–pathogen interaction pathways in disease-
resistant plants were upregulated. We propose that disease resistance and tolerance in bottle gourd
are enhanced via several pathways, including the antioxidant system, phenylalanine biosynthesis,
and cell wall cellulose synthesis. Our research will provide an important basis for further screening
and breeding PM resistance in bottle gourd.

Keywords: powdery mildew resistance; bottle gourd; RNA-seq

1. Introduction

Bottle gourd (Lagenaria siceraria (Mol.) Stand) is an annual vine herb (2n = 2x = 22)
of the gourd family, which originates from the tropical lowlands of southern equatorial
Africa and has been independently domesticated in Africa and Asia [1]. Furthermore,
bottle gourd has been cultivated in China for more than 7000 years for edible, medicinal,
ornamental, and processed products [2]. In addition, because of its excellent resistance and
close relationship with watermelon, it is often used as rootstock material for watermelon
and other Cucurbitaceae vegetable crops [3,4].

However, bottle gourd is susceptible to powdery mildew (PM) at all stages of develop-
ment, resulting in a serious loss of its yield. Therefore, PM has become the main disease
endangering bottle gourd production in recent years. When the disease is serious, the
whole plant’s leaves are covered with a white powdery mildew layer, causing the diseased
leaves to wither, yellow, brittle, or curl, losing the ability to photosynthesize, affecting the
growth and development of fruit, and eventually leading to premature senescence and
death of the whole plant. Moreover, PM not only affects the yield but also the quality of
fruit [5]. Therefore, it is urgent to study the mechanism of PM resistance in bottle gourd
production.

Currently, compared with pumpkin, cucumber, melon, and other melon vegetable
crops, there are few studies on the resistance of bottle gourd to PM, and the mechanism
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of its resistance to PM is still unclear. At present, the research on the resistance of bottle
gourd to PM mainly focuses on the symptoms of harm, defense measures, physiological
characteristics, and genomics [6]. One study showed that the resistance of bottle gourd
to PM was controlled by a pair of recessive genes [7], and the resistance was positively
correlated with the number of favorable alleles carried [8]. PM-related genes in melon
mainly include the PM [9] and MLO families [10]. In the bottle gourd, Wang [11] developed
the world’s first bottle gourd PM marker GPDSATG/CTC75, with a linkage distance of
9.6 cM with a PM resistance gene, which can be used for the auxiliary breeding of PM-
resistant bottle gourd varieties. Wu et al. [8] selected the candidate gene cysteine receptor
protein kinase 3 (CRK3) to develop PM-resistant bottle gourd using GWAS. Wang et al. [12]
analyzed the resistance of the NBS-LRR gene family and found the potential candidate
gene Lsi04g015960 for breeding PM tolerance.

RNA-seq analysis is a powerful tool to deeply understand the molecular response of
plants to biotic stress. In recent years, with the development of histological technology, tran-
scriptome sequencing technology has been widely used in the research of melon powdery
mildew. For example, using comparative transcriptome analysis, Zhao et al. [13] analyzed
the comparative transcriptome of susceptible melon varieties TG-5 and resistant TG-1 and
determined that the xylan metabolism process, hydrolase activity, and oxidative stress
reaction were involved in melon resistance to powdery mildew. Cao [14,15] and others used
F-1-isolated populations from resistant and susceptible melon varieties (wm-2 and 6D-12,
respectively) to identify new QTLs and candidate genes combined with transcriptome
sequencing. However, a transcriptome study of bottle gourd powdery mildew has not been
reported yet. Therefore, in this study, based on the germplasm resources of the bottle gourd
collected by the research team, we selected susceptible samples and analyzed their gene
expression levels 12, 24, 48, and 72 h after fungal infection by transcriptome technology,
identified the genes related to disease resistance during Podosphaera xanthii infection, and
identified the potential related regulatory genes by using expression correlation. The ex-
pression regulation network was constructed to provide a scientific basis for the breeding
of new varieties of powdery-mildew-resistant bottle gourd.

2. Materials and Methods
2.1. Planting Material and Pathogen Infection

G3 (powdery mildew susceptible) and G6 (powdery mildew resistant) were used for
inoculation with powdery mildew in this study, both of which are from a high-generation
inbred line, and the original germplasm resources are all from the Institute of Vegetable
and Flower Research of the Chinese Academy of Agricultural Sciences (Crop Germplasm
Resources Platform–Vegetable Germplasm Resources Sub platform). We soaked G3 and
G6 seeds in 55–60 ◦C warm water for 2 h and put them in a 28 ◦C incubator to accelerate
germination until 50% of the seeds were exposed. G3 and G6 were sowed in a plastic
flowerpot (18 cm × 20 cm) under a controlled temperature of ~28 ◦C/20 ◦C (day/night)
and an illumination of 16 h/8 h (day/night).

The diseased leaves were collected from the plots with serious powdery mildew
at the Zhuang Hang Comprehensive Test Station of Shanghai Academy of Agricultural
Sciences, and the spores on the leaves were washed with distilled water to make a spore
suspension, which was diluted to a 1.0× inoculate with a 105 spores/mL concentration
and then evenly sprayed on the entire leaf (most plants were inoculated at the stage of
1–2 leaves). We moisturized the plants in a small arched shed for 12 h, kept the temperature
at 23–26 ◦C during the day and 18–20 ◦C at night, and maintained the humidity above 95%.
Subsequently, we restored the original temperature and humidity and, 7 days later, the
levels of powdery mildew disease was recorded according to the method [16]. To detect the
changes in the G3 and G6 gene expression levels during the first stages of their interaction
with PM, leaf samples were taken before infection (0 days and control) and after 12, 24, 48,
and 72 h. Three biological replicates were prepared at each time point. In total, 30 samples
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were immediately frozen in liquid nitrogen and stored at −80 ◦C for total RNA isolation
and further analysis.

2.2. mRNA Extraction and Sequencing Data

The RNA-Seq was performed by OE Biotech Co., Ltd. (Shanghai, China). Total RNA
was extracted from two bottle gourds using the mirVana miRNA Isolation Kit (Ambion,
Austin, TX, USA) following the manufacturer’s protocol. RNA integrity was evaluated
using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The
samples with an RNA integrity number (RIN) ≥ 7 were subjected to the subsequent
analysis. The libraries were constructed using the TruSeq Stranded mRNA LTSample Prep
Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. Then,
these libraries were sequenced on the Illumina sequencing platform (HiSeqTM 2500 or
Illumina HiSeq X Ten), and 125 bp/150 bp paired-end reads were generated.

Raw data (raw reads) were processed using Trimmomatic [16]. The reads contain-
ing ploy-N and the low-quality reads were removed to obtain the clean reads. Then,
by using hisat2, the clean reads were mapped to the bottle gourd reference genome
(http://cucurbitgenomics.org/organism/13, accessed on 22 March 2022). The FPKM value
of each gene was calculated using cufflinks [17], and the read counts of each gene were
obtained by htseq-count [18]. Differentially expressed genes (DEGs) were identified using
the DESeq [19] (2012) R package functions estimateSizeFactors and nbinomTest. We set
p-value < 0.05 and foldChange > 2 or foldChange < 0.5 as the threshold for significantly
differential expression.

2.3. GO and KEGG Analysis

GO enrichment and KEGG pathway enrichment analyses of DEGs were performed
using R based on the hypergeometric distribution.

2.4. Quantitative RT-PCR Assay

We use Primer Premier 5.0 software to design the primers (Table 1). RNA was reversely
transcribed into cDNA using a reverse transcription kit. We used the LsGAPDH gene as an
internal reference for the real-time fluorescence quantification of selected core genes.

Table 1. The primers of differential expression genes.

Gene Primer Sequence

LsGAPDH F: CCCAGGGGATATCTGCAGGG
R: CATGGTGTTTTCAATGGAACCA

Lsi02G027070 F: GAGACTCAACGACACAGGCA
R: GTGAGGAAGAAGGTGGTCCG

Lsi05G003210 F: CGGTATCCCACTAAAAGCAAAGC
R: ACTGAGCCTTTGGTTCCACC

Lsi05G003220 F: AGAGGTAAAAGAGAGGCTGGC
R: ACTGAGCTGCCATTGCTACC

Lsi05G009870 F: TTGCCACCAGGTGAAACCAT
R: TCAGCCAATGGAAGGGATTGA

Lsi05G013660 F: TGCTTGAGCTTTGTCACGGT
R: TCATGCCTTAGGAGCTTCAACA

Lsi11G001370 F: TGGAGGTGATTGGGACAACC
R: AACACATGTCCATCCCGTCC

Lsi04G011480 F: ATGTGGAAATTGAGGCTCCAG
R: CCCACTTTAGCCTTTCCATAGC

Lsi05G013650 F: GGGAAGTGTGGTTCACTGGT
R: GGTTCATCACGACCTCCTGT

Ls11G001420 F: AGTCGTGCCAAAGGGTCAAA
R: TCGATATCTTTGGTCACACCGA

http://cucurbitgenomics.org/organism/13
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Table 1. Cont.

Gene Primer Sequence

Ls04G003530 F: GAGCACCAAACCCCATCTCC
R: CAGCCTTCTTGTTTGGACCG

Lsi04G011510 F: GGGAAAGGGAAGTGTAGCTC
R: ATCAAGGTCTCTGCCGACTTC

2.5. Regulatory Network Construction

We used 44 identified disease-resistance genes to construct a regulatory network and
used the R language to calculate the co-expression correlations between the differential
genes in the module.

3. Results
3.1. Changes in the Disease-Resistance Phenotype

Seven days after inoculation, some leaves from the G6 plant showed a small amount
of white powder, with the disease spot area accounting for less than 1/3 of the entire leaf,
which is a highly resistant material (Figure 1A). A large number of leaves from the G3
plants showed a thick and continuous layer of powdery mildew, with disease grade 4 spots
covering more than 2/3 of the whole leaf area (Figure 1B), which is a highly susceptible
material. This result confirmed that G6 was more resistant to Podosphaera xanthii than G3.
This result laid the foundation for the subsequent research.
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Figure 1. The disease symptoms of G6 (A) and G3 (B) after 7 days of PM.

3.2. Overview of Sequencing Data and Comparison Results

To investigate the transcriptome of the PW-infected G6 and G3, we prepared RNA
samples of the leaves obtained at 4 infection stages (12, 24, 48, and 72 h after infection), as
well as the RNA samples of the non-inoculated leaves. Approximately 200.67 G clean reads
were generated for the 30 samples. The ratio of the Q30 sequencing value was 94.77–98.74%,
which indicated that the sequencing sufficiently captured most of the expressed genes.
Supplementary Table S1 shows the quality assessments of the sample sequencing data.
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3.3. Identification and Expression Pattern of mRNA

We detected 20,978 genes in the 30 samples and found the highest and average expres-
sion levels of 68,949.86 and 34.68, respectively, in the new transcripts. The number of genes
identified from the 30 samples ranged from 19,063 to 19,333.

Combining the PCA plots (Figure 2A) with the number of DEGs for G3 and G6 at
different periods compared with the untreated G3 and G6, respectively, we found that the
differences between the G3 and G6 samples at 12 h after inoculation correlated least with
the untreated leaf group, while the number of differentially expressed genes was highest
compared with the others, indicating that gourd leaves respond to powdery mildew at
12 h.
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gourd leaves of G6 and G3 at 0, 12, 24, 48, and 72 h after PM treatment. (B) Venn diagram illustrating
DEGs of 0 h, 12 h, 24 h, 48 h, and 72 h of G3 line. (C) Venn diagram illustrating DEGs of 0 h, 12 h,
24 h, 48 h, and 72 h of G6 line. (D) Venn diagram illustrating DEGs of G3 and G6 lines at the same
time of 0 h, 12 h, 24 h, 48 h, and 72 h.

DEGs were identified by five pairwise comparisons of transcriptome datasets (G6_0
h-vs.-G3_0 h, G6_12 h-vs.-G3_12 h, G6_24 h-vs.-G3_24 h, G6_48 h-vs.-G3_48 h, and G6_72 h-
vs.-G3_72 h). In total, 422 DEGs (220 upregulated and 202 downregulated) were identified
in the G6_0 h-vs.-G3_0 h comparison, 253 (138 upregulated and 115 downregulated) in
the G6_12 h-vs.-G3_12 h comparison, 2289 (1552 upregulated and 737 downregulated) in
the G6_24 h-vs.-G3_24 h comparison, 449 (235 upregulated and 214 downregulated) in the
G6_48 h-vs.-G3_48 h comparison, and 562 (283 upregulated and 279 downregulated) in the
G6_72 h-vs.-G3_72 h comparison.

DEGs were also analyzed between the two cultivars at the same time points after
pathogen inoculation (Figure 2B,C). Venn diagrams show that both G3 and G6 have the
highest DEGs within 12 h (Table S2). The highest DEGs number between G3 and G6 was
24 h after PM treatment (Figure 2D). These indicate that the response time of bottle gourd
to the powdery mildew mechanism is 12 h to 24 h, and genes that determine the different
powdery mildew resistances of G3 and G6 may differently express within 24 h. In addition,
a total of 155 DEGs were expressed in all four comparisons of G3, and 191 DEGs were
identified at all four time points in G6 (Figure 2D). The main functions of these genes are
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Phenylalanine ammonia-lyase, Peroxidase, Calcium binding, Chitin-binding lectin, and
Chitinase 2 (Table S3).

3.4. GO Functional Analysis of Significantly Different Genes

DEGs were identified by eight pairwise comparisons of transcriptome datasets (G3_12 h-
vs.-G3_0 h, G3_24 h-vs.-G3_0 h, G3_48 h-vs.-G3_0 h, G3_72 h-vs.-G3_0 h, G6_12 h-vs.-
G6_0 h, G6_24 h-vs.-G6_0 h, G6_48 h-vs.-G6_0 h and G6_72 h-vs.-G6_0 h), and GO func-
tional enrichment analysis was performed for these genes separately. The TOP10 GO
enrichment entries for G3 and G6 at 12, 24, 48, and 72 h after powdery mildew infestation
was integrated, and the duplicate entries were removed to obtain a total GO enrichment
entry (Table 2). Two of the GO entries, the cinnamic acid biosynthetic process and the
L-phenylalanine catabolic process, were highly expressed at all time points in both mate-
rials. This is consistent with the conclusion that PAL and PPO are known to be involved
in powdery mildew resistance mechanisms in other crops. In addition, a comparison of
GO entries at the same time in both materials also revealed that G3 and G6 had the highest
number of GO expression entries at 12 h, and there were some differences at 24 h. G6 had
more cell wall macromolecule catabolic process and chitin catabolic process expressions
compared with G3.

Table 2. TOP10 GO enrichment entries for G3 and G6 at 12, 24, 48, and 72 h after powdery mildew
infestation.

Total
G3 G6

12 h 24 h 48 h 72 h 12 h 24 h 48 h 72 h

cinnamic acid biosynthetic process
√ √ √ √ √ √ √ √

L-phenylalanine catabolic process
√ √ √ √ √ √ √ √

alkaloid biosynthetic process
√ √ √ √ √

glutamine metabolic process
√ √

response to auxin
√ √ √ √ √

tyrosine metabolic process
√ √ √ √

alanine metabolic process
√ √

response to oxidative stress
√ √ √ √ √ √

regulation of transcription, DNA-templated
√ √ √ √ √ √

hydrogen peroxide catabolic process
√ √ √ √

cellular oxidant detoxification
√ √ √ √ √ √

serine family amino acid metabolic process
√ √ √ √

protein phosphorylation
√ √ √ √

cell wall macromolecule catabolic process
√ √ √

chitin catabolic process
√ √ √

recognition of pollen
√ √ √

chloroplast RNA processing
√ √

chloroplast RNA modification
√ √

starch catabolic process
√ √

RNA secondary structure unwinding
√ √

maturation of SSU-rRNA
√ √

protein refolding
√ √

microtubule-based movement
√ √

transmembrane transport
√ √ √ √

metabolic process
√ √ √

oxidation-reduction process
√ √ √ √ √

transport
√ √ √

aromatic compound biosynthetic process
√ √

We therefore carried out a further analysis of GO enrichment 24 h after infestation
with G3 and G6 Podosphaera xanthii. The analysis top 10 showed that the 44 genes that
appeared to be functionally related to disease and stress resistance were significantly up-
and downregulated 24 h after infestation from the bacteria. These 44 genes associated
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with disease and stress resistance (Figure 3) had 8 and 10 genes on chromosomes 5 and
11, respectively. On the remaining chromosomes, the distribution was 1–6 genes. The
expression of Lsi02G027070 for these 44 genes was significantly higher at 48 h in G6.

Agronomy 2023, 13, x FOR PEER REVIEW  7  of  14 
 

 

oxidation‐reduction process    √  √  √    √    √ 

transport    √  √      √     

aromatic compound biosynthetic process      √      √     

We therefore carried out a further analysis of GO enrichment 24 h after infestation 

with G3 and G6 Podosphaera xanthii. The analysis top 10 showed that the 44 genes that 

appeared to be functionally related to disease and stress resistance were significantly up‐ 

and downregulated 24 h after infestation from the bacteria. These 44 genes associated with 

disease and stress resistance  (Figure 3) had 8 and 10 genes on chromosomes 5 and 11, 

respectively. On the remaining chromosomes, the distribution was 1–6 genes. The expres‐

sion of Lsi02G027070 for these 44 genes was significantly higher at 48 h in G6. 

 

Figure 3. Expression patterns of 44 genes related to disease resistance and stress resistance. 

3.5. Analysis of the KEGG Pathway for Significantly Different Genes 

We therefore analyzed the KEGG pathway separately for all DEGs in the three com‐

parison groups—G3 12 vs. 0, G6 12 vs. 0, and G3 24 vs. G6 24 h. Tables 3 and 4 show the 

top 10 pathways for G3 12 vs. 0 and G6 12 vs. 0. The alanine, aspartate, glutamate metab‐

Figure 3. Expression patterns of 44 genes related to disease resistance and stress resistance.

3.5. Analysis of the KEGG Pathway for Significantly Different Genes

We therefore analyzed the KEGG pathway separately for all DEGs in the three compar-
ison groups—G3 12 vs. 0, G6 12 vs. 0, and G3 24 vs. G6 24 h. Tables 3 and 4 show the top
10 pathways for G3 12 vs. 0 and G6 12 vs. 0. The alanine, aspartate, glutamate metabolism,
phenylalanine metabolism, circadian rhythm–plant, and phenylpropanoid biosynthesis
pathways were highly expressed in both groups, indicating that these pathways are in-
volved in bottle gourd’s PM-resistant mechanism, and the main response pathway was
amino acid metabolism. Phenylalanine metabolism is the main response pathway in the
amino acid pathway, indicating a close relationship between the bottle gourd’s mechanism
of resistance to powdery mildew and the biosynthesis of phenylalanine.

A KEGG enrichment analysis of G3 and G6 24-h DEGs in combination with the
L2FC values of differentially expressed genes mainly involved six metabolic pathways,
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namely phenylpropanoid biosynthesis, starch and sucrose metabolism (under amino sugar
and nucleotide sugar metabolism), glycolysis/gluconeogenesis, cysteine and methionine
metabolism, glycerophospholipid metabolism, and plant–pathogen interaction (Figure 4).

Table 3. Enrichment analysis of KEGG pathway for the DEGs from G3 bottle gourd leaves at 12 h
after PM treatment.

Pathway ID Pathway Name ListHits p Value

ko00250 Alanine, aspartate, and glutamate metabolism 25 1.53 × 10−5

ko00360 Phenylalanine metabolism 20 0.000135356
ko04712 Circadian rhythm–plant 19 0.000224721
ko00410 Beta-alanine metabolism 16 0.001916155
ko00511 Other glycan degradation 10 0.002438963

ko00130 Ubiquinone and other terpenoid–
quinone biosynthesis 17 0.00589103

ko04075 Plant hormone signal transduction 66 0.005954455
ko00062 Fatty acid elongation 11 0.006594654
ko00920 Sulfur metabolism 13 0.010577539
ko00940 Phenylpropanoid biosynthesis 51 0.013346325
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Table 4. Enrichment analysis of KEGG pathway for the DEGs from G6 bottle gourd leaves at 12 h
after PM treatment.

Pathway ID Pathway Name ListHits p Value

ko00250 Alanine, aspartate, and glutamate metabolism 26 2.21 × 10−6

ko03008 Ribosome biogenesis in eukaryotes 33 3.68 × 10−6

ko00940 Phenylpropanoid biosynthesis 56 0.000457519
ko04712 Circadian rhythm–plant 18 0.000470089
ko00360 Phenylalanine metabolism 18 0.000869833
ko00196 Photosynthesis–antenna proteins 11 0.515563734
ko00906 Carotenoid biosynthesis 12 0.955349824
ko00430 Taurine and hypotaurine metabolism 5 0.363705141
ko03018 RNA degradation 24 0.369539462
ko00760 Nicotinate and nicotinamide metabolism 8 0.699410569

3.6. qRT-PCR Validation

The 11 genes were therefore validated by qRT-PCR, and the results are shown in
Figure 5. The expression patterns of these differentially expressed genes were generally
consistent with the results obtained by transcriptome sequencing, thus indicating that the
RNA sequencing results were reliable.
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3.7. Regulatory Networks of Disease-Resistance Genes

The 44 identified disease-resistance genes were used to construct a regulatory net-
work, and the expression correlations with other genes were calculated, with genes with
correlations greater than 0.99 being selected to construct the expression regulatory network
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(Figure 6). The network contained 33 of the 44 disease-resistance genes, and 209 genes
were detected to have potential regulatory relationships with these 33 genes. Among them,
most genes were associated with Lsi10G007570, which belongs to the MLO gene family.
Studies have shown that certain members of the MLO gene family make plants susceptible
to powdery mildew, and that deletions or mutations in MLO genes result in the inability of
powdery mildew spores to enter the plant’s cell wall.
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4. Discussion

Powdery mildew is one of the main diseases affecting the yield and quality of bottle
gourd; however, little is known about the gourd’s mechanism of resistance to powdery
mildew. Currently, there are many studies on the resistance mechanism of other gourd
vegetable crops, such as pumpkin, cucumber, and melon, to powdery mildew. In this
experiment, we conducted transcriptome data analysis on the resistant G6 and non-resistant
G3 varieties and compared their resistance mechanisms to powdery mildew with other
gourd crops.

When powdery mildew occurs in melon crops, the balance of active oxygen species
(ROS) in the plant itself is broken. The plant’s antioxidant system is activated, and the
activity of related antioxidant enzymes begins to increase while inducing the accumulation
of a large amount of ROS [10,20]. Generally, the active oxygen accumulated in the metabolic
process of plants will be promptly and effectively cleared by the active oxygen scaveng-
ing system to maintain the balance of active oxygen in the plant body. However, some
studies have found that when plants are infected by pathogens, reactive oxygen species
rapidly accumulate, which is considered to be one of the plant’s early defense responses to
pathogens [21]. After inoculation, the accumulation of reactive oxygen species (ROS) in
disease-resistant pumpkin varieties was low. Compared with untreated pumpkin seedlings,
the activity and gene expression of ROS scavenging defense enzymes (SOD, CAT, POD, and
APX) in their leaves were significantly increased [22]. During the GO analysis of G3 and G6
transcriptome data in this experiment, “response to oxidative stress” was highly expressed
during 24–72 h of inoculation with the powdery mildew pathogen, indicating that the
antioxidant system is one of the gourd’s basic resistance mechanisms against powdery
mildew.

In addition, studies have shown that phenylpropanoid secondary metabolic pathways
are the main metabolic pathways for melon resistance to powdery mildew, and phenylala-
nine ammonia-lyase (PAL) and polyphenol oxidase (PPO) are two key enzyme activities
for melon resistance to powdery mildew. Lignin, a metabolite of phenylpropanoid sec-
ondary metabolic pathways, is also involved in resistance to powdery mildew [23]. In
a KEGG analysis of G3 and G6 transcriptome data, G6 specifically activated PAL in the
phenylpropanoid secondary metabolic pathway compared with G3 at 24 h, and also further
activated secondary products with antibacterial activity, such as flavonoids and lignin. This
is consistent with the research in melon [24], cucumber [25], and pumpkin [26]; that is, PAL
and PPO are enzymes related to melon PM defense.

Current research shows that powdery-mildew-resistance-related genes mainly include
the Pm and MLO families. Among them, the Pm family prevents powdery mildew bacteria
from invading the cell wall by regulating the accumulation of callose in the infected site. The
MLO family acts as a transmembrane protein on the plasma membrane to regulate the entry
of powdery mildew into plant cells [27]. Zhou cloned eight McMLO genes from a highly
susceptible variety to powdery mildew and, based on phylogenetic analysis results, learned
that two of these genes are related to the degree of susceptibility to powdery mildew [28,29].
Win et al. [30] found that the MLO gene in pumpkin plays a strong promoting role in its
sensitivity to powdery mildew. During the correlation analysis of G3 and G6 transcriptome
data, 44 DEGs were detected, among which the gene Lsi10G007570 in the MLO family had
a strong correlation, indicating that the mechanism of resistance to powdery mildew in
bottle gourd was related to the MLO family.

By analyzing transcriptome data, we also obtained eight specific genes, including
Lsi05G009870, Lsi05G013660, Lsi11G001370, Lsi04G011480, Lsi05G013650, Lsi11G001420,
Lsi04G003530, and Lsi04G011510. Among them, Lsi05G013660, Lsi04G011480, Lsi05G013650,
and Lsi04G011510 belong to the major latex-like protein (MLP) family. MLPs generate resis-
tance against pathogens via inducing pathogen-related protein genes [31]. MLPs expression
has a strong correlation with cucumber and melon powdery mildew infection. Knocking
down CsMLP1 reduced cucumber tolerance, while transient overexpression of CsMLP1
increased cucumber disease resistance [32]. The MLP-PG1 identified in zucchini plays a
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crucial role in the resistance of fungal pathogens by inducing disease-related genes [33].
This suggests that MLP may also be involved in the resistance of gourd to powdery mildew.

In summary, the transcriptome data provided a global insight into the gene expression
patterns in PM-infected G3 and G6, as well as elucidating the molecular mechanism of PM
resistance in bottle gourd. Eleven candidate genes involved in PM resistance were identified,
and characterizing their roles in bottle gourd powdery mildew resistance is of considerable
significance. There are some possible reasons for the resistance and sensitivity of G3 and G6
to bottle gourd powdery mildew, respectively. Genes from the phenylalanine metabolism
pathway and the antioxidant system might have affected the genome of the common
bottle gourd and conferred bottle gourd G6 resistance to powdery mildew. Moreover, we
speculated that MLPs may induce bottle gourd powdery mildew resistance. These results
may assist breeders in utilizing the genes for future bottle gourd PM-resistance breeding.

5. Conclusions

Based on the analysis of transcriptome data, we found that the reason for the higher
resistance of G6 compared with G3 may lie in (1) possible changes in leaf structure (cellu-
lose and leaf surface wax); (2) the continuous activation of plant–pathogenic-interaction-
pathway-related genes that enhance resistance (PR1, fungal pap, and calcium ion); and
(3) the fact that the activation of PAL further produces secondary products with antibac-
terial activity, such as flavonoids and lignin, or enters the biosynthetic pathway of plant
antitoxins and phytohormones. In addition, we also detected a potential powdery mildew
resistance gene Lsi10G007570 and proposed that the MLP family may be involved in the
resistance of gourd to powdery mildew.
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