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Abstract: Fructose-1,6-bisphosphate aldolase (FBA) is an important catalytic enzyme in carbon
metabolism and plays an important role in plant growth and development. Currently, the biological
functions of FBA in soybean (Glycine max) remain unknown. In this study, we conducted research on
FBA in soybean and identified 14 GmFBA genes. Among them, GmFBAc1 and GmFBAc2 are broadly
expressed in different tissues. Double mutant lines of GmFBAc1 and GmFBAc2 were obtained by
CRISPR-Cas9 gene editing technology. Compared with the wild type, the double-gene homozygous
mutant gmfbac1gmfbac2 exhibited dwarf seedlings and narrow leaflets, indicating that GmFBAc1
and GmFBAc2 are critical for soybean growth and development. The gmfbac1gmfbac2 metabolomic
analysis revealed that compared to the wild type, carbohydrate metabolism was reduced and amino
acid metabolism was enhanced in gmfbac1gmfbac2 mutant leaves. Transcriptomic analysis showed
that genes in IAA signaling and JA signaling were downregulated and upregulated, respectively. Our
study demonstrates an important role of GmFBAc1 and GmFBAc2 in modulating carbon metabolism
and phytohormone homeostasis.

Keywords: Glycine max; GmFBA; narrow leaflet; phytohormone

1. Introduction

Glycolysis is a fundamental pathway catalyzing the conversion of glucose to pyruvate,
providing substrates and energy for downstream reactions. Plants have duplicated gly-
colytic pathways in plastid and cytoplasm [1]. In plants, glycolytic genes play important
roles in regulating growth and development [2–4]. Fructose-1,6-bisphosphate aldolase (EC
4.1.2.13, FBA) is an important glycolytic enzyme in plant [5]. FBA catalyzes a reversible
conversion of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate (G3P) and di-
hydroxyacetone phosphate (DHAP), which is the unique reaction in the glycolysis pathway
that involves a change in carbon chain length [5].

FBA gene family has a crucial role in physiological and biochemical processes in-
fluencing crop yield and quality [6]. Eight FBA genes were involved in FBA family of
Arabidopsis thaliana, three AtFBA genes (AtFBA1-AtFBA3) were located in the plastid and
five AtFBA genes (AtFBA4-AtFBA8) were located in the cytoplasm [7]. The fba1 mutant
had slight phenotypic differences compared to the wild type (WT), while both the fba2 and
fba3 mutants exhibit significant reductions in biomass [8]. When both AtFBA1 and AtFBA2
were simultaneously knocked out, photosynthetic autotrophic growth was blocked and
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the mutant was lethal. Overexpression of AtFBA2 in Arabidopsis plants enhanced photo-
synthetic capacity and biomass production [9]. In tomato, eight FBA genes were identified,
and the expression of SlFBA7 increased the rate of photosynthesis and biomass [10]. There
were four genes encoding FBA protein in Camellia oleifera, and preliminary evidence were
obtained through overexpression or RNAi inhibition of CoFBA1 in Arabidopsis thaliana and
Brassica napus, indicating that plastidial CoFBA1 can promote plant growth [11]. In potato,
significant inhibition of plant growth and yield, as well as leaf curling and premature aging,
could be observed when the activity of FBA was reduced [12]. Three FBA genes were
identified in Chlamydomonas reinhardtii, which is different from higher plants in that there
are no two sets of glycolytic pathways located in the cytoplasm and plastids, and CrFBAs
are located only in the plastid [13]. Overexpression of CrFBA1 promotes starch degradation
and accumulation of fatty acids, indicating that CrFBA plays an important regulatory role
in starch accumulation [13,14]. These indicated that plastidic FBA mainly affects plant
growth by regulating photosynthesis.

In contrast to plastidial FBA, the function of cytosolic FBA is more complex and vari-
able. In Arabidopsis, after knocking out AtFBA8 the mutant plants also showed retarded
growth [15]. AtFBA8 could interact with actin to participate in the opening and closing
of guard cells in response to changes in environmental humidity, and this process was
independent of its catalytic activity. Moreover, although lacking a typical nuclear local-
ization sequence, AtFBA6 could enter the nucleus by interacting with thioredoxin [16]. In
response to heat stress, AtFBA6 played an irreplaceable role in the memory of heat stress in
the shoot apical meristem of Arabidopsis [17]. These results indicated that cytosolic FBAs
have diverse functions in plants, but the research on cytosolic FBA is rare. As cytosolic FBA
plays an important role in the glycolysis, the phenotypic changes caused by its mutation
were conventionally attributed to impaired energy metabolism, but the specific mechanism
behind this has not been fully elucidated.

Soybean (Glycine max (L.) Merr.) is a very important crop for food and oil production
in the world. In reference to other plants, FBAs are good candidates for improving yield,
but limited information of GmFBAs is known [9,10,18,19]. In this study, we characterized
the GmFBA gene family, and identified 14 FBA genes in the soybean genome. We found that
GmFBAc1 and GmFBAc2 are widely expressed among tissues. The GmFBAc1 and GmFBAc2
double mutant showed a dwarf seedlings phenotype with narrow leaflet. Metabolomic and
transcriptomic analyses revealed that the disruption of primary metabolism balance and
disturbance of plant hormone homeostasis are associated with the aberrant leaf growth
in the double mutants of GmFBAc1 and GmFBAc2. This study serves as a foundation for
subsequent theoretical research and production breeding.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Soybean (Glycine max) cultivar Huachun-6 was used in this study. Seeds were surface
sterilized by the chlorine gas method and germinated on sterilized and soaked vermiculite.
The seedlings were watered with nutrient solution every two days. The composition of
nutrient solution is as follows: Ca(NO3)2 0.12 mM, KNO3 0.19 mM, MgCl2 2.5 µM, MgSO4
0.5 mM, K2SO4 1 mM, MnSO4 0.5 µM, ZnSO4 1.5 µM, CuSO4 0.5 µM, (NH4)·Mo7O24
0.15 µM, KH2PO4 0.25 mM, NaB4O7 0.25 µM, Fe·EDTA 0.04 mM, (NH4)2SO4 0.05 mM,
and CaCl2 1.2 mM. The pH was adjusted to pH 5.8 with 1 M KOH. Soybean plants were
grown in a growth chamber under the following conditions: light intensity of 450 µmol
photons m−2 s−1, 14 h light at 28 ◦C and 10 h dark at 24 ◦C, humidity 65%. The second
compound leaf from the top downwards of 20-days-old seedlings was obtained for the
comparative experiments between wild type and mutants. Two genotypes of homozygous
gmfbac1gmfbac2 double mutants were used in this study.
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2.2. Genome-Wide Identification of FBA Gene Family and Phylogenetic Analysis

The FBA gene family information was collected using the Arabidopsis Information
Resource (TAIR) (https://www.arabidopsis.org/ (accessed on 30 August 2022)) for A.
thaliana. The JGI Phytozome website (https://phytozome-next.jgi.doe.gov/ (accessed on
7 May 2023)) was used to compare the homology of amino acids, candidate FBA proteins
of soybean, Medicago truncatula and Lotus japonicus with high homologous correlation with
A. thaliana FBA proteins [20,21]. Moreover, the FBA genes were identified via the NCBI
database (https://www.ncbi.nlm.nih.gov/ (accessed on 7 May 2023)) BLAST feature. The
amino acid sequences of FBAs proteins from G. max, A. thaliana, Medicago truncatula and
Lotus japonicus were selected to test the most suitable model using the online tool MAFFT
version 7 (https://mafft.cbrc.jp/alignment/server/ (accessed on 7 May 2023)) to construct
a maximum likelihood model [22]. The robustness of each tree node was calculated using
100 bootstrap replicates, with default remaining parameters.

2.3. Analysis of Expression Pattern and Subcellular Localization

Different tissues of soybean seedling were obtained for testing GmFBAs expression,
and the expression results were obtained through quantitative real time PCR (RT-qPCR).
Total RNA was extracted from plant tissues using E.Z.N.A.® RNA Extraction Kit (OMEGA
Bio-Tek, Norcross, GA, USA) according to the manufacturer‘s instructions. Oligo dT-primed
cDNA was synthesized from 1 µg of total RNA using the PrimeScriptTM RT Reagent Kit
with gDNA Eraser (Takara, Beijing, China). RT-qPCR analysis was performed with the
SYBR® Premix Ex TaqTM II ROX Plus Kit (Takara). The relative levels of each transcript were
calculated after normalization to the GmTefs1 (Glyma.17G186600) endogenous reference
gene, and relative expression levels in comparative experiments were calculated using the
2−∆∆CT method. The primers used for qPCR analyses are provided in Supplementary Table
S1. GV3101 harboring pGWB505 inserted GmFBAc1/GmFBAc2 CDS fragments were used
for tobacco leaves transient transfection. For fluorescence imaging, square pieces of tobacco
leaves were mounted in water and then examined using a water-immersion lens on a Zeiss
LSM 880 laser scanning confocal microscope.

2.4. Vector Construction and Plant Transformation

Expression vector construction of GmFBAc1 and GmFBAc2 was using Gateway technol-
ogy (Invitrogen, Waltham, MA, USA). Entry vectors were generated in the pDonr221 vector,
and pGWB505 vectors were used for 35S:GmFBAc-GFP fusion. For mutant creation, one
sgRNA were designed targeting both of GmFBAc1 and GmFBAc2 coding regions. Vector
construction were performed as described with pGES201 [23]. With respect to soybean
stable transformation, plasmids were transformed into Agrobacterium tumefaciens strain
GV3101. The Agrobacterium tumefaciens-mediated transformation procedure of the soybean
cultivar Huachun-6 followed a previously published protocol [24]. Three genotypes of
gmfbac1gmfbac2 double mutants were isolated from three independent transgenic lines and
validated by Sanger sequencing.

2.5. Determination of FBA Enzyme Activity and Observation of Epidermal Cells of Leaves

Kit (FBA-2-G) (Suzhou Comin Biotechnology Co., Suzhou, China) was used to de-
termine FBA enzyme activity. Observation of epidermal cells of leaves followed Meizi
Xu‘s method [25]. Using a mixture of ethanol and acetic acid as a solvent (ethanol:acetic
acid = 4:1) decolorized the leaves, and then treated them with a 60% ethanol solution
containing 7% sodium hydroxide. Rinsed the leaves with a 40% ethanol solution and
observed the epidermal cells of the leaves by using a DIC microscope. Image J software
was used to measure the epidermal cells area of leaves.

2.6. Metabolomic Analysis and Determination of Phytohormone Content

For metabolomic analysis, sample extraction was performed as previously described [26].
A 10 mg lyophilized leaves samples were added with 1 mL extraction buffer of chloroform,
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methanol and water (5:2:2 = v:v:v), then 12 µL ribitol (1 mg/mL) was added as inner
standard. For each genotype, 5 biological replicates were analyzed. Among every 5 tested
samples, 1 quality control sample (mixture of all tested samples) was also injected. GC-TOF-
MS profiling was performed using a 1 µL injection by auto-sampler onto a capillary column
(Restek Rxi®-5Sil MS (30 m × 0.25 µm × 0.25 µm)) (RESTEK Co., Bellefonte, PA, USA),
and Agilent 7890B gas chromatograph (Agilent Co., Santa Clara, CA, USA) mounted to a
Pegasus HT time-of-flight mass spectrometer (LECO Co., Saint Joseph, MI, USA). KEGG
pathway enrichment of differential metabolites utilized MBROLE 2.0 (http://csbg.cnb.csic.
es/mbrole2/index.php (accessed on 30 December 2022)) [27]. Phytohormone extraction
and measurement were performed as described previously with modifications [28]. Briefly,
fresh leaf material was ground into powder in liquid nitrogen. A 50 mg of the powder was
weighed into a 1.5 mL centrifuge tube and mixed with 900 µL of ethyl acetate and 100 µL of
isotopic internal standards (final concentration of 10 ng/mL [2H6]-JA, 10 ng/mL [2H4]-SA,
10 ng/mL [2H6]-ABA, and 2.5 ng/mL [13C6]-IAA). After the sample was thoroughly mixed,
it was sonicated at 4 ◦C and then centrifuged at 14,000× g for 3 min at 4 ◦C. The supernatant
was evaporated to complete dryness using a cold trap concentrator. The dried extract was
reconstituted in 200 µL of 70% (v/v) methanol and filtered through a 0.22 µm PVDF filter
and analyzed by UPLC-QqQ MS for data acquisition.

2.7. Transcriptomic Analysis

Total RNA was used as input material for the RNA sample preparations. Sequencing
libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for Illumina®

(NEB, USA) following manufacturer’s recommendations and index codes were added to
attribute sequences to each sample. The qualified libraries were pooled and sequenced
on Illumina platforms with PE150 strategy. Trimmomatic v0.39 was used to assess the
quality control of raw RNA-seq reads, trim adapter sequences, and remove low-quality
reads [29]. The clean reads were aligned to the cultivated soybean Wm82 v4 reference
genome using HISAT2 v2.1.0 [30,31]. The number of reads mapping to each gene and
normalized expression value (FPKM) was calculated by StringTie v1.3.6 [32]. Read count
was used to perform differentially expression analysis using DESeq2 v1.34 with a false
discovery rate (FDR) < 0.05 and |log2(fold-change)| ≥ 1 between treatment and control
groups [33]. The online platform KOBAS was applied to perform KEGG enrichment
analysis [34].

3. Results
3.1. Identification and Phylogenetic Analysis of GmFBAs Gene Family

We identified 14 GmFBA gene family members in the soybean genome using BLAST
against the Phytozome v.13 database. From the alignments of predicted FBA proteins, an
unrooted phylogenetic tree was constructed. All FBA members were clustered into two
groups, cytosolic FBA and plastid FBA. GmFBAc1 to GmFBAc7 and GmFBAp1 to GmFBAp7
were designated in accordance with the tree (Figure 1A). In these GmFBAs genes, excepting
GmFBAp2, the coding proteins are composed of 357 to 399 amino acids in length. GmFBAp2
consisting of 153 amino acids is due to early termination of translation (Figure S1). Hence,
GmFBAp2 may not have complete aldolase function.

3.2. Differential Expression Profiles of GmFBAs Genes

RT-qPCR was used to determine 14 GmFBAs expression in these materials. As shown
in Figure 1B, GmFBAc1 and GmFBAc2 were broadly expressed in most tissues. GmF-
BAc4 and GmFBAc5 were specifically expressed in roots and root nodules, and GmFBAc6
and GmFBAc7 were mainly expressed in mature leaf (Figure 1C). In addition, GmFBAps
were primarily expressed in photosynthetic tissues and reproductive organs (Figure 1C).
These results suggested various expression pattern and potential biological function of
GmFBA isoforms.

http://csbg.cnb.csic.es/mbrole2/index.php
http://csbg.cnb.csic.es/mbrole2/index.php
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sion of GmFBAc3 to GmFBAc7 and GmFBAp1 to GmFBAp7 in different tissues. Note: RT-qPCR data 
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Figure 1. Phylogenetic analysis and expression pattern analysis of 14 GmFBAs. (A) Phylogenetic
tree constructed of amino acid sequences of FBA in soybean, Arabidopsis, Medicago truncatula and
Lotus japonicus. (B) Relative expression of GmFBAc1 and GmFBAc2 in different tissues. (C) Relative
expression of GmFBAc3 to GmFBAc7 and GmFBAp1 to GmFBAp7 in different tissues. Note: RT-qPCR
data (2−∆∆Ct) for relative expression of GmFBAs; Blue represents cytosolic FBA and green represents
plastidial FBA.

3.3. Generation of gmfbac1gmfbac2 Double Mutants

We next focused on elucidating the function of the two predominant cytosolic GmFBAs,
GmFBAc1 and GmFBAc2. The subcellular localization of GmFBAc1 and GmFBAc2 were
validated by GFP fusion and transient expression in tobacco epidermal cells (Figure S2).
Considering the high homology of these two genes, we performed CRISPR-Cas9 to generate
double mutants of GmFBAc1 and GmFBAc2 (Figure 2A). A single sgRNA targeting the
conserved domain of GmFBAc1 and GmFBAc2 was designed and stable transformation
was performed with Huachun-6 cultivar (Figure 2C). In T2 progenies, three gmfbac1gmfbac2
lines were obtained with frameshift mutations in the highly conserved C-terminus domain



Agronomy 2023, 13, 1383 6 of 15

that is necessary for the catalytic activity of eukaryotic FBA (Figure 2B) [35,36]. The
gmfbac1gmfbac2-1 carried 11 bp deletion in GmFBAc1 and 4 bp deletion in GmFBAc2. The
gmfbac1gmfbac2-2 carried 11 bp deletion in GmFBAc1 and 5 bp deletion in GmFBAc2. The
gmfbac1gmfbac2-3 carried 4 bp deletion in GmFBAc1 and 1 bp insertion in GmFBAc2. The
RT-qPCR results showed that the expression of GmFBAc1 and GmFBAc2 was decreased in
the gmfbac1gmfbac2 leaves (Figure 2D), and the enzyme activity of FBA in gmfbac1gmfbac2
leaves was decreased comparing to enzyme activity of FBA in WT leaves (Figure 2E).
Additionally, the potential off-target sites of sgRNA were sequenced, and no off-target
event was detected. Therefore, we generated gmfbac1gmfbac2 mutant lines by CRISPR-Cas9
for functional characterization.
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Figure 2. Homozygous mutants of gmfbac1gmfbac2 obtained by using one target site. (A) Genes
structures of GmFBAc1 and GmFBAc2 with the target sites of CRISPR-Cas9 indicated and schematic
illustrating the target site sequence and corresponding PAM (red uppercase letters). (B) Predicted
protein structures of gmfbac1gmfbac2 double mutants. (C) DNA sequences of gmfbac1gmfbac2-1, -2
and -3 at target loci. (D) Relative expression of 14 GmFBAs in gmfbac1gmfbac2-1 and gmfbac1gmfbac2-2
(2−44Ct). (E) FBA enzyme activity in leaves of 20 DAG seedlings. Note: t-test was performed
between WT and gmfbac1gmfbac2 mutants, respectively. All values are presented as the mean ± SEM.
The ns represents no significant difference. ** p < 0.01, *** p < 0.001.
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3.4. Phenotypes of Retarded Vegetative Growth in gmfbac1gmfbac2

The homozygous mutant gmfbac1gmfbac2 showed stunted growth after germination.
At 5 days after germination (DAG), the WT seedlings grew the first pair of leaves, while
the cotyledons of the gmfbac1gmfbac2 seedlings were still not fully expended (Figure
S3). At 20 DAG gmfbac1gmfbac2 seedlings showed a dwarf phenotype, and the biomass
was significantly lower than that of WT (Figure 3A,B). Moreover, the leaflets of gmf-
bac1gmfbac2 were narrower than leaflets of WT (Figure 3C and Figure S4). The leaflet
length was similar between gmfbac1gmfbac2 and WT (Figure 3D,E). These phenotypes were
observed in homozygotes gmfbac1gmfbac2, but not in heterozygote gmfbac1+/−gmfbac2−/−

and gmfbac1−/−gmfbac2+/−, indicating that GmFBAc1 and GmFBAc2 play a redundant role
in modulating soybean growth.
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Figure 3. Leaflet shape and seedlings size in WT and gmfbac1gmfbac2. (Bar = 2 cm) (A) Phenotypes
of 20 DAG heterozygous and homozygous double mutants of GmFBAc1 and GmFBAc2. (B) Dried
weight (DW) of 20 DAG heterozygous and homozygous double mutants of GmFBAc1 and GmFBAc2
and WT seedlings. (C) Leaf morphology of 20, 30 and 50 DAG seedlings. (Bar = 2 cm) (D) Width and
length of leaflets in 20 DAG seedlings. Note: t-test was performed between WT and gmfbac1gmfbac2
mutants. All values are presented as the mean ± SEM. The ns represents no significant differences.
* p < 0.05, *** p < 0.001.

To elucidate whether the narrowing of the leaflets of gmfbac1gmfbac2 is caused by
the reduced cell size or cell proliferation, we observed the morphology of adaxial and
abaxial epidermal cells of leaflets by DIC microscope. Compared with the WT, there was
no significant change in the morphology or the area of single epidermal cells in the narrow
leaflets of gmfbac1gmfbac2 (Figure 4A–C). Therefore, the narrow leaflet of gmfbac1gmfbac2
mutant may be caused by a reduced cell number, rather than the reduction in cell sizes.
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between WT and gmfbac1gmfbac2 mutants. All values are presented as the mean ± SEM. The ns
represents no significant differences.

3.5. Metabolomic and Phytochemical Analysis Reveal Altered Primary Metabolism and
Phytohormones Contents in gmfbac1gmfbac2 Mutants

We performed metabolomic analysis with gmfbac1gmfbac2 and WT leaves with GC-
TOF-MS (Figure 5A–C). PCA of metabolome showed that the content of metabolites was
highly similar in two different lines of gmfbac1gmfbac2, but significantly different from the
WT (Figure 5A).

In univariant analysis, a total of 42 metabolites were successfully identified. Among
them, the content of 17 metabolites was significantly changed in gmfbac1gmfbac2-1, and the
content of 20 metabolites was significantly changed in gmfbac1gmfbac2-2 comparing to the
WT. The content of fructose-6-phosphate mildly increased in the gmfbac1gmfbac2 (Figure 5B),
which was consistent with the disrupted turnover catalyzed by GmFBAc1 and GmFBAc2,
but it was not changed significantly. The content of saccharides in gmfbac1gmfbac2 mu-
tants was slightly lower than that of WT, and the decrease in sucrose and cellobiose was
significant in gmfbac1gmfbac2-1 (Figure 5B). The content of α-ketoglutarate involved in
the TCA cycle significantly decreased in the both lines of gmfbac1gmfbac2, and most of
the organic acids involved in the TCA showed a decreasing trend in content (Figure 5C).
Downstream of glycolysis, the content of shikimate also showed a significant decrease
in gmfbac1gmfbac2-2. Moreover, the results showed that the content of free fatty acids in
gmfbac1gmfbac2 leaves did not change significantly (Figure 5C). Fatty acids are mainly
synthesized in plastids, the mutation of cytosolic FBA might not affect their contents in
soybean leaves [1]. By contrast, the content of oxalate and lactate was increased, which
did not directly participate in primary carbon metabolism. Myo-inositol is an important
signal substance, whose content also decreased in gmfbac1gmfbac2 leaves comparing to that
in the WT significantly, suggesting that signal transduction might be injured in the double
mutant leaves (Figure 5B) [37,38]. Phytol decreased in both lines of double mutants, which
is usually employed for synthesis of chlorophyll, vitamin E and vitamin K [39]. These
results indicated that the glycolytic pathway and TCA cycle were impaired in the leaves of
gmfbac1gmfbac2 mutants. Hence, the energy supplied to plant cells of gmfbac1gmfbac2 leaves
would be reduced, and substances for downstream reactions were affected as well.

Interestingly, the content of most amino acids detected was significantly higher in
both of gmfbac1gmfbac2 leaves than WT leaves (Figure 5B), including β-alanine, asparagine,
aspartate, glycine, lysine, phenylalanine, proline, threonine and valine. Together with the
decrease in urea content, we speculated that the metabolic pathways toward amino acids
biosynthesis maybe were up-regulated in gmfbac1gmfbac2.
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Figure 5. Significance of differences in leaf metabolites between WT and gmfbac1gmfbac2 as revealed
by metabolomic analysis. (A) PCA of metabolomic results of leaves. Blue, red and green circle
represents wild type, gmfbac1gmfbac2-1 and gmfbac1gmfbac2-2, respectively. (B) Relative levels of
saccharides, amino acids and other metabolites in gmfbac1gmfbac2 leaves. (C) Relative levels of organic
acids in gmfbac1gmfbac2 leaves. Note: t-test was performed between WT and gmfbac1gmfbac2 mutants.
All values are presented as the log2(Fold Change). * p < 0.05, ** p < 0.01, *** p < 0.001.

3.6. The gmfbac1gmfbac2 Mutation Affects Auxin and Jasmonic Acid Content and Signaling

KEGG analysis (Figure 6A, Table S2) of differential metabolites showed that the
pathway of plant hormone synthesis was significantly enriched, indicating that the phyto-
hormones biosynthesis might be affected in the gmfbac1gmfbac2 leaves. We then measured
the content of indole acetic acid (IAA), abscisic acid (ABA), salicylic acid (SA), jasmonic
acid (JA) and jasmonoyl-L-isoleucine (JA-Ile) (Figure 6B). Among them, the IAA and SA
content decreased while JA and JA-Ile content increased. These suggests that the mutations
in GmFBAc1 and GmFBAc2 have an impact on plant hormones.
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Figure 6. Changes in the content of phytohormones in gmfbac1gmfbacf2 leaves. (A) KEGG metabolic
pathways significantly enriched with differential metabolites. (B) Relative levels of phytohormones
in gmfbac1gmfbac2 leaves. Note: t-test was performed between WT and gmfbac1gmfbac2 mutants. All
values are presented as the log2(Fold Change). ** p < 0.01, *** p < 0.001.

We next performed RNA-seq with WT and two lines of gmfbac1gmfbac2 mutants. In
total, 718 and 755 differentially expressed genes (DEGs) were found in the gmfbac1gmfbac2-
1/WT and gmfbac1gmfbac2-2/WT comparison group, respectively (Figure S5), and among
them, 552 DEGs were common between the two groups (Table S3). Comparing to the
WT, 254 genes and 298 genes were down- and up-regulated in gmfbac1gmfbac2 leaves,
respectively. According to the KEGG pathway analyses, the genes upregulated and down-
regulated in gmfbac1gmfbac2 leaves are both enriched in the plant hormone signal trans-
duction pathway (Figure 7A,B and Tables S4 and S5). Moreover, the upregulated genes in
gmfbac1gmfbac2 leaves were also enriched in multiple amino acid metabolic pathways and
nitrogen metabolism (Figure 7B), consistent with the metabolic profiling results, further
confirming amino acid metabolism was enhanced in gmfbac1gmfbac2 mutant leaves. Among
them, the downregulated genes related to plant signal transduction pathways included
auxin response genes (SMALL AUXIN-UP RNA (SAUR), AUXIN RESPONSE FACTOR
(ARF), and XYLOGLUCAN ENDOTRANSGLYCOSYLASES/HYDROLASES (XTH)) and cy-
tokinin related genes (HISTIDINE-CONTAINING PHOSPHOTRANSFER PROTEIN (HPT))
(Figure 7C) [40–43]. In addition, the upregulated genes in gmfbac1gmfbac2 included five
JAZ (JASMONATE ZIM-DOMAIN) and one JAI1 (JASMONATE INSENSITIVE1), which
respond to JA signaling (Figure 7D) [44]. These results were consistent with the contents
of IAA and JA. We performed RT-qPCR to validate the expression of the downregulated
GmARF and its homologous genes and some upregulated GmJAZs, and the expression
trends were consistent with the RNA-seq results (Figure S6).
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bac1gmfbac2 were revealed by transcriptomic analysis. (A) KEGG metabolic pathways enriched
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metabolic pathways enriched with DEGs upregulated in gmfbac1gmfbac2 compared to the WT.
(C) Heatmap of down-regulated DEGs involved in the plant hormone are shown in the transcrip-
tome profile. (D) Heatmap of up-regulated DEGs involved in the plant hormone are shown in the
transcriptome profile.

4. Discussion

FBA is an important metabolic enzyme and participating glycolysis, gluconeogen-
esis and Calvin cycle [5,7]. In this study, 14 GmFBA were identified, and they showed
differentiated expression patterns. GmFBAc1 and GmFBAc2 were broadly expressed in
tissues. In addition, we show that the double mutants of GmFBAc1 and GmFBAc2 lead to
reduced growth and aberrant leaflet morphology. Single or heterozygous mutants of GmF-
BAc1/GmFBAc2 were similar to WT (Figure 3A). This was consistent with the highly similar
expression patterns and protein sequences of GmFBAc1 and GmFBAc2, which indicated
that the functions of these two genes are highly redundant.

As critical enzymes in cytosolic glycolysis, mutations of GmFBAc1 and GmFBAc2
affected carbon metabolism, leading to reduced sugars content and organic acids content
in the TCA cycle. Meanwhile, the content of free amino acids in gmfbac1gmfbac2 leaves
significantly increased, and the corresponding amino acid metabolism genes and nitro-
gen metabolism genes were upregulated, indicating imbalance of carbon and nitrogen
metabolism. Leaf serves as a source of carbon and a sink of nitrogen in plants, whose bal-
ance of carbon and nitrogen is crucial for plants, and the source and sink balance determine
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growth [45]. Therefore, the mutations in GmFBAc1 and GmFBAc2 caused an imbalance
C/N metabolism, leading to retarded growth of the gmfbac1gmfbac2.

In various plant species, attenuation of the auxin signaling pathway was found to
result in aberrant cell expansion and cell division [46,47]. Therefore, the reduction in IAA
content in the leaves of the gmfbac1gmfbac2 mutant might contribute to the narrow leaf phe-
notype. However, it is currently unknown about the mechanism of causing the decreased
IAA in gmfbac1gmfbac2. In our study, there were no significant changes in the expression
levels of IAA biosynthesis genes. As a precursor of IAA biosynthesis, the tryptophan
content in gmfbac1gmfbac2 leaves was significantly higher than that in the WT, which was
inconsistent with lowered IAA content. IAA synthesis involves tryptophan-dependent
and -independent pathways [48]. Previous studies using 15N-labeled tryptophan to culture
the Lemna gibba showed that even though 98% of the tryptophan in the plant was labeled,
only a small amount of IAA was labeled with 15N [49]. Studies on tryptophan mutants
trp2 and trp3 in Arabidopsis suggested the existence of efficient IAA biosynthesis pathways
that do not involve tryptophan [48,50]. Hence, it is possible that tryptophan-independent
IAA biosynthesis pathways may be affected by GmFBAc1/GmFBAc2. Moreover, upstream
of the tryptophan, IAA and SA biosynthesis pathway, the content of shikimate decreased
in the gmfbac1gmfbac2 leaves, which could be one of the reasons for the reduction in IAA
and SA levels [51,52]. In addition, previous research mentioned that the decrease in hexose
content would downregulate the entire shikimate pathway, thereby reducing the ability
to synthesize auxins [47]. Therefore, the mutations in GmFBAc1 and GmFBAc2 attenu-
ated the carbon metabolism, and further affected the synthesis of IAA. Combining the
downregulation of phytohormone response genes such as GmXTHs and GmHPT4s in gmf-
bac1gmfbac2 leaves, we assumed that cell proliferation and cell wall restructuring were
inhibited, resulting in a decrease in the number of leaf cells [42,43,53].

JA could repress cell proliferation in Arabidopsis leaf, which was indicated by the
seedlings treated with Me-JA [54]. Increase in JA content in plant leaves may inhibit leaf
growth while improving stress resistance. Overexpression of the JA signal pathway gene
CmJAZ1-like in Chrysanthemum morifolium resulted in transgenic plants with smaller petals
and leaves [55]. Therefore, enhancement of the JA signaling pathway might be another
reason contributing to the morphological changes in the leaves of the gmfbac1gmfbac2
mutant. The precursor for JA synthesis comes from fatty acids synthesized in the plastids,
and the cytoplasmic GmFBAc1 and GmFBAc2 mutations did not hinder fatty acid synthesis.
Metabolomic results showed no significant change in detected content of free fatty acids.
However, fatty acids in other forms were not detected in this study, which might contribute
to the increase in JA content.

5. Conclusions

GmFBAc1 and GmFBAc2 play a critical redundant role in soybean growth, and their
mutations would cause multiple changes in leaf cells, such as disrupting the balance of
carbon and nitrogen metabolism, disturbing phytohormone homeostasis, and ultimately
leading to narrow leaflets and dwarf seedlings.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy13051383/s1, Figure S1: Gene structure of GmFBA
family; Figure S2: Subcellular localization of GmFBAc1 and GmFBAc2; Figure S3: Phenotype of 5
DAG soybean seedlings of wild type and gmfbac1gmfbac2 mutants; Figure S4: Leaflet area of 20 DAG
wild type and gmfbac1gmfbac2 seedlings; Figure S5: Venn plot of DEGs in two lines of gmfbac1gmfbac2
vs wild type, respectively; Figure S6: Relative expression of GmARF and GmJAZ in gmfbac1gmfbac2
leaves was verified by RT-qPCR; Table S1: List of primers used for RT-qPCR analysis, genotyping
and CDS cloning; Table S2: KEGG category of differential metabolites in gmfbac1gmfbac2 vs wild type;
Table S3: 552 DEGs in gmfbac1gmfbac2 vs wild type; Table S4: KEGG category of downregulated DEGs
in gmfbac1gmfbac2 vs wild type; Table S5: KEGG category of upregulated DEGs in gmfbac1gmfbac2 vs
wild type.
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