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Abstract: Switchgrass (Panicum virgatum L.) remains the preeminent American perennial (C4) bioen-
ergy crop for cellulosic ethanol, that could help displace over a quarter of the US current petroleum
consumption. Intriguingly, there is often little response to nitrogen fertilizer once stands are es-
tablished. The rhizosphere microbiome plays a critical role in nitrogen cycling and overall plant
nutrient uptake. We used high-throughput metagenomic sequencing to characterize the switchgrass
rhizosphere microbial community before and after a nitrogen fertilization event for established stands
on marginal land. We examined community structure and bulk metabolic potential, and resolved
29 individual bacteria genomes via metagenomic de novo assembly. Community structure and
diversity were not significantly different before and after fertilization; however, the bulk metabolic
potential of carbohydrate-active enzymes was depleted after fertilization. We resolved 29 metage-
nomic assembled genomes, including some from the ‘most wanted’ soil taxa such as Verrucomicrobia,
Candidate phyla UBA10199, Acidobacteria (rare subgroup 23), Dormibacterota, and the very rare
Candidatus Eisenbacteria. The Dormibacterota (formally candidate division AD3) we identified
have the potential for autotrophic CO utilization, which may impact carbon partitioning and storage.
Our study also suggests that the rhizosphere microbiome may be involved in providing associative
nitrogen fixation (ANF) via the novel diazotroph Janthinobacterium to switchgrass.

Keywords: rhizosphere; phyllosphere; metagenomics; microbiome; nutrient cycling; metagenomic
assembled genomes (MAGs); nitrogen fixation; nitrogen

1. Introduction

“Plants wear their guts on the outside” wrote Janzen (1985) [1], since the rhizosphere
of terrestrial plants—the ~millimeter interface between plant roots and surrounding soil—
plays critical roles in nutrient uptake, absorption, and degradation, via the diverse microbes
it contains [2–5]. The rhizosphere connects plants to ecosystem processes including the
cycling and sequestration of water, nitrogen (N), carbon, and other nutrients [6]. The rhizo-
sphere represents one of the most dynamic and diverse interfaces on the planet, containing
up to 1011 microbial cells per gram root, potentially representing over 30,000 bacterial
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species that also interact with fungi, picoeukaryotes, bacteriophages, and viruses [2,4,5].
The rhizosphere microbiome can alter the physical and chemical environment of plants by
directly promoting plant growth via nutrient fixation (e.g., N fixation), increased bioavail-
ability of soil nutrients (e.g., phosphorus, iron, zinc, and copper), and altered plant hor-
mones and signaling [6,7]. Hence, the rhizosphere represents a critical interface of plant–
microbial interactions that directly impacts plant and soil health, and harnessing it requires
knowledge about the identities and functionality of rhizosphere microbial communities.

Metagenomics of the soil and rhizosphere can provide a direct measure of its metabolic
capabilities, functional potential, and the genomes of individual members through
‘metagenome assembled genomes’ (MAGs) [4,5,8]. Soil and rhizosphere ecosystems have
been considered the ‘grand challenge’ of metagenomics, due to the low coverage of indi-
vidual organisms, uneven sampling, high genetic diversity, and large amounts of sequence
data required [9,10]. In general, metagenomics in soil environments yield poor de novo
assemblies; because often up to 80% of the data cannot be assembled, there is typically low
read map coverage (<20%) and there are few contigs > 8 kbp (<10 contigs) [9,10]. Until
recently, obtaining MAGs from soils was deemed impossible; however, multiple studies
have been able to resolve MAGs directly without amendment in soil ecosystems [11–19].
MAGs and genome-resolved metagenomics have provided a wealth of knowledge on the
vast candidate bacterial phyla, and their metabolic potential and functions that have never
before been described due to their unculturability [20,21].

The activity of the rhizosphere microbiome, including community assembly, recruit-
ment, uptake, and degradation of nutrients are driven by plant root exudates [22,23]. More
than a century of research into the rhizosphere has revealed “the rhizosphere effect”, by
which plants enhance the growth of soil microbes via the exudation of organic molecules,
particularly the carbon compounds exuded [24]. This carbon fuels the metabolic processes
of the rhizosphere microbiome, of which the nitrogen cycle is absolutely critical to plant
growth. Carbon inputs directly impact nitrogen fixation, which is an energetically expen-
sive process [25]. Carbon can also stimulate denitrification in parallel with nitrogen fixation,
resulting in a net loss of N [26]. Denitrification stimulation occurs more strongly with
simple substrates (e.g., glucose) versus complex substrates (e.g., cellulose and lignin) [26].
Understanding how the rhizosphere microbiome utilizes carbohydrates via carbohydrate-
active enzymes (CAZy) can further elucidate the balance and interaction between C and
N cycling.

The rhizosphere microbiome is primarily responsible for nitrogen transformations in
soil. The nitrogen cycle consists of assimilation, fixation, denitrification, nitrate reduction,
nitrification, anaerobic ammonium oxidation (ANAMMOX), dissimilatory nitrate reduc-
tion to ammonium (DNRA), and complete ammonium oxidation (COMMAMOX) [27].
Biological nitrogen fixation (BNF) is the reduction of atmospheric molecular nitrogen [N2]
to ammonia [NH3] via nitrogenase (encoded by the nifHDK gene cluster); this reaction
accounts for approximately two-thirds of the fixed nitrogen available to biology on the
planet [28]. Soil denitrification occurs via three mechanisms: (1) nitrite [NO2

−] reduction to
molecular nitrogen [N2] via dissimilatory nitrite reductase nirKS gene cluster, (2) nitric ox-
ide [NO] reduction to molecular nitrogen [N2] via the norB nitric oxide reductase gene, and
(3) nitrous [N2O] reduction to molecular nitrogen [N2] via the nitrous oxide reductase nosZ
gene [29]. Soil nitrate reduction is the conversion of nitrate [NO3

−] to nitrite [NO2
−] via the

napA/narG nitrate reductase genes. DNRA occurs via the transformation of nitrite [NO2
−]

to ammonia [NH3], via the nrfA nitrite reductase gene [30]. ANAMMOX reaction converts
nitrate [NO3

−] to ammonia [NH3], which occurs via the hzo hydrazine oxidoreductase
gene [31]. COMMAMOX converts to ammonia [NH3] to nitrate [NO3

−], which requires
the amoABC ammonium oxidase gene cluster, the hao hydroxylamine oxidoreductase gene,
and nxr nitrite oxidoreductase gene [31]. The abundance and diversity of nitrogen cycling
genes and their connection to carbohydrate utilization genes provide a window into the
coupling of the C and N cycles within the rhizosphere.
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Switchgrass (Panicum virgatum L.) is the principal United States bioenergy model C4
perennial crop for use in cellulosic ethanol production, biogas, and combustion [32], which
could displace up to 30% of the current petroleum consumption [33]. Its high biomass
productivity in low-nutrient soils common to marginal lands is key because growth on
marginal land avoids competition with food crops on arable lands [34–37]. Switchgrass
and other cellulosic ethanol sources could displace up to 30% of the current petroleum
consumption [33].

Contrary to many cropping systems which show N limitation, N fertilization of
switchgrass often has limited to no impact on productivity [36,38], and there is a resulting
gap in the N budget [36]. This suggests that the rhizosphere microbiome could contribute to
the N requirement [39] through free-living diazotrophic bacteria using associative nitrogen
fixation (ANF) [25,40,41].

Studies to date have investigated the effect of N fertilizer on the switchgrass rhizo-
sphere microbiome using 16S rRNA amplicon sequencing [39,40,42]. 16S rRNA amplicon
studies typically fail to resolve novel ‘candidate’ phyla, representing vast portions of the
tree of life [43,44]. These 16S rRNA amplicon approaches fail to measure metabolic ca-
pabilities directly, functional potential, gene–gene assortment on operons via long-range
sequence contiguity, gene transfer via horizontal gene transfer (HGT), or the provision of
MAGs. Shotgun metagenomics thus provides a powerful approach to characterize both
diversity and functionality simultaneously [45].

Here, we use high-throughput metagenomic shotgun sequencing of the switchgrass
rhizosphere on marginal lands to resolve its taxonomic composition and functional metabolic
potential, and resolve community microbial genomes (MAGs). We further compare plots
pre- and post-fertilization to determine how the microbiome responds to N addition and
give insight into its responsiveness over a two-week interval. We first assess metagenome
quality and overall diversity across our study, then we describe overall metabolic potential
and shifts between timepoints, delving particularly into nitrogen cycling (e.g., ANF) and
carbohydrate metabolism (i.e., CAZy pathways). Finally, we describe MAGs of abundant
bacteria and use these to elucidate their potential roles in nitrogen cycling and coupling the
N and C cycles in the rhizosphere.

2. Materials and Methods
2.1. Study Site Description and Management

Switchgrass rhizosphere soil was sampled (April to May 2016) from the Lux Arbor
reserve (42.48 N–85.44 W) as part of the Great Lake Bioenergy Research Center’s (GLBRC)
marginal land experiments. The Lux Arbor reserve marginal land soil is a sandy clay loam,
mesic Hapludalf (Crum and Collins, 1995). The mean annual temperature (MAT) was
10.1 ◦C, with a mean annual precipitation of 1.005 m. Four blocks of switchgrass rhizosphere
soil from the Cave-in-rock variety were sampled in a randomized block design, after a
two-week pulse treatment of N amendment. The assigned blocks were 64 ft × 40 ft in size.
Amended soil was approximately half a plot, with the other half receiving no amendment.
The soil was classified as a Kalamazoo loam with a 2–6% slope. We sampled switchgrass
rhizosphere within the G5 blocks, on the block half that was historically amended with
N fertilizer, but not at the time of sampling called here pre-fertilized (i.e., I1–I4, pre-
fertilized—initial samples). We sampled the same blocks two weeks post-nitrogen fertilizer
amendment, which here is called post-fertilized (i.e., P1–P4, post-fertilized—post samples 1
to 4) (Figure S1). Blocking diagram and map of the location is provided (Figure S1).

The fertilizer treatment was pelleted lime (454 kg/A) and urea (53 kg/A or 24 kg/A
N), applied on 5 April 2016 and then again on May 13th 2016. Our pre-fertilized—initial—
samples were taken on 29 March 2016, prior to the first amendment on 5 April 2016,
and our post-fertilized samples were taken 12 April 2016, two weeks post-fertilization.
The urea fertilizer was SUPERU® (Koch Agronomic Services—KAS, Wichita, KS, USA)
brand, which is 45.5% urea nitrogen, contains 0.06% (600 ppm) N-(n-butyl) thiophosphoric
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triamide (NBPT) (a urease inhibitor), and 0.85 % (8500 ppm) Dicyandiamide (DCD) (a
nitrification inhibitor).

We collected soil cores (2 cm diameter × 15 cm deep) from near the centers of each half-
block, ~50 g of soil per core, one sample taken per half-block. Cores from each half-block
on each date were sieved through a 4 mm sieve to remove rocks and large roots, and then
flash-frozen using liquid nitrogen until processed. The rhizosphere is typically considered
to be the zone of soil that is influenced by roots, so, given that these soil cores were sampled
at the base of a well-established perennial plant and that the cores themselves contained
a sizeable amount of root material, we considered these samples to be indicative of the
switchgrass rhizosphere. The “tightly bound” rhizosphere and rhizoplane are typically
defined operationally by the particles of soil that are stuck to a root after shaking and
the surface of a root after all soil particles are removed, respectively. We did not seek to
partition these compartments, but noted that the tightly bound and rhizoplane microbes
were captured in our samples.

2.2. DNA Extraction and Sequencing

Total DNA was extracted from ~2 g switchgrass rhizosphere from field flash-frozen
samples using the MoBio PowerSoil DNA (Carlsbad, CA, USA), according to the manu-
facturer’s instructions. Samples were quantified using the Qubit Fluorometer 2.0 (Invit-
rogen, Carlsbad, CA, USA) and quality-checked using a Nanodrop-1000 (Thermo Fisher,
Waltham, MA, USA). Michigan State University Research Technology Support Facility
(RTSF) sequencing core completed Illumina library preparation, library quantification, and
sequencing on HiSeq 4000 150 bp paired-end read format. We analyzed eight metagenomes
from switchgrass rhizosphere within marginal lands of southern Michigan Lux Arbor
Reserve, comprising four samples from each pre- and post-fertilizer application.

2.3. Metagenomic Assembly, Annotation, Differential Abundance Statistical Analysis, and
Genome Reconstruction

Paired-end shotgun reads were quality-filtered, assembled, and decontaminated using
ATLAS [46]. In short, the bbduk module quality-filtered, trimmed, and decontaminated for
ϕX174 phage DNA, a common Illumina sequencing spike-in, and for all Illumina adapters.
Metagenomic de novo assembly was performed using Megahit (k-mer 21–121, version
1.1.3) [47]. We used >5 kbp contigs only for all downstream analysis; this included taxo-
nomic and functional annotation, and metagenomic binning. Protein-coding open reading
frames (ORFs) and RNA prediction were completed using Prokka [48]. Eggnog-mapper (di-
amond mode, version 0.8.22.84) was used to obtain updated KEGG (KO) numbers for MAGs
and contigs [49]. CAZy predictions were completed in diamond (version 0.8.22.84) [50], for
MAGs and contigs (31 July 2018, database update) from dbcan2 [51].

DESeq2 R package (version 1.18.1) was used to obtain differential statistics on taxo-
nomic composition and functional annotations from predicted ORFs from contigs using
COG, CAZy, and KO annotation abundances [52]. The contig ORF counts’ abundances
within DESeq2 followed a paired analysis, which blocked by sampling plot pre-/post-
fertilization, then normalized with variance stabilizing normalization.

We pooled contigs from pre-/post-fertilization, then used the differential read abun-
dances across all samples to obtain MAGs. Contigs were binned using Concoct [53],
Maxbin2 [54], and Metabat2 [55], including the refinement program within metawrap [56].
Metawrap was used for refinement of MAGs, blobiology prediction, and quantification
of bin (MAG) abundance via quant_bin module [56]. CheckM was used to evaluate com-
pleteness, contamination, redundancy, and genome properties of the MAGs [57]. All MAG
qualities were reported according to the MIMAG standards [8]. We tested a variety of
methods to resolve the taxonomy of the MAGs, including metawrap’s classifier, classify
genomes (https://github.com/AlessioMilanese/classify-genomes, (accessed on 15 April
2023)), which uses the metagenomic operational taxonomic units (mOTU) v2 taxonomy,
JSpeciesWS Tetra Correlation Search [58], GTDB-Tk [59], and blastp of ribosomal protein S9

https://github.com/AlessioMilanese/classify-genomes
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gene (obtained from Prokka annotation). Only GTDB-Tk provided the taxonomic identifica-
tions that were supported by ribosomal protein S9 gene blastp results. GTDB-Tk provided
all further taxonomy for the MAGs downstream.

2.4. Read-Based mOTU Picking and Statistical Analysis

mOTUs analysis of the quality-filtered and decontaminated reads (not contigs) used
in the de novo metagenomic assembly were used as input mOTUs v2 [45], then parsed
and further analyzed with the phyloseq (version 1.22.3) R package [60]. Alpha diversity
measurements with statistical testing for mOTUs (including t-test, Wilcox, Kruskal, and
ANOVA) were completed in the phyloseq (version 1.22.3) R package. Beta-diversity metrics
were obtained for mOTUs using the UniFrac (weighted/unweighted) and Brays–Curtis
distances in phyloseq (version 1.22.3) R package. DESeq2 R package (version 1.18.1) was
used within phyloseq (version 1.22.3) R package for mOTU differential statistics using
negative binomial distribution corrected with variance-stabilizing normalization.

2.5. Data and Analysis Code Availability

Raw sequence data, assembled contigs, and supplemental data are all available on
NCBI Bioproject/BioSample/SRA as PRJNA954399—Lux Arbor Metagenome, and are also
available at Open Science Framework, with code, at https://osf.io/mzrvj/ (accessed on 15
April 2023). All code for this study is available on www.github.com/friesenlab/MMPRNT_
panicum_metagenome_mags/ (accessed on 15 April 2023).

3. Results
3.1. Assessment of Assembly and Metagenomic Assembled Genomes within Lux Arbor

The raw data represent 5.37 billion Illumina reads, with 805 Gbp in 490 gigabytes of
compressed data, with ~100 gigabytes of uncompressed data per sample (Table 1). On
average, 34.5% of the data were removed per sample due to quality, length, or adapters, or
because they were phiX174 bacteriophage Illumina spike-in DNA library (Table 1). Upon
metagenomic de novo assembly with MEGAHIT, each sample averaged 4.6 million total
contigs (>200 bp) which contained, on average, 3.2 Gbp, with an average N50 of 737 bp
(Table 1). However, the best assessment of a soil and rhizosphere metagenome de novo
assembly is the number of contigs which are >1 kbp and are longer than 5 kbp [9,10]. On
average, ~60,000 contigs per sample were contained on contigs > 1 kbp, with an average of
2.21 Gbp assembly size and an average N50 value of 1982 bp (Table 1). Across all samples,
we obtained 190,172 contigs > 5 kbp, with an average of 23,771 contigs of 5 kbp per sample
on a 1.19 Gbp assembly size with an average N50 value of 9254 bp (Table 1). Of those
190,172 > 5 kbp contigs, 44,171 of them were >10 kbp in length, and 237 were >100 Kbps.
Max contig length was 697,599 across all samples.

We pooled all contigs, then used concoct, maxbin2, and metabat2, including the
refinement program within metawrap. Concoct yielded no usable bins. When comparing
metabat2 to maxbin2, metabat2 produced more raw MAGs than maxbin2 (435 vs. 319),
the completeness was lower for metabat2 (39.7% vs. 48.0%), and higher contamination
was present amongst the metabat2 bins (28.0% vs. 16.4%) (Figure S2). Pooling results
in metawraps bin refinement yielded 29 MAGs in total (14 pre- and 15 post-fertilization)
(Figure S2).

https://osf.io/mzrvj/
www.github.com/friesenlab/MMPRNT_panicum_metagenome_mags/
www.github.com/friesenlab/MMPRNT_panicum_metagenome_mags/
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Table 1. Metagenome assembly statistics with pre- and post-fertilization processing read counts.
# = number.

Sample_ID Sample_Dis #Reads #Raw Bases Trim-Decon
Reads #Contigs Size N50

P1 Post-fertilization 6.78 × 108 1.02 × 1011 4.60 × 108 4.36 × 106 2.62 × 109 607

P2 Post-fertilization 7.49 × 108 1.12 × 1011 4.98 × 108 5.54 × 109 3.88 × 109 743

P3 Post-fertilization 6.64 × 108 9.95 × 1010 4.47 × 108 4.95 × 109 3.31 × 109 701

P4 Post-fertilization 5.48 × 108 8.22 × 1010 3.41 × 108 3.84 × 109 2.66 × 109 736

I1 Pre-fertilization 6.77 × 108 1.02 × 1011 4.48 × 108 4.83 × 109 3.42 × 109 754

I2 Pre-fertilization 6.45 × 108 9.67 × 1010 4.43 × 108 4.89 × 109 3.35 × 109 722

I3 Pre-fertilization 7.17 × 108 1.08 × 1011 4.59 × 108 4.77 × 109 3.54 × 109 825

I4 Pre-fertilization 6.93 × 108 1.04 × 1011 4.22 × 108 4.10 × 109 3.01 × 109 810

Average 5.37 × 109 8.06 × 1011 3.52 × 109 4.66 × 109 3.22 × 109 737

sample_ID #contigs_1K size_1K N50_1K #contigs_5K size_5k N50_5k GC%

P1 387,207 9.98 × 107 1741 9864 7.01 × 108 10,169 62.30

P2 721,633 2.93 × 108 2034 31,195 1.45 × 109 9402 62.76

P3 595,079 1.89 × 108 1914 20,404 1.14 × 109 9058 62.22

P4 504,757 1.69 × 108 1951 18,173 9.84 × 108 9139 62.55

I1 649,392 2.57 × 108 2027 28,056 1.30 × 109 9123 61.98

I2 618,357 2.14 × 108 1969 23,648 1.21 × 109 8891 60.92

I3 726,107 3.05 × 108 2140 32,660 1.50 × 109 9013 61.35

I4 613,447 2.46 × 108 2081 26,172 1.25 × 109 9243 61.37

Average 601,997 2.21 × 108 1982 23,771 1.19 × 109 9254 61.93

3.2. Microbiome Diversity and Composition of Lux Arbor Switchgrass Rhizosphere

Only 571 mOTUs were identified across all 8 samples combined. Comparing alpha
diversity between pre- and post-fertilization samples showed no statistically significant
difference between diversity metrics, which included observed mOTUs, ACE richness,
Shannon diversity, or Simpson evenness (Figure 1A, Table S1). Qualitatively, the variances
were more substantial and more variable for alpha diversity metrics within post-fertilized
plots than pre-fertilized (Figure 1A). There was no statistically significant difference be-
tween alpha diversity metrics (Figure 1A) due to high variance observed post-fertilization.
Using UniFrac (weighted and unweighted) (Figure 1B,C) and Bray–Curtis (Figure 1D)
distance, samples using a paired analysis block effects with treatment were highly variable
with slight clustering by pre- and post-fertilization treatment. Adonis testing (permanova)
suggested no statistically significant difference by treatment using either the UniFrac
(weighted and unweighted) or Bray–Curtis difference (Table S2).
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Figure 1. Alpha and beta diversity metrics for mOTUs (metagenomic OTUs) analysis. (A) mOTU
alpha diversity statistics observed, ACE, Shannon diversity, and Simpson evenness completed
in phyloseq R without rarefaction. (B–D) mOTU beta diversity ordinations using MDS/PcoA in
phyloseq R without rarefaction using unweighted UniFrac (B), weighted UniFrac (C), and Bray–Curtis
distance (D). B1–B4 is the sampling block (see Figure S1).

The microbial taxonomic composition of the Lux Arbor switchgrass rhizosphere plots
based on mOTUs were numerically dominated by Proteobacteria (>70% whether they
were pre- or post-fertilizer), followed by Actinobacteria (>10% pre- or post-fertilizer), then
the other phyla were <5% each, which included Acidobacteria, Bacteriodetes, Chloroflexi,
Cyanobacteria/Melainabacteria, Firmicutes, Gemmatimonadetes, and Verrucomicrobia
(Figure 2). A single taxon, OTU158, represented >50% of the mOTU abundance in all
samples (Table S2). OTI158’s closest reference genome is the N-fixing Alphaproteobac-
teria Bradyrhizobium japonicum, based on mOTU taxonomy. OTU603 is the next-most
abundant mOTU, representing >20% the bacterial composition; it is a Betaproteobacteria
Paraburkholderia sp. [C caribensis/terrae] found in all samples (Table S2). The most numer-
ically dominant non-proteobacteria was OTI3128, which is Blastococcus sp. URHD0036,
an Actinobacteria in the family Geodermatophilaceae, at >10% abundance in all samples
(Table S2).
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Figure 2. mOTU taxonomic affiliation relative abundances. (A) Phyla level mOTU taxonomic relative
abundance using phyloseq R without rarefaction. (B) Class level mOTU taxonomic relative abundance
using phyloseq R without rarefaction. Samples are labeled P1–P4 for post-fertilization, whereas
pre-fertilization are labeled I1–I4.

3.3. Overall Metabolic Potential and Differential Metabolic Genes of Lux Arbor
Switchgrass Rhizosphere

Our primary annotation enlisted KEGG for pathway and gene level metabolic potential
and functions. Amongst our KEGG annotations (KO), >75% of the metabolic potential
was metabolism-based (KO level 1), which was followed by Environmental Information
Processing (KO level 1) at ~11% (Table S3). Amongst the total metabolic potential of the Lux
Arbor switchgrass rhizosphere, >15% of the metabolism-based (KO level 2) annotations
were for amino acid and carbohydrate metabolism (Table S3).

We compared contig protein coding ORF functionality using DESeq2 via paired anal-
ysis post-fertilization using KEGG KO annotations. Using an MDS/PCoA ordination of
the DESeq2 KO annotations, fertilization had minimal effect on blocks 2–3, but resulted in
large shifts for blocks 1 and 4, though we lacked replicated samples to test this statistically
(Figure 3A). Out of 3204 nonzero ORF counts, only 19 were significantly different in the
paired DESeq2 analysis (Figure 3B, Table S3). Of those 19 differentially significant KO
annotated ORFs, 15 were decreased whereas 4 were increased post-fertilization (Figure 3B,
Table S3). The four that were differentially increased post-fertilization were K00171 (pyru-
vate ferredoxin oxidoreductase), K07691 (two-component system NarL family-ComA),
KO11624 (two-component system, NarL family, response regulator YdfI), and K07694 (two-
component system, NarL family, vancomycin resistance associated response regulator VraR)
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(Figure 3B, Table S3). The NarL is a two-component system involved in signal transduction
and environmental information processing. While 15 annotated ORFs were differentially
decreased post-fertilization, only 4 showed ~2 log2 fold change (Figure 3B, Table S3). Most
of the KO ORFs that were significant by DESeq2 were depleted post-fertilization, including
four that were >2 log2 fold change (Figure 3B, Table S3). These four which most depleted
KOs post-fertilization were K03763 (DNA polymerase III subunit alpha), K00141 (benzalde-
hyde dehydrogenase (NAD) [EC:1.2.1.28]), K03943 (NADH dehydrogenase (ubiquinone)
flavoprotein 2), and K07406 (alpha-galactosidase) (Figure 3B, Table S3). The K07406 is
involved in carbohydrate metabolism and is linked to sphingo, glycerol, and glycoshin-
golipid metabolism and biosynthesis. The K00141 (also known as xylC) is involved with
hydrocarbon degradation, including xylene, toluene, aminobenzoate, and steroids.

Figure 3. KEGG KO DESeq2 paired analysis for functional gene annotation. (A) DESeq2 MDS/PcoA
ordination of the KO abundances paired by sample block (B1–B4) and post-fertilization. (B) Divergent
barplot of the KO DESeq2 log2 fold changes post-fertilization, all with p-value < 0.05. Enriched
(+ value) means more representation post-fertilization (purple), whereas depleted (− value) less
representation post-fertilization (red).

3.4. Nitrogen Cycle Metabolic Potential within the Switchgrass Rhizosphere Microbiome

Nitrogen-cycling metabolic potential in switchgrass is critical to understanding why
switchgrass gains little benefit from N fertilizer addition. We compared the abundance of
genes related to various steps in the N cycle including N fixation (nifDHK), denitrification
(nirSK, norB and nosZ), ammonification (respiration/assimilation, nrfA, napA, narG, nasA),
urea catabolism (ureABC), and anammox (hzo). The urea fertilization treatment also con-
tained urease N-(n-butyl) thiophosphoric triamide (NBPT) and nitrification dicyandiamide
(DCD) inhibitors. Ammonia monooxygenase enzyme, encoded by amoA, was not found in
any samples. Anammox (hzo) was not detected in any of the samples.

We further compared the N-cycling functional ORFs’ impact on the whole functional
metabolic potential profile using DESeq2 paired analysis, followed by MDS/PCoA ordi-
nation. Similar to the KO MDS/PCoA ordination, samples did not cluster by pre- and
post-fertilization (Figure 4A). However, as with the KO analysis, blocks 1 and 4 had greatly
separated linearly post-fertilization for N-specific functional ORFs (Figure 4A). Function-
ally, it appears that certain blocks were more differentiated by post-fertilization based on
metabolic potential. Comparing relative abundance of N-cycling genes suggests similar
abundance for ureABC, nosZ, nasA, and napA (Figure 4B).
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Figure 4. Nitrogen cycling functional genes (Prokka-COG) DESeq2 paired analysis for functional
gene annotation. (A) DESeq2 MDS/PcoA ordination of the nitrogen functional abundances paired by
sample block (B1–B4) and tested for post-fertilization. (B) Dotplot of square root (sqrt normalized)
relative abundances of nitrogen cycling functional genes. Samples are labeled P1–P4 for post-
fertilization, whereas pre-fertilization are labeled I1–I4.

Comparing N fixation, nifHDK gene cluster was detected in more post-fertilized
samples than pre-fertilized (Figure 4B). Blast analysis of nifD, the molybdenum–iron nitro-
genase alpha chain, found that all full-length sequences were Betaproteobacterial in origin
(Table S4). Of the five nifD sequences found amongst the assembled contigs, two belonged
to unclassified Betaproteobacteria, two were from Dechloromonas sp., one from Sulfuriferula
sp, and, lastly, one from Herbaspirillum sp. (Table S4). All nifD sequences belonged to
Betaproteobacteria, with none detected from Alphaproteobacteria, even amongst the high
abundance of Bradyrhizobium detected in mOTU analysis. The N fixation gene nifH, on
average, had 60% higher abundance in plots pre-fertilization (Figure 4B). Diverse members
of proteobacteria contained nifHK genes, including Azonexus hydrophilus, Herbaspirillum
frisingense, Herbaspirillum rubrisubalbicans, Herbaspirillum sp. HC18, Dechloromonas aromatica,
Dechloromonas sp. HYN0024, Dechloromonas sp. Dech2017, and Rhodocyclaceae bacterium
(Table S4). The alternative nitrogenase gene clusters anf (iron-containing nitrogenase) or vnf
(vanadium-containing nitrogenase) were not detected. No rhizobium (e.g., Bradyrhizobium)
nitrogenase genes were detected.

Nitric oxide reductase (norB) was detected in three out of four plots post-fertilization
(Figure 4B). NBPT had little inhibition of the gene level counts of ureABC, which encoded
all the major subunits of the urease enzyme, as all samples had high levels of ureABC
(Figure 4B). Both ureABC and napA were the most abundant N cycle-related genes, regard-
less of the plot or timepoint (Figure 4B). DCD also inhibits nitrous oxide (N2O) production
when applied to the soil [61], but nosZ, which encodes nitrous oxide reductase, had similar
abundance across all plots (Figure 4B).

3.5. Differential CAZy Potential within the Switchgrass Rhizosphere Microbiome

We further examined CAZy to characterize carbon utilization, uptake, and degradation
within pre- and post-fertilization in our switchgrass rhizospheres. Comparing fertilization
effects paired by field plot, we identified 21 CAZy enzyme genes’ differentials pre- versus
post-fertilization (Table 2). An MDS/PcoA plot of the DESeq2 paired analysis results again
shows sample blocks 1 and 4 as having the largest effects post-fertilization (Figure 5A). Of
the 21 differential CAZy predictions, 71% were depleted, with only 5 that were enriched ~2
log2 fold change post-fertilization (Figure 5B, Table 2). Complete CAZy families were not
enriched, but individual CAZy enzymes from various taxa were (Figure 5B, Table 2). Those
five CAZy that were enriched included GT41 (Geobacter sulfurreducens), GT28 (Singulisphaera
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acidiphila), GH9 (Uncultured bacterium BLR10), GT2 (Acidobacterium capsulatum), GT51
(Brevibacterium linens), and GH33 (Cyclobacterium amurskyense) (Figure 5B, Table 2). GT2,
GT28, and GT41 are families of glycosyltransferases that function on substrates such
as N-acetyl-α-D-glucosamine, glycerol, galactose, cellulose, chitin, and glucans by an
inverting mechanism. GH9 are glycoside hydrolases that function to catabolize cellulose,
lichenin, cellobiose, and other plant components. GH33 is specialized for glycogen, dextrin,
and other aminosugars. Three CAZy predicted enzymes had ≥2 log2 fold change post-
fertilization, which included a carbohydrate-binding module (CBM54), glycosyltransferase
(GT4), and a multi-domain auxiliary activity (AA3_1/AA8) (Figure 5B, Table 2). CBM54
binds to xylan, yeast cell wall glucan, and chitin [62], but this family’s function is relatively
unknown. The AA3_1/AA8 has a heme binding site, a cytochrome domain, a cellobiose
dehydrogenase, and a choline dehydrogenase or flavoprotein, and is of Basidiomycota
fungal origin (Table 2). The GT4 is another major transferase family for simple sugars,
which operates via a retaining mechanism which includes sucrose synthase (EC 2.4.1.13),
sucrose–phosphate synthase (EC 2.4.1.14), and α-glucosyltransferase (EC 2.4.1.52). Of the
most significant CAZy enzymes, 52% are associated with plants, plant-associated zones
(phyllosphere or rhizosphere), or are from soil directly (Table 2). CAZy enzymes that were
significant represented three kingdoms (fungi, archaea, bacteria), seven bacterial phyla,
and two uncultivated organisms (Table 2).

Table 2. CAZy DESeq2 paired analysis statistical table. This includes the taxonomic accession
from CAZy database, the genbank taxonomy with CAZy family (funtaxa), the genbank phyla and
class taxonomy, the location of isolation from GenBank, the DESeq2 log2 fold change (which is
paired by sample location block (B1–B4) then tested for post-fertilization), and p-value from DESeq2.
Enriched (+ value) means more representation post-fertilization, whereas depleted (− value) means
less representation post-fertilization.

Accession Funtaxa Phyla Class Habitat log2 Fold
Change p-Value

ANY66681.1 Paenibacillus sp. BIHB4019
(CBM54) Firmicutes Bacilli Rhizosphere −3.38 0.02

AKB38096.1 Methanosarcina siciliae C2J (GT4) Euryarchaeota Methanomicrobia Unknown −3.03 0.04

ALJ82902.1 Irpex lacteus (AA3_1|AA8) Basidiomycota Agaricomycetes Wood −3.02 0.04

AUD02463.1 Spirosoma pollinicola (CBM6) Bacteroidetes Cytophagia Pollen −2.72 0.02

ANS78621.1 Serinicoccus sp. JLT9
(CBM48|GH13_9) Actinobacteria Actinobacteria Thermal −2.22 0.05

AFY81829.1 Oscillatoria acuminata PCC6304
(GH65) Cyanobacteria Cyanophyceae Soil −2.11 0.02

AAR38497.1 Uncultured marine bacterium
583 (GT41) Uncultured Uncultured Ocean −1.97 0.02

BAZ44095.1 Chondrocystis sp. NIES-4102
(GT2) Cyanobacteria Cyanophyceae Unknown −1.82 0.04

BAL56682.1 Uncultured
Gammaproteobacteria (PL0) Proteobacteria Gammaproteobacteria Microbial mat −1.4 0.05

ARX88346.1 Streptomyces alboflavus
(GT2|CE4) Actinobacteria Actinomycetes Rhizosphere −1.23 0.02

ATF41409.1 Weissella paramesenteroides
(CBM50) Firmicutes Bacilli Unknown −1.07 0.02

ALG08540.1 Kibdelosporangium phytohabitans
(GH16) Actinobacteria Actinobacteria Phyllosphere −0.84 0.04

ATU64527.1 Rhizobacter gummiphilus
(CBM41) Proteobacteria Gammaproteobacteria Soil −0.52 0.05

AMG83817.1 Microbacterium sp. PAMC 28,756
(CE14) Actinobacteria Actinobacteria Lichen 0.26 0.04
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Table 2. Cont.

Accession Funtaxa Phyla Class Habitat log2 Fold
Change p-Value

ACL17090.1 Methanosphaerula palustris E1–9c
(CBM6) Euryarchaeota Methanomicrobia Peatland Soil 0.69 0.03

AKP50194.1 Cyclobacterium amurskyense
(GH33) Bacteroidetes Flavobacteria Ocean 0.88 0.05

AMT93207.1 Brevibacterium linens (GT51) Actinobacteria Actinomycetes Sediment 1.95 0.02

ACO33523.1 Acidobacterium capsulatum (GT2) Acidobacteria Acidobacteria Soil 2.16 0.02

ACN58963.1 Uncultured bacterium BLR10
(GH9) Uncultured Uncultured Soil 2.37 0.05

AGA24658.1 Singulisphaera acidiphila
DSM18658 (GT28) Planctomycetes Planctomycetacia Peat bog wetland 2.41 0.04

BBA71022.1 Geobacter sulfurreducens (GT41) Proteobacteria Deltaproteobacteria Sediment 2.43 0.04

Figure 5. DESeq2 paired analysis of CAZy for carbohydrate active genes annotation. (A) DESeq2
MDS/PcoA ordination of the CAZy functional abundance paired by sample block (B1–B4) and
post-fertilization. (B) Divergent barplot of the CAZy DESeq2 log2 fold changes post-fertilization,
all with p-value < 0.05. Enriched (+ value) means more representation post-fertilization (purple),
whereas depleted (− value) means less representation post-fertilization (orange).

3.6. Genome-Resolved Metagenomics Elucidates Members of the Rare Biosphere

We obtained 190,172 > 5 kbp contigs in total from our 8 metagenomes and used
the differential read abundance pre- and post-fertilization, which resulted in 29 MAGs
from many phyla (e.g., Actinobacteria, Acidobacteria, Dormibacterota (formally candidate
division AD3), Nitrospira, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia). These
MAGs represented high abundance (Actinobacteria, Acidobacteria, Proteobacteria, and
Verrucomicrobia) and low abundance members (Nitrospira and Gemmatimonadetes) of
common soil phyla, as well as members of the rare biosphere (Dormibacterota, Candidatus
Eisenbacteria, and Candidate phyla UBA10199—formerly Deltaproteobacteria) (Figure 6A,
Table 3). Acidobacteriota (Acidobacteria) phyla had the most representative MAGs with
eight (Figure 6A, Table 3). The MAG genome sizes ranged from 2.5 to 11 Mbp, with a G
+ C content of 55 to 71.7% and a total contig range from 38 to 527 (Table 3). Amongst the
14 MAGs within the pre-fertilized samples, 2 are close to being high-quality drafts. High-
quality drafts are defined by the minimum information about a metagenome-assembled
genome (MIMAG) reporting guidelines at >90% complete, <5% contamination, and with
the presence of one entire rRNA operon (5S, 16S, 23S) and 18 tRNAs [8]. The rest of the
pre-fertilized MAGs were medium-quality drafts, and no low-quality drafts were used
in downstream analysis. For the 15 MAGs within the post-fertilized plot, 8 were near
high-quality drafts, with the rest being medium draft quality (Table 3).
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Table 3. Metagenomic assembled genome (MAG) assembly statistics with GTDB taxonomy. This
includes the predicted taxonomy by the GTDB-Tk tool using the GTDB database, assembly statistics,
completeness, contamination, and the metagenome-assembled genome (MIMAG) quality ranking.
MAGs are labeled by rhizosphere soil type for pre-fertilization (I1–I14) and post-fertilization (P1–P15).

GTDB-Tk Taxonomy Size Contigs N50 GC Completeness Contamination MIMAG
Quality

magI1
Actinobacteriota;
Thermoleophilia; 20CM-4-69-9;
20CM-4-69-9

3,377,677 169 24,250 69.9% 81 1.293 Medium

magI2 Acidobacteriota;
Thermoanaerobaculia 5,321,068 131 66,773 66.0% 95.96 2.849 Medium

magI3
Nitrospirota; Nitrospiria;
Nitrospirales; Nitrospiraceae;
Nitrospira_C

3,293,157 304 11,734 58.7% 87.87 7.929 Medium

magI4 Eisenbacteria; RBG-16-71-46 2,561,625 211 13,768 67.9% 84.84 1.098 Medium

magI5
Gemmatimonadota;
Gemmatimonadetes;
Gemmatimonadales; GWC2-71-9

3,461,988 62 148,829 67.7% 94.18 2.197 Medium

magI6 Acidobacteriota; Acidobacteriae;
Acidobacteriales; Koribacteraceae 4,052,648 57 120,172 56.0% 91.05 0.854 Medium

magI7 Acidobacteriota;
Thermoanaerobaculia 7,820,903 527 18,142 67.6% 80.65 3.703 Medium

magI8
Nitrospirota; Nitrospiria;
Nitrospirales; Nitrospiraceae;
GCA-2737345

4,109,394 341 12,463 56.4% 84.66 4.545 Medium

magI9 Myxococcota; Polyangia;
Kofleriales; Kofleriaceae 11,007,611 231 77,779 69.0% 81.93 1.474 Medium

magI10 Dormibacterota; Dormibacteria 3,788,213 181 27,454 71.7% 88 1.851 Medium

magI11
Nitrospirota; Nitrospiria;
Nitrospirales; Nitrospiraceae;
Nitrospira_C

4,541,993 243 24,855 55.3% 96.36 3.989 Medium

magI12
Gemmatimonadota;
Gemmatimonadetes;
Gemmatimonadales; GWC2-71-9;
40CM-2-70-7

2,649,947 193 16,824 67.7% 82 1.098 Medium

magI13 Dormibacterota; Dormibacteria 4,029,220 85 69,215 70.7% 98.61 0.925 Medium

magI14
Nitrospirota; Nitrospiria;
Nitrospirales; Nitrospiraceae;
Nitrospira_C

3,065,303 170 26,094 56.7% 82.01 6.363 Medium

magP1
Verrucomicrobiota;
Verrucomicrobiae;
Pedosphaerales; Pedosphaeraceae

8,909,748 261 55,946 57.6% 98.64 8.108 Medium

magP2

Proteobacteria;
Alphaproteobacteria;
Sphingomonadales;
Sphingomonadaceae

2,721,540 119 37,362 62.5% 90.75 3.921 Medium

magP3 Acidobacteriota; Acidobacteriae;
Acidobacteriales; Koribacteraceae 4,391,229 117 63,672 55.8% 96.58 6.41 Medium

magP4 Acidobacteriota; Acidobacteriae;
Acidobacteriales 5,394,372 259 26,773 54.9% 92.02 1.994 Medium

magP5 Actinobacteriota; Acidimicrobiia;
IMCC26256 4,337,493 355 14,277 69.3% 83.52 0.925 Medium

magP6

Proteobacteria;
Gammaproteobacteria;
Enterobacterales;
Enterobacteriaceae; Lelliottia

5,354,450 93 88,703 55.2% 99.06 0.715 Medium

magP7
Actinobacteriota;
Thermoleophilia;
Solirubrobacterales; 70-9; 70-9

2,620,611 92 38,941 67.4% 95.13 0.948 Medium

magP8
Proteobacteria;
Gammaproteobacteria;
Betaproteobacteriales; UKL13-2

3,375,344 364 14,636 65.7% 84.82 4.31 Medium
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Table 3. Cont.

GTDB-Tk Taxonomy Size Contigs N50 GC Completeness Contamination MIMAG
Quality

magP9 UBA10199; UBA10199; UBA10199 3,108,333 222 17,369 57.6% 83.87 1.29 Medium

magP10

Proteobacteria;
Gammaproteobacteria;
Betaproteobacteriales;
Burkholderiaceae;
Janthinobacterium

4,309,612 337 15,502 66.0% 87.65 2.613 Medium

magP11 Chloroflexota; Ellin6529; CSP1-4;
CSP1-4; UBA5189 2,799,987 10 520,935 70.5% 95.83 1.157 Medium

magP12 Acidobacteriota;
Thermoanaerobaculia 5,401,737 147 56,396 63.2% 97.53 5.47 Medium

magP13 Acidobacteriota;
Thermoanaerobaculia 5,296,372 38 193,920 66.0% 99.14 3.703 Medium

magP14

Proteobacteria;
Alphaproteobacteria;
Sphingomonadales;
Sphingomonadaceae;
Sphingomonas_A

2,439,972 109 32,058 62.8% 96.5 2.507 Medium

magP15 Acidobacteriota; Acidobacteriae;
Acidobacteriales; Koribacteraceae 3,923,518 235 22,362 57.5% 92.46 3.019 Medium

Figure 6. Metagenomic assembled genome (MAG) statistics and sample relative abundances.
(A) Barplot of the number of MAGs per phyla using the GTDB taxonomy. (B) Quantification of
relative abundances of the MAGs using Metawraps tool (quant_bin), with values expressed in the
heatmap as genome copies per million reads. The individual MAG taxonomy present in B is found in
Table 3.

We compared multiple methods to obtain taxonomic identity for MAGs, finding
GTDB-Tk to be the most reliable. We classified MAG taxonomy by metawrap’s classifier,
classify genomes (which uses the mOTU v2 taxonomy), JSpeciesWS Tetra Correlation
Search (TCS) [10,58], GTDB-Tk, and blastp of ribosomal protein S9 gene. Only GTDB-
Tk provided the taxonomic identifications that were supported by ribosomal protein
S9 gene blastp results. Classify genomes supplied no identifications beyond “Bacteria.”
(Table S5). JspeciesWS TCS misclassified candidate phyla such as Dormibacterota, which it
classified incorrectly as “Mycobacterium.” (Table S5). Metawraps classifier also provided
no identifications for candidate phyla such as Dormibacterota (Table S5). GTDB-Tk-based
taxonomy was therefore used for all downstream MAG taxonomy.

While the presence of all 29 MAGs was detected in all samples, whether pre- or
post-fertilization (Figure 6B), the abundance differed across the MAGs resolved. MAG
P9 had the lowest average abundance across samples (Figure 6B), whereas MAG P11 had
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the highest average overall abundance (Figure 6B). Although we had limited replication
(4 replicates), Acidobacteria and Actinobacteria phyla were also found amongst the top 10
mOTUs’ phyla based on composition. The samples pre-fertilization resolved MAGs from
Gemmatimonadetes, Candidatus Eisenbacteria, Nitrospira, and Dormibacterota, but these
were not as highly resolved or as abundant in the post-fertilization samples (Table 3). We
had one MAG in the pre-fertilization samples belonging to the “Myxococcota,” formerly
Deltaproteobacteria, but now its own phyla based on the GTDB. The post-fertilization sam-
ples yielded MAGs from Verrucomicrobia, Chlorflexota, and Candidate phyla UBA10199
that were not resolved well in the pre-fertilization samples (Table 3).

Gammaproteobacterial MAGs from the Lelliottia and Janthinobacterium genera (Table 3)
were only found in the post-fertilization samples. MAG P6, a Lelliottia (Enterobacteri-
aceae), was poorly represented across all the samples except for one post-fertilization (P1)
(Figure 6B). The high abundance of P6 in a single sample could suggest an infection of
plant roots within the switchgrass rhizosphere. Lelliottia are opportunistic pathogens of
roots and implicated in post-harvest onion rot [63].

3.7. Betaproteobacterial MAG with Molybdenum-Based Nitrogen Fixation Gene Cluster

We screened all our MAGs for N fixation genes, such as the dominant molybdenum-
based (nif gene cluster), and the alternative N fixation clusters based on vanadium (vnf
gene cluster) and iron (anf gene cluster). As mentioned above, nifD genes only have simi-
larity to Proteobacteria, with no other phyla represented. We resolved four proteobacterial
MAGs in the post-fertilization treatment only. MAG P10, which is classified as Janthi-
nobacterium, has two copies of nifD and nifK, one nifH, and one nifW, arranged on a single
gene cluster for molybdenum-based N fixation. The nifHDK was previously detected as
HGW-Betaproteobacteria-11 and HGW-Betaproteobacteria-7 (Table S4), which are located
on the same contig within our MAG P10 genome.

3.8. Acidobacteria Related to Rare Subdivision 23 with Utilization Nitrate

Acidobacteria represented eight of the total twenty-nine MAGs within our Lux Arbor
switchgrass rhizosphere, with relations to Thermoanaerobaculia (subdivision 23), Korib-
acteraceae (subdivision 1), and unclassified Acidobacteriales (subdivision 1). Five MAGs
were related to Thermoanaerobaculia (subdivision 23), with two in pre-fertilized and three
in post-fertilized (Table 3). The resolved Thermoanaerobaculia genomes ranged from 4 to
5.4 Mbp, 56 to 66% G + C, 91 to 96% completeness, and 0.8 to 5.5% contamination (Table 3).

Our Thermoanaerobaculia appeared to utilize nitrate but not ammonium or urea,
nor to have the ability to fix N. Ammonia monooxygenase (amoA or amoB), urease (alpha
or gamma, ureA or ureC), nitrification genes (nxrAB), nitrous oxide reductase (nosZ), or
nitrite reductases (nirK or nirS) were not detected in the Thermoanaerobaculia MAGs.
The anaerobic nitric oxide reductase transcription regulator (NorR) was present in all
Thermoanaerobaculia genomes with up to nine copies in I2. Nitrate reductase (1.7.99.4;
napA and nasC), formate dehydrogenase nitrate-inducible (fdnH), and nitrate transporter
(narT) was present amongst the genomes. The nasA nitrate reductase was not present in any
of the MAGs. MAG P4, while not classified past Acidobacteriales, had nitrate utilization
genes including narT transporter, nasC nitrate reductase, and the formate dehydrogenase
nitrate-inducible gene (fdnH).

We further characterized the carbohydrate utilization in the Thermoanaerobaculia
MAGs for potential carbon source utilization. The most abundant genes included major
glycosyltransferases (GT2 and GT4) families that synthesize diverse substrates including
cellulose, chitin, sucrose, sucrose–phosphates, and glucose–glycerol phosphates. The
top glycoside hydrolases (GH) encoded by the Thermoanaerobaculia MAGs included
GH23 and GH0 families. GH0 is the uncharacterized family of GH, which comprises
completely novel and unknown enzymes. The GH23, a specific enzyme family, is a rather
specific substrate family which contains lysozyme type G (EC 3.2.1.17), peptidoglycan
lyase (EC 4.2.2.n1), and chitinase (EC 3.2.1.14). GH3 and GH18 were also numerically
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abundant amongst the Thermoanaerobaculia MAGs, which encode GH3 (β-glucosidase
(EC 3.2.1.21); xylan 1,4-β-xylosidase (EC 3.2.1.37); β-glucosylceramidase (EC 3.2.1.45) and
GH18 (chitinase (EC 3.2.1.14); lysozyme (EC 3.2.1.17); endo-β-N-acetylglucosaminidase
(EC 3.2.1.96); and peptidoglycan hydrolase). Carbohydrate-binding module 50 (CBM50)
was the most abundant CBM enzyme amongst the Thermoanaerobaculia MAGs, which
contain 50 residues that have a LysM domain and works synergistically with GH23 or other
enzymes that cleave chitin or peptidoglycan. CBM2 was the second-most abundant CBM
enzyme present in the Thermoanaerobaculia MAGs, which has 100 residues with modules
that bind cellulose, chitin, and xylan.

3.9. Nitrospira Hydrolysis of Urea, Nitrate Reduction with Limited Nitrite Reduction

Nitrospira MAGs were only well-resolved in the pre-fertilized plots. Four MAGs
(I3, I8, I11, I14) in the pre-fertilized plots were classified as Nitrospira, and the genomes
resolved ranged from 3 to 4.5 Mbp, 55 to 58% G + C, 82 to 96% completeness, and 4 to
8% contamination (Table 3). Nitrospira MAG I11 was the most complete at 96%, with the
lowest contamination at ~4% (Table 3). Nitrospira MAG I11 MAG had up to 0.11% of all
the reads in a pre-fertilized plot mapped directly to the genome, representing relatively
high abundance.

We further examined the N metabolism of the Nitrospira-related MAGs within Lux
Arbor to identify how N metabolism functioned for these recovered MAGs. None of
the MAGs had genes related to ammonia monooxygenase (amoA or amoB), so no gene
annotations supported the presence of ammonia oxidation metabolism. No nitrification
genes (nxrAB), nitrous oxide reductase (nosZ), or nitrite reductase (nirK or nirS) genes were
detected amongst the annotations for these MAGs. All the Nitrospira MAGs had urease
subunits (alpha or gamma, ureA or ureC) and accessory proteins (ureDGF) present. As
for denitrification, all Nitrospira MAGs had denitrification regulatory protein (nirQ), but
that was the only nir gene found amongst the MAGs. Nitric oxide reduction pathway,
which encodes an anaerobic nitric oxide reductase (norV/norW), was not found; however,
the anaerobic nitric oxide reductase transcription regulator (norR) was found amongst the
MAGs. All MAGs had assimilatory nitrite reductase (nasE), and MAG I14 had a copper-
containing nitrite reductase, but no other genes for nitrite metabolism were found. MAG
I14 had genes relating to nitrate influx and reduction to nitrite, and genes included the
nitrate transporters (nasA, 3 copies) and nitrate reductase (napA, 1.7.99.4). MAG I11 had
napA but did not have the nasA transporters. N fixation has never been found amongst the
Nitrospira and was not found in any of our resolved MAGs.

Using CAZy, we compared the carbohydrate-active enzymes present within our
Nitrospira MAGs related to carbon source metabolism. Glycosyltransferases (GT2 and
GT4) were the most prevalent CAZy enzymes present in the Nitrospira MAGs, which
metabolize cellulose, chitin, or simple sugars such as sucrose. As with the Thermoanaer-
obaculia MAGs, the most numerically abundant GHs were GH23 and GH0 in the Nitrospira
MAGs. Carbohydrate esterases with the highest numerical abundance included CE11,
CE1, and CE14. CE1 contains acetyl xylan esterase (EC 3.1.1.72), cinnamoyl esterase (EC
3.1.1.-), and feruloyl esterase (EC 3.1.1.73). The CE1 family also contains intracellular
poly(3-hydroxybutyrate) (PHB) depolymerases. The CE14 family contains N-acetyl-1-D-
myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (EC 3.5.1.89) and diacetyl-
chitobiose deacetylase (EC 3.5.1.-). Diacetylchitobiose deacetylase is involved in chitin
degradation and metabolism.

3.10. Dormibacterota MAGs’ Metabolic Potential within the Switchgrass Rhizosphere

Dormibacterota MAGs were resolved in the pre-fertilization samples only (MAGs I10
and I13). The two MAGs ranged from 3.7 to 4 Mbp, 71 to 72% G + C content, 88 to 98%
completeness, and 0.9 to 2% contamination (Table 3). Dormibacterota I13 was a near high-
quality genome at 98.6% complete and 0.92% contamination, and was the most resolved
MAG in the pre-fertilized treatments (Table 3).
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The two Dormibacterota MAGs contained no complete gene clusters for N fixation,
urea, or nitrite utilization. Urea and nitrite utilization genes were also not found. I10
had a nifH nitrogenase but was missing the rest of the genes required for N fixation,
such as nifDK. MAG I13 had no N fixation genes. Both had a nitrate-inducible formate
dehydrogenase (fdnH) and the napA nitrate reductase. The nasC nitrate reductase and narT
nitrate transporter were not found in I10 or I13 MAG. The I13 MAG lacked the nasA nitrate
transporter, whereas I10 had the nasA transporter gene.

Carbon monoxide dehydrogenases were found amongst the I10 and I13 MAGs, which
catalyze the oxidation of carbon monoxide to carbon dioxide using a quinone donor
(EC:1.2.5.3). Carbon monoxide aerobic dehydrogenases have been named either cox or
cut gene clusters under the same EC 1.2.5.3. I10 and I13 had cutL (large chain), cutM
(medium chain), and cutS (small chain) genes present. I10 had one coxS (small chain) gene,
but I13 had zero cox genes related to CO dehydrogenases. No ribulose-1,5-bisphosphate
carboxylase (RuBisCO) (rbcL) was found.

Our Dormibacterota MAGs had similar high abundance of GT2, GT4, CBM2, CBM50,
GH0, GH18, GH23, and CE14 in the top 10 of their CAZy repertoire, as did our Acidobacte-
ria and Nitrospira MAGs. This suggests that our Dormibacterota MAGs, I10 and I13, can
utilize cellulose, chitin, or simple sugars such as sucrose.

4. Discussion

Metagenomic assembly of soil and rhizosphere ecosystems has remained an enor-
mous challenge due to the difficulty in obtaining long contigs to reconstruct high-quality
MAGs. While metagenomics has improved since the original prairie soil assembly, which
contained only a few contigs > 5 kbp [9], due to the development of better software [46,47],
short reads still provide significant challenges. The Lux Arbor marginal land switchgrass
rhizosphere metagenomes we report represent an excellent model system with very long
contigs from short reads (150 bp paired-end), due to lower microbial community diversity
and complexity. In prairie soils (e.g., Kansas or Iowa) [9,10], it is not possible to obtain long
contigs with just short reads and computation alone [10], and only long read technologies
(i.e., moleculo) have yielded similar results to our Lux Arbor short read assembly. To
compare on average, a single sample from Lux Arbor had 23,771 contigs > 5 kbp, while
a Kansas native prairie soil with a similar amount of data had 4683 (100 bp paired-end)
and 8532 (250 bp paired-end) [10]. A single moleculo sequence library from a pooled
Kansas prairie sample yielded 10,198 contigs > 10 kbp in length, and our Lux Arbor sample
yielded 44,171 contigs > 10 kbp in length using only short reads. The maximum contig
length obtained from a hybrid assembly of Kansas prairie was <63 kbp, whereas Lux Arbor
had 237 contigs > 100 kbp in length, with a max contig of 697,599 bp [10]. Recently, a
closed bacterial genome has been obtained from the Saccharibacteria, formerly candidate
phyla TM7, from stable isotope-labeled rhizosphere metagenome, suggesting that binning
complete genomes directly from soil is possible [16]. Our data suggest that Lux Arbor soils
have lower microbial community complexity than Kansas prairie soil, based on the quality
of metagenomic de novo assembly obtained. This nominates Lux Arbor and, possibly, other
marginal soils to provide a testbed for soil and rhizosphere metagenomics.

Obtaining metagenomic bins to resolve individual microbial genomes within the
soil and rhizosphere has remained problematic, as the common assumption is that the
higher the microbial complexity, the harder it is to resolve genomes directly from a sample.
Low-complexity permafrost soil has had great success in resolving genomes, with over
1500 individual MAGs resolved with expressed metabolisms using transcriptomics and
proteomics [64], but we have yet to obtain this order of magnitude with ease in non-
permafrost soil. The first genome-centric view of a soil ecosystem was in the Kansas
native prairie, where 129 MAGs were obtained, but, on average, the genome completeness
was quite low at ~40% [10]. The second grassland soil resolved 372 total genomic bins,
with 181 that were partial to near-complete [11]. A recent study of Amazon soil (using
MIMAG guidelines) had 29 MAGs that were medium quality in representing over ten phyla,
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including members of the Candidate phyla radiation [12]. A Mediterranean grassland
soil MAG study obtained 793 MAGs that were near-complete [65]. We compared concoct,
maxbin2, and metabat2 within metawrap, and found that, on average, maxbin2 provided
higher quality and lower contamination MAGs than metabat2, resulting in the 29 MAGs
that we described (Figure S2).

In this study, we resolved genomes in the Lux Arbor switchgrass rhizosphere that
represented uncultivated phyla, including the Acidobacteria group (rare subgroup 23), Can-
didate phyla UBA10199, Candidatus Eisenbacteria, and Dormibacterota (AD3). Acidobacte-
ria are dominant soil phyla, representing upwards of 20% of all soil bacteria, highly diverse,
and physiologically active [66]. Acidobacteria MAGs from Kansas prairie soil were highly
transcriptionally active [10], and genomes have been resolved from grassland [11] and
Amazonian soil [12]. Lux Arbor Thermoanaerobaculia MAGs have previously never been
described in soil, only in wastewater, sediments, and hot springs [67,68]. The Thermoanaer-
obaculia MAGs, we describe are the first representatives of Acidobacteria subgroup 23 from
a soil or rhizosphere environment. The Acidobacteria and Dormibacterota phyla are on the
‘most wanted list’ of organisms from the soil and rhizosphere ecosystem for cultivation [69]
and genome references via single-cell genomes or MAGs [70]. Thermoanaerobaculia and
Dormibacterota MAGs have the potential to utilize nitrate, but not molecular N, urea, or
ammonia. Their carbohydrate metabolism is similar to the other Lux Arbor MAGs in terms
of utilization of cellulose, chitin, and simple sugars such as sucrose. The Dormibacterota
have been previously implicated in carbon gas exchange (CO and CO2) in Antarctic soils,
including RuBisCO and carbon monoxide dehydrogenases [71]. Recently, Dormibacterota
MAGs have been resolved in subsurface soil horizons which have had genes identified
to aid survival in low-nutrient environments [72]. We find the Lux Arbor MAGs lack
RuBisCO for CO2 capture and utilization, but do have CO-dehydrogenases which may
allow CO metabolism; CO metabolism may be thus conserved in Dormibacterota found in
soil, rhizosphere, and permafrost ecosystems. Soil Dormibacterota lack both RuBisCo and
dehydrogenases, meaning they lack autotrophic metabolism [72]. Dormibacterota may lose
autotrophy under more stressful environmental conditions.

We resolved only the third representative from the elusive candidate phyla Eisen-
bacteria. Our MAG is the first to be found amongst soil or rhizosphere ecosystems. The
previous two were found via genome resolved metagenomics in the Atlantic Ocean deep
vent sample (BioSample: SAMN09287800), named Candidatus Eisenbacteria bacterium
SZUA-252, and Rifle, Colorado, USA background sediment (BioSample: SAMN04313721),
named Candidatus Eisenbacteria bacterium RBG_16_71_46 [73]. This phyla appears to be
extremely rare, as 8000 MAG studies did not find any representatives across thousands of
samples [68]. Here, we add another representative of this rare phyla for further comparative
genome analysis.

In contrast to previous studies, the metagenomes we report nominate the betapro-
teobacterium Janthinobacterium as a candidate organism for association nitrogen fixation in
the switchgrass rhizosphere. Nitrogen fixation (nif gene cluster) was present within the
bulk metagenome amongst diverse Betaproteobacterial members: Azonexus, hydrophilus,
Herbaspirillum, Dechloromonas, Rhodocyclaceae, and Sulfuriferula. No other nitrogenase
(nif/anf/vnf ) genes outside of betaproteobacterial class were discovered. Our reconstruction
of the Janthinobacterium P10 MAG demonstrated that this genome contains a complete nif
gene cluster. A related Janthinobacterium lividum V30-G6 isolated from permafrost showed
low levels of N fixation via the acetylene reduction assay [74]. Bradyrhizobium spp. are
highly represented in our Lux Arbor mOTU data and previous nifH data from switchgrass
rhizosphere soils [40,41]. However, we were unable to find Bradyrhizobium nifDKH genes
or resolve a Bradyrhizobium MAG in our study. Longer read sequencing or further depth
seems to be required to address the Bradyrhizobium in Lux Arbor. Many Bradyrhizobium
lack nif genes, as previously described in soils from North America and England [75,76]

Two inhibitors included in the N fertilizer (SuperU) by the manufacturer inhibit nitrate
reduction and urease: dicyandiamide (DCD) and N-(n-butyl) thiophosphoric triamide
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(NBPT), respectively. We measured the potential effects of these inhibitors at the community,
individual, and gene level. Ammonium oxidation (amo) genes were not present in the
bulk metagenome or associated with a resolved MAG. Dicyandiamide (DCD) limits the
conversion of ammonium to nitrite via the ammonium monooxygenase (amo), but has
no effect on urea hydrolysis [77,78]. DCD has been shown to sharply reduce amo gene
copy numbers in ammonium oxidizing bacteria (AOB), but has relatively little effect on
ammonium oxidizing archaea (AOA) amo gene copy number [78]. The AOB community
is strongly shifted by DCD, with impacts on function, namely nitrification, regardless of
whether it is an AOB or AOA amo [78]. This could be the reason why we were unable
to detect any amo genes in post-fertilized plots, but cannot explain the lack of amo in our
untreated plots. The AOB and AOA communities may be limited in abundance in these
marginal lands due to lack of available ammonium that is rapidly fixed then utilized by
plant roots. This could be due to rapid utilization of ammonium or its loss by volatilization,
leaving little ammonium available for microbes with ammonium oxidation capabilities.
In addition, lack of ammonia oxidation would lead to lower levels of nitrate available for
denitrification and thus reduce potential N2O emissions. Indeed, DCD has been shown
to mitigate N2O emissions [61], and other studies without DCD have observed lower
N2O emission under switchgrass compared to other bioenergy crops. We find that the
abundance of nitrous oxide reductase (nosZ) genes to be similar pre- and post-fertilization,
suggesting that inhibition occurs beyond the gene level, either at an enzymatic level or due
to substrate (nitrate) limitation. This is supported by previous work that found DCD did
not affect nosZ gene presence or abundance [79].

Urease genes were numerically abundant both pre- and post-fertilization and were
prevalent within the Nitrospira MAGs that we assembled. This points to the importance of
Nitrospira in transforming urea to ammonium, and these organisms showed high abundance
both pre- and post-fertilization. In another system, Nitrospira was enriched five-fold after
N fertilizer treatment in agricultural soils under corn and soybean rotation, and Nitrospira
MAGs were resolved with complete ammonia oxidization (comammox) [80]. Our Nitrospira
MAGs lack the genes required for comammox, including the amo gene. The Nitrospira of
Lux Arbor have the metabolic potential for urease, and the urease inhibitor N-(n-butyl)
thiophosphoric triamide (NBPT) did not alter the ure gene copy number present pre- versus
post-fertilization. However, it is unknown from our data whether urease enzyme function
was altered in the post-fertilized plots, but NBPT is the most successful urease inhibitor on
the market, reducing ammonium volatilization loss by 53% [81]. Further analysis of urease
gene expression and urease enzyme function is needed to validate that NBPT inhibition
occurs on the expression or functional level.

Carbon substrate metabolism, predicted using CAZy in the switchgrass roots of Lux
Arbor, appears to be limited in terms of both the bulk metabolic potential and the individual
genome level. CAZy abundances were differential under fertilizer treatment, and most
were depleted in post-fertilized plots, including genes related to cellobiose, cellulose, xylan,
wood-degradation, chitin, and N-acetylglucosamine. This may be due to increases in
exudation of simpler carbon sources by switchgrass roots, either stimulated by fertilization
or through other shifts in the system between sampling timepoints. Fertilizer treatment
has been previously reported to impact CAZy enzyme function [82]. Enzyme assays could
be used to validate CAZy function shifts in Lux Arbor. The MAG metabolic potentials
based on CAZy had similar genes in very high abundance, with limited diversity relating
to cellulose, chitin, or simple sugars.

The soils sampled here were from the same sample block, sampled just two weeks
apart, immediately before and two weeks after fertilization. We found strong fertilizer ef-
fects in some blocks and little-to-no effect in others, suggesting resilience of the rhizosphere
microbiome or variation in the timescales of these responses. Even with this variation, we
were able to better resolve individual MAG communities present within the switchgrass
rhizosphere. We are also not able to definitively conclude that the shifts we observe are
due to N fertilization, since it is confounded with the time of sampling, but the functional
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relationships we characterize suggest that they are due to varying inputs of nitrogen and
carbon in this system.

5. Conclusions

The Lux Arbor marginal land switchgrass plots provide an excellent model system to
study a low-complexity and -diversity (<400 mOTUs) rhizosphere soil ecosystem. Due to
this lower diversity, metagenomic assemblies yielded longer contigs and many MAGs at
medium quality, based on MIMAG. We have described a snapshot of how a N fertilization
event impacts the bulk metabolic potential of carbon and N metabolism. KO and CAZy
relating to carbon and carbohydrate metabolism varied post -fertilization treatment. The
two inhibitors included in the N fertilizer, DCD and NBPT, directly lowered ammonium
monooxygenase (amo) gene copy number, which limits AOB but not AOA; however, our
results do not confirm the impact on either functional group. AOB/AOA may have been
limited in abundance in these marginal lands due to lack of available ammonium that is
rapidly fixed then utilized by plant roots. We have also characterized the potential roles of
several ‘most wanted taxa’ in the soil, resolving genomes from Candidatus Eisenbacteria,
Thermoanaerobaculia, and Dormibacterota. To the best of our knowledge, our Candidatus
Eisenbacteria MAG is the first described in soil at the time of this writing. Eisenbacteria
are very rare in general, not being found amongst 8000 MAGs within a global survey [68].
The Thermoanaerobaculia MAGs we describe are the first representatives of Acidobacteria
subgroup 23 from the rhizosphere. Our Thermoanaerobaculia MAGs utilize nitrate but not
ammonium or urea, and cannot fix N. Dormibacterota have the potential for autotrophic
CO utilization, which may impact carbon partitioning and storage. Furthermore, we
resolved MAGs relating to ANF (Janthinobacterium) and nitrate utilization (Nitrospira).
Further culture-dependent and multiomics studies are needed to evaluate the use of
Janthinobacterium diazotrophs for ANF in switchgrass grown on marginal lands. Enhancing
microbial ANF within marginal land sites will decrease fertilizer usage, lowering N needs
for biofuel productions. Using ANF over industrial N fertilizer will require less energy
overall, produce less carbon dioxide emissions, and provide a potential greener future
of energy.
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(B1–B4) “Block,” and post-fertilization. Table S2: Top-10 mOTU abundance table from phyloseq
R. This includes taxonomy of mOTUs and sample metadata. Table S3: KEGG KO contig protein-
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KO paired analysis significant table out of 3204 KO’s with nonzero total orf count (p-value < 0.05).
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