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Abstract: Timely and cost-effective crop yield prediction is vital in crop management decision-mak-
ing. This study evaluates the efficacy of Unmanned Aerial Vehicle (UAV)-based Vegetation Indices 
(VIs) coupled with Machine Learning (ML) models for corn (Zea mays) yield prediction at vegetative 
(V6) and reproductive (R5) growth stages using a limited number of training samples at the farm 
scale. Four agronomic treatments, namely Austrian Winter Peas (AWP) (Pisum sativum L.) cover 
crop, biochar, gypsum, and fallow with sixteen replications were applied during the non-growing 
corn season to assess their impact on the following corn yield. Thirty different variables (i.e., four 
spectral bands: green, red, red edge, and near-infrared and twenty-six VIs) were derived from UAV 
multispectral data collected at the V6 and R5 stages to assess their utility in yield prediction. Five 
different ML algorithms including Linear Regression (LR), k-Nearest Neighbor (KNN), Random 
Forest (RF), Support Vector Regression (SVR), and Deep Neural Network (DNN) were evaluated in 
yield prediction. One-year experimental results of different treatments indicated a negligible impact 
on overall corn yield. Red edge, canopy chlorophyll content index, red edge chlorophyll index, chlo-
rophyll absorption ratio index, green normalized difference vegetation index, green spectral band, 
and chlorophyll vegetation index were among the most suitable variables in predicting corn yield. 
The SVR predicted yield for the fallow with a Coefficient of Determination (R2) and Root Mean 
Square Error (RMSE) of 0.84 and 0.69 Mg/ha at V6 and 0.83 and 1.05 Mg/ha at the R5 stage, respec-
tively. The KNN achieved a higher prediction accuracy for AWP (R2 = 0.69 and RMSE = 1.05 Mg/ha 
at V6 and 0.64 and 1.13 Mg/ha at R5) and gypsum treatment (R2 = 0.61 and RMSE = 1.49 Mg/ha at 
V6 and 0.80 and 1.35 Mg/ha at R5). The DNN achieved a higher prediction accuracy for biochar 
treatment (R2 = 0.71 and RMSE = 1.08 Mg/ha at V6 and 0.74 and 1.27 Mg/ha at R5). For the combined 
(AWP, biochar, gypsum, and fallow) treatment, the SVR produced the most accurate yield predic-
tion with an R2 and RMSE of 0.36 and 1.48 Mg/ha at V6 and 0.41 and 1.43 Mg/ha at the R5. Overall, 
the treatment-specific yield prediction was more accurate than the combined treatment. Yield was 
most accurately predicted for fallow than other treatments regardless of the ML model used. SVR 
and KNN outperformed other ML models in yield prediction. Yields were predicted with similar 
accuracy at both growth stages. Thus, this study demonstrated that VIs coupled with ML models 
can be used in multi-stage corn yield prediction at the farm scale, even with a limited number of 
training data. 
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1. Introduction 
Corn (Zea mays) is among the most important crops that play a vital role in global 

food security. Along with rice and wheat, corn provides ~30% of the food calories to more 
than 4.5 billion people worldwide [1]. Corn contributes about 96% of feed grain use in the 
US [2]. The US is among the leading producers of corn followed by China, Brazil, Argen-
tina, and Ukraine. Agricultural practices such as soil fertility, irrigation, and crop man-
agement are aimed at increasing crop yield to meet the demands of the world’s popula-
tion. Despite significant development in agricultural sectors, over 800 million people con-
tinue to experience chronic hunger, as reported by the Food and Agriculture Organization 
(FAO), and issues like climate change, pandemics, and international conflicts make things 
even worse [3]. In the context of global food security and demand, a timely and reliable 
crop yield prediction is crucial in effective decision and policy making [4–7]. 

Conventional yield estimation is labor-intensive, time and cost ineffective, and often 
accomplished at the end of the season. Remotely sensed data acquired using spaceborne, 
airborne, and Unmanned Aerial Vehicles (UAVs) have been successfully used for crop 
yield prediction [4,8–12]. The major advantages of remote sensing-based crop yield pre-
diction are that it is reliable, time and cost-effective, and can be used across different 
growth stages of crops, facilitating efficient crop management [4,6,13,14]. Furthermore, 
compared to space and airborne platforms, UAVs offer a high spatio-temporal resolution, 
flexible acquisition windows, and less atmospheric attenuation, making them more suita-
ble for crop monitoring and yield prediction at the farm or field scale [12,15–18]. Spatio-
temporal farm-scale crop monitoring and yield prediction are crucial for growers and in-
surance agencies to make better-informed decisions. 

The multispectral sensor mounted on a UAV consists of suitable spectral bands 
within the Visible and Near Infrared (VNIR) range, which bands are highly effective in 
deriving various Vegetation Indices (VIs) sensitive to crop health [19,20]. The UAV-based 
multispectral data, coupled with Machine Learning (ML) models, has been effectively 
used in monitoring and predicting the yield of various crops such as corn [21–27], wheat 
[17,28,29], rice [30–33], soybean [34], cotton [35,36], and others [37–39]. ML is a branch of 
artificial intelligence that offers several advantages over conventional statistical models, 
such as the ability to learn complex and non-linear relationships, it can deal with a wide 
range of variables, higher accuracy, and can handle big data [40,41]. ML learning tech-
niques have also been successfully used in other fields including geology [42,43], geohaz-
ards [44], forestry [45], and others [41]. The successful implementation of ML algorithms 
depends on four crucial steps: suitable training data, relevant variables, hyperparameter 
optimization, and robust validation approaches [40,42–44]. 

Crop yield prediction has been successfully achieved using various machine learning 
(ML) algorithms such as Logistic Regression (LR), k-Nearest Neighbor (KNN), Support 
Vector Machine/Regression (SVM/SVR), Decision Trees (DTs), Random Forest (RF), Mul-
tivariate Adaptive Regression Splines (MARS), Artificial Neural Networks (ANN), Least 
Absolute Shrinkage and Selection Operator (LASSO), Gradient Boost Regression Tree 
(GBRT), and others [7,14,17,46–50]. However, the performance of ML models varies based 
on several factors, including training data, input variables, crop types, and growth stages. 
For example, Mupangwa et al. [25] evaluated six ML algorithms (LR, LDA, NB, KNN, 
CART, and SVM) in corn yield prediction and found that KNN produced the best predic-
tion results whereas SVM produced the poorest prediction accuracy. Croci et al. [50] 
achieved higher accuracy in corn prediction from Gaussian process regression, SVR, and 
single-layer perceptron feed-forward neural networks as compared to RF, KNN, and cub-
ist regression models. Matsumura et al. [51] obtained higher corn yield prediction using 
DNN than LR. Kim and Lee [52] obtained accurate corn yield prediction using deep learn-
ing methods as compared to SVR, RF, and extremely randomized trees. Shahhosseini et 
al. [26] achieved a better yield prediction using extreme gradient boosting as compared to 
LASSO regression, ridge regression, and RF. Recent studies also reported higher accuracy 
in crop yield prediction using different deep learning models as compared to classical ML 
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models but required a substantially higher amount of training data for model develop-
ment and validation [53]. Therefore, it is crucial to evaluate the ML model’s performance 
to select the most suitable one for achieving accurate results. 

Previous ML-based crop yield prediction studies have utilized a significant number 
of training samples and a diverse set of variables including VIs, soil nutrients and prop-
erties, and meteorological data. However, such comprehensive datasets are often limited 
to researchers and big consulting companies. This poses a challenge for small farmers and 
growers as obtaining suitable training data and comprehensive input variables at a farm 
level can be difficult. Therefore, the main objective of this study was to evaluate the effec-
tiveness of UAV-based VIs for predicting corn yield at vegetative and reproductive 
growth stages using different ML models with a limited number of training samples. 
Moreover, we assessed the influence of agronomic treatments on overall yield and their 
potential impact on yield prediction. We further assessed the influence of the number of 
variables on ML models’ performance. Lastly, we evaluated the performance of five state-
of-the-art ML algorithms (i.e., LR, KNN, RF, SVR, and DNN) for predicting corn yield at 
vegetative and reproductive growth stages. 

2. Materials and Methods 
2.1. Materials 
Experimental Design and Yield Data Collection 

The study was conducted at the United State Department of Agriculture-Agricultural 
Research Service, Crop Production Systems Research Unit farm in Stoneville, Mississippi. 
Figure 1 displays the geographical location of the experimental site and the design of ag-
ronomic treatments applied in this study. The agronomic treatments used were Austrian 
Winter Peas (AWP) (Pisum sativum L.) cover crop, biochar, gypsum, and fallow (i.e., left 
bare) during the non-growing corn season (i.e., October 2020 to April 2021) to assess their 
impact on the following corn yield. A seeding rate of 67 kg/ha for AWP and quantities of 
15 t/ha and 2 t/ha for biochar and gypsum, respectively, were applied in this experiment. 
The description of treatments is summarized in Table 1. The experiment was designed 
with plot sizes of 12.50 × 8.50 m and 16 replications in a completely randomized block 
design. The corn variety: Dekalb DKC 62-08 was planted at a seeding rate of 55,352 seed/ha 
using John Deere 1705 Planter at a 1 m row spacing on May 07, 2021. The corn was har-
vested on September 15, 2021, using a Massey-Ferguson 2065 combine harvester to obtain 
the yield of each plot. 
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Figure 1. Experimental location and design showing the different agronomic treatments, namely 
Austrian Winter Peas (AWP) cover crop, biochar, gypsum, and fallow, applied in this experiment. 
The vector file of treatments wrapped over the False Color Composite (FCC) derived using UAV 
multispectral data. 

Table 1. Specification and description of agronomic treatments applied in this experiment. 

Treatments Specification Description 

AWP 
Seeding date = 6 November 2020 

Seeding rate = 67 kg/ha 
Harvesting data = 29 April 2021 

AWP is a legume cover crop that can improve soil health, thus en-
hancing the soil’s physical, chemical, and biological properties. It 
improves nutrient cycling, increases nitrogen, sequesters carbon, 

and enhances soil aggregation, water infiltration, storage capacity, 
and use efficiency. [54,55] 

Biochar 
Quantity = 15 t/ha 

Application date = 12 November 
2020 

Biochar is a soil amendment. It is made from sugarcane bagasse 
(sugarcane stalk residue after juice extraction). It increases soil or-
ganic carbon, soil pH, and microbial activity, improving soil struc-
ture, soil porosity, soil water holding capacity, cation exchange ca-

pacity, nutrient cycling, and plant growth and yields [56,57]. 

Gypsum 
Quantity = 2 t/ha 

Application date = 20 November 
2020 

Gypsum (Calcium sulfate) is a soil amendment. It improves soil fer-
tility by increasing sulfur, phosphorus, calcium, magnesium, man-

ganese, and enhances plant nitrogen use efficiency [58,59]. 

Fallow 
Left bare during the winter period 

from November 2020 to April 
2021. 

This is the common practice in the Delta, Mississippi between har-
vest and planting. The soil is exposed to erosion with essential nu-

trients susceptible to losses through leaching or runoff. 
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2.2. Methods 
A workflow diagram of the adopted methodology is shown in Figure 2. This section 

describes the experimental design and yield data collection, UAV data acquisition and 
processing, derivation of VIs and training data preparation, suitable variable selection, 
ML implementation, validation, and performance evaluation of ML models in corn yield 
prediction. 

 
Figure 2. A flowchart diagram presenting the methodology adopted in this study. 

2.2.1. UAV Data Acquisition and Processing 
Corn field images were acquired using a DJI Phantom 3 Pro quadcopter UAV (DJI 

Phantom). On the UAV, a portable Parrot Sequoia multispectral camera was mounted that 
captures broadband RGB (14 MP), and narrowband green (550 nm, ±40 nm), red (660 nm, 
±40 nm), red edge (735 nm, ±10 nm), and NIR (790 nm, ±40 nm) wavelengths. The camera 
automatically corrects brightness and synchronized global position system (GPS) posi-
tions with the UAV. The UAV flights were conducted between 10:30 a.m. and 12:00 p.m. 
to avoid cloud shadows as weather permitted, with flight altitude 30 m above the canopy 
surface to acquire high-resolution (~3 cm/pixel) image data during vegetative (V6) (16 
June 2021) and reproductive stages (R5) (9 September 2021). Flight routes were preset us-
ing the mission planning tool of  Pix4DCapture software, version 4.7.5 with image front 
overlap of 80% and side overlap of 70%. The collected images were imported to 
Pix4DMapper (https://www.pix4d.com, accessed on 15 September 2022) to generate RGB 
orthomosaics in broadband and green, red, red edge, and NIR orthomosaics in narrow 
band spectrum, which were orthorectified to correct geometric and vignetting distortion. 
Orthomosaic images were imported to ArcMap to draw the boundary of each plot based 
on different treatments. An R script was written to extract the mean values of different 
spectral bands and VIs within each experimental plot. 

2.2.2. Derivation of VIs 
VIs optically characterize crop health across their growth stages. The acquired mul-

tispectral datasets of vegetative and reproductive stages were used in deriving twenty six 
different VIs, including the Normalized Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index 2 (EVI2),  Soil Adjusted Vegetation Index (SAVI), Modified Soil Ad-
justed Vegetation Index (MSAVI), Optimized Soil Adjusted Vegetation Index (OSAVI), 
Transformed Vegetation Index (TVI), Green Normalized Difference Vegetation Index 
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(GNDVI), Normalized Difference Red Edge Index (NDRE), Normalized Green Red Dif-
ference Index (NGRDI), Normalized Crop Management Index (NCMI), Simplified Can-
opy Chlorophyll Content Index (SCCCI), Canopy Chlorophyll Content Index (CCCI), 
Renormalized Difference Vegetation Index (RDVI), Transformed Chlorophyll Absorption 
Reflectance Index (TCARI), Normalized Area Vegetation Index (NAVI), Chlorophyll In-
dex Red Edge (CIRE), Modified Triangular Vegetation Index (MTVI), Modified Triangular 
Vegetation Index 2 (MTVI2), Red Edge Chlorophyll Vegetation Index (RECI), ratio of NIR 
and green bands (IV1), ratio of NIR and red bands (IV2), ratio of NIR and red edge bands 
(IV3), Green Chlorophyll Vegetation Index (GCVI), Chlorophyll Vegetation Index (CVI), 
Napierian logarithm of the red edge (LNRE), and the ratio of the red edge and the red 
spectral band produces the Chlorophyll Absorption Ratio Index (CARI). Table 2 provides 
a list of derived VIs with their mathematical formulas. 

Table 2. Implemented Vegetation Indices (VIs) and their mathematical equations. G: green, R: red, 
RE: red edge, and NIR: near-infrared spectral bands of UAV multispectral data. 

VIs Equation References 
CARI 𝐶𝐴𝑅𝐼 = 𝑅𝐸 𝑅⁄  [60] 
CCCI 𝐶𝐶𝐶𝐼 = 𝑁𝐷𝑅𝐸 − 𝑁𝐷𝑅𝐸௠௜௡ 𝑁𝐷𝑅𝐸௠௔௫ −⁄ 𝑁𝐷𝑅𝐸௠௜௡ [61] 
CIRE 𝐶𝐼𝑅𝐸 = 𝑁𝐼𝑅 (𝑅𝐸 − 1)⁄  [31] 
CVI 𝐶𝑉𝐼 = 𝑁𝐼𝑅(𝑅 𝐺ଶ)⁄  [62] 
EVI2 𝐸𝑉𝐼2 = 2.5(𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 2.4𝑅 + 1)⁄  [17] 
GCVI 𝐺𝐶𝑉𝐼 = 𝑁𝐼𝑅 𝐺 − 1⁄  [63] 

GNDVI 𝐺𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝐺)/(𝑁𝐼𝑅 + 𝐺) [34] 
IV1 𝐼𝑉1 = 𝑁𝐼𝑅 𝐺⁄  [34] 
IV2 𝐼𝑉2 = 𝑁𝐼𝑅 𝑅⁄  [34] 
IV3 𝐼𝑉3 = 𝑁𝐼𝑅 𝑅𝐸⁄  [34] 

LNRE 𝐿𝑁𝑅𝐸 = 100(ln(𝑁𝐼𝑅) − ln(𝑅)) [34] 
MSAVI2 𝑀𝑆𝐴𝑉𝐼2 = 0.5((2𝑁𝐼𝑅 + 1) −ඥ2𝑁𝐼𝑅ଶ − 8(𝑁𝐼𝑅 − 𝑅)) [34] 

MTVI 𝑀𝑇𝑉𝐼 = 1.2(1.2(𝑁𝐼𝑅 − 𝐺) − 2.5(𝑅 − 𝐺)) [5] 

MTVI2 𝑀𝑇𝑉𝐼2 = ൮1.5൫1.2(𝑁𝐼𝑅 − 𝐺) − 2.5(𝑅 − 𝐺)൯ ට(2𝑁𝐼𝑅 + 1)ଶ − ൫6𝑁𝐼𝑅 − 5√𝑅൯ − 0.5൙ ൲ [5] 

NAVI 𝑁𝐴𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅) 𝑁𝐼𝑅⁄  [62] 
NCMI 𝑁𝐶𝑀𝐼 = 𝑁𝐼𝑅 − (𝐺 + 𝑅) 𝑁𝐼𝑅 + (𝐺 + 𝑅)⁄  [64] 
NDRE 𝑁𝐷𝑅𝐸 = (𝑁𝐼𝑅 − 𝑅𝐸)/(𝑁𝐼𝑅 + 𝑅𝐸) [34] 
NDVI 𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅) [34] 

NGRDI 𝐺𝑁𝐷𝑉𝐼 = (𝐺 − 𝑅)/(𝐺 + 𝑅) [65] 
OSAVI 𝑂𝐴𝑉𝐼 = (1.16(𝑁𝐼𝑅 − 𝑅))/(𝑁𝐼𝑅 + 𝑅 + 0.16) [66] 
RDVI 𝑅𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅 (𝑁𝐼𝑅 + 𝑅)଴.ହ⁄  [32] 
RECI 𝑅𝐸𝐶𝐼 = (𝑁𝐼𝑅 − 𝑅) 𝑅⁄  [65] 
SAVI 𝑆𝐴𝑉𝐼 = (1.5(𝑁𝐼𝑅 − 𝑅))/(𝑁𝐼𝑅 + 𝑅 + 0.5) [34] 

SCCCI 𝑆𝐶𝐶𝐶𝐼 = 𝑁𝐷𝑉𝐼/𝑁𝐷𝑅𝐸 [34] 
TCARI 𝑇𝐶𝐴𝑅𝐼 = 3((𝑅𝐸 − 𝑅) − 0.2(𝑅𝐸 − 𝐺)(𝑅𝐸/𝑅)) [5] 

TVI 𝑇𝑉𝐼 = 0.5(120(𝑅𝐸 − 𝐺) − 200(𝑅 − 𝐺)) [5] 

The mean values of spectral bands and VIs were extracted based on each treatment 
at both stages to prepare training data for corn yield prediction. For each treatment, 16 
training samples were obtained with thirty independent variables. To prepare the training 
data for all treatments, the yield data of each treatment were combined, resulting in 64 
training samples with thirty independent variables. The spectral bands and VIs are here-
after referred to as variables for improved readability. 

2.2.3. ML Implementation 
Five different ML algorithms, namely LR, KNN, SVM, RF, and DNN, were used in 

this study. We selected these algorithms as they have been widely used in different fields, 
including crop yield prediction. Furthermore, they represent unique learning mechanics 
with varied model complexity. The comparison of these algorithms can provide useful 
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insight into their performance in context applied to limited training samples for yield pre-
diction. ML algorithms were implemented using the ‘CARET’ package [67] in R statistical 
programming language [68] and are briefly described below. 
LR 

The LR is a simple and interpretable statistical model that describes the linear rela-
tionship between dependent and independent variables. LR makes the following assump-
tions: homogeneity of variance (i.e., training samples have similar variance), training sam-
ples are normally distributed and statistically independent, and there is linearity between 
dependent and independent variables [69]. 
KNN 

The KNN Is a non-parametric and computationally efficient ML algorithm that stores 
available training samples and predicts the dependent variable based on similarity 
measures (i.e., Euclidean, Manhattan, and Minkowski distance) [70]. The samples of sim-
ilar characteristics produce a lower distance and vice versa. The implemented KNN algo-
rithm consists of one tuning hyperparameter, i.e., k, which describes the number of neigh-
borhood samples considered in prediction. 
RF 

The RF uses a bagging technique where many decision trees (DTs) are developed to 
obtain an ensemble model for accurate classification or prediction results [70]. The imple-
mented RF algorithm has one hyperparameter, noted as ‘mtry’, which describes the num-
ber of input variables randomly selected at each split while developing different DTs. 
SVR 

The SVR employs the same principle of maximal margin as SVM in the classification 
task, which enables an optimal hyperplane to be obtained and minimizes the difference 
between predicted and observed values [70]. The availability of kernel functions, such as 
linear, polynomial, radial basis function, and sigmoid, facilitates the development of op-
timal hyperplanes to produce higher accuracy. The employed SVR consists of two hy-
perparameters: cost and sigma. Cost denotes penalty and sigma indicates the complexity 
of the hyperplane. 
DNN 

The typical architecture of a neural network algorithm consists of input, hidden, and 
output layers [70]. The hidden layer(s) apply a transformation to learn the structure and 
pattern from the input data. The neural network employs the backpropagation method to 
allow hidden layer(s) to adjust the weight of neurons to obtain the desired output [70]. 
The implemented neural network algorithm consists of three hyperparameters, layer1, 
layer2, and layer3, as hidden layers, and can be called a Deep Neural Network (DNN). 

2.2.4. Model Performance Measures 
Considering the small number of training samples (i.e., sixteen for each treatment) in 

this study, which limits the training and testing data split, a K-fold cross-validation 
method is an effective approach for the performance evaluation of the different ML mod-
els [71]. This approach has been widely used in ML model performance assessment [71–
73]. In K-fold cross-validation, the complete dataset is split into a training set with a dif-
ferent set of tests at every iteration to compute the performance measures. We used the 
coefficient of determination (R2) (Equation 1) and Root Mean Square Error (RMSE) (Equa-
tion 2) in this study as these are commonly used in assessing the prediction performance 
of ML models [17,25]. A 5-fold cross-validation with 10 repetitions (i.e., 50 iterations) was 
used to compute R2 and the RMSE (Figure 3) to assess the performance of the different 
ML models. A fold size of 5 was selected to ensure that approximately 75% of data were 
used for training and 25% for the validation sample at each iteration to compute the dif-
ferent performance measures. 𝑅ଶ = (෍ (𝑦௜௞௜ୀଵ − 𝑦)(𝑓௜ − 𝑓))ଶ ෍ (𝑦௜௞௜ୀଵ − 𝑦)ଶ൘ ෍ (𝑓௜ − 𝑓)ଶ௞௜ୀଵ  (1)
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𝑅𝑀𝑆𝐸 = ඨ1𝑘෍ (𝑦௜ − 𝑓௜)ଶ௞௜ୀଵ  (2)

 
Figure 3. A schematic diagram of a 5-fold cross-validation method for computing the performance 
measures of different ML models. PMs: performance measures. 

2.2.5. Suitable Variable Selection 
Pearson’s correlation coefficient and the Variance Inflation Factor (VIF) were used in 

this study to remove highly correlated independent variables [74]. The correlation value 
between yield and independent variables assists in assessing their relative importance in 
explaining the yield variability whereas the VIF statistics assist in removing highly corre-
lated variables. The correlation values range from −1 to 1. X୧  and Y୧  denote the corre-
sponding values of X and Y for the i-th variable. Xഥ and Yഥ represent the means of X and Y. r୶୷ is the Pearson correlation coefficient between two variables (i.e., X and Y) (Equa-
tion 3). We also used the correlation plot to visually interpret the correlation among dif-
ferent variables. Let X =  Xଵ, Xଶ, Xଷ, … , X୒ represent the independent variable set and R୨ଶ 
represent the multicollinear coefficient between X୨ and other variables. The VIF can be 
computed using Equation 4. A VIF value > 5 indicates higher multicollinearity among in-
dependent variables and should be discarded as these variables can negatively impact the 
model performance and interpretability [75]. 𝑟௫௬ = ෍ 𝑋௜ − 𝑋ത∑ (𝑋௜ − 𝑋ത)௡௞ୀଵ ൈ 𝑌௜ − 𝑌ത∑ (𝑌௜ − 𝑌ത)௡௞ୀଵ

௡௜ୀଵ  (3)

𝑉𝐼𝐹 = 1൫1 − 𝑅௝ଶ൯ (4)

3. Results 
3.1. Relationship between Agronomic Treatments and Yield 

A boxplot (Figure 4) and analysis of variance (ANOVA) test (Table 3) confirmed that 
a one-year experiment with different agronomic treatments did not have a significant im-
pact on corn yields. However, the AWP treatment indicated the lowest impact in improv-
ing the total yield (i.e., mean = 18.84 Mg/ha) whereas biochar (i.e., mean = 19.06 Mg/ha), 
gypsum (i.e., mean = 19.48 Mg/ha), and fallow (i.e., mean = 19.82 Mg/ha) treatments 
showed a slightly higher yield. The AWP treatment indicated the lowest variability in 
yield compared to the other treatments. The yield values of AWP and the other treatments 
are approximately symmetrically distributed and positively skewed, respectively. 
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Figure 4. A boxplot of different agronomic treatments and total corn yield. 

Table 3. One-way ANOVA test statistics of different agronomic treatments. 

 Degrees of 
Freedom 

Sum of Squares Mean of the Sum 
Squares 

F-Value Pr(>F) 

Treatment 3 9.18 3.06 0.98 0.41 
Residuals 60 187.52 3.13   

3.2. Relationship between VIs and Yield 
The linear correlation coefficient and VIF statistics were used in selecting suitable 

variables (i.e., spectral bands and VIs). The variables produce VIF values ≥5 were excluded 
as these indicate multicollinearity among them. The correlation values between different 
variables and yield at the V6 and R5 stages of different agronomic treatments are pre-
sented in Table 4. The correlation between variables and yield varies greatly based on dif-
ferent treatments and growth stages. Variables indicate positive and negative correlations 
with yield, however, the magnitude of the correlation is of main interest as compared to 
the positive/negative relationship. The red edge and GNDVI have the maximum correla-
tion with the yield (i.e., 0.40 and −0.31) at V6 and R5, respectively, for the AWP treatment. 
The CCCI and red edge have the maximum correlation with yield (i.e., −0.63 and −0.60) at 
V6 and R5 stages for the biochar treatment. The RECI and green have the maximum cor-
relation with the yield (i.e., −0.59 and 0.69) at V6 and R5 for the gypsum treatment. The 
CARI and CVI have the maximum correlation with the yield (i.e., −0.87 and −0.69) at V6 
and R5 for the fallow. 

Table 4. Correlation matrix of suitable variables (i.e., spectral bands and vegetation indices) and 
yield of different treatments at vegetative (V6) and reproductive (R5) stages. The bold font indicates 
the highest correlation between the variable and yield. 

Vegetative (V6) Reproductive (R5) 
AWP 

 Rede NIR CVI CARI  NIR SCCCI NCMI IV3 GNDVI 
Yield 0.40 0.32 0.02 0.14 Yield −0.17 −0.08 −0.25 0.11 −0.31 
Rede 1.00 0.60 0.28 0.73 NIR 1.00 −0.10 0.65 0.05 0.71 
NIR  1.00 0.61 0.69 SCCI  1.00 0.19 −0.23 −0.19 
CVI   1.00 0.69 NCMI   1.00 −0.44 0.74 

     IV3    1.00 −0.34 
Biochar 

 Green NGRDI CCCI   Rede TCARI SCCCI   
Yield 0.45 −0.33 −0.63  Yield −0.60 −0.42 −0.31   
Green 1.00 −0.61 −0.16  Rede 1.00 0.74 0.49   

NGRDI  1.00 −0.03  TCARI  1.00 0.60   
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Gypsum 
 Green RECI CCCI   Green NGRDI IV3 CVI  

Yield 0.53 −0.59 −0.57  Yield 0.69 0.40 0.53 −0.50  
Green 1.00 −0.67 −0.43  Green 1.00 0.33 0.71 −0.65  
RECI  1.00 0.39  NGRDI  1.00 −0.18 −0.73  

     IV3   1.00 −0.22  
Fallow 

 Rede CARI    Green SCCCI NDRE CVI CARI 
Yield −0.47 −0.87   Yield 0.36 0.41 −0.11 −0.69 0.47 
Rede 1.00 0.65   Green 1.00 −0.32 0.19 −0.13 −0.23 

     SCCI  1.00 −0.04 −0.13 0.39 
     NDRE   1.00 0.41 −0.47 
     CVI    1.00 −0.72 

All treatments 
 Green MTVI2 CCCI   CVI GCVI Green IV3  

Yield 0.51 −0.36 −0.28  Yield −0.40 −0.39 0.35 0.20  
Green 1.00 −0.67 −0.22  CVI 1.00 0.41 −0.24 0.27  
MTVI2  1.00 0.16  GCVI  1.00 −0.39 −0.23  

     Green   1.00 049  

Figures 5 and 6 present the correlation between suitable variables and the yield for 
each treatment at the V6 and R5 stages, respectively. For the AWP treatment, the red edge, 
NIR, CARI, and CVI are suitable VIs at V6 whereas the GNDVI, NCMI, NIR, IV3, and 
SCCCI are suitable VIs at R5. Similarly, for the biochar, the CCCI, green, and NGRDI are 
suitable variables at V6 whereas red edge, TCARI, and SCCCI are suitable at R5. For the 
gypsum, the RECI, CCCI, and green are suitable variables at V6 whereas the green, IV3, 
CVI, and NGRDI are suitable at R5. For the fallow, the CARI and red edge are suitable 
variables at V6 whereas the CVI, CARI, SCCCI, green, and NDRE are suitable variables at 
R5. The suitable variables for each treatment at both growth stages were used in assessing 
the impact of the number of variables on ML model performance. 
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Figure 5. Correlation between suitable variables and yield for each treatment at the V6 stage. 
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Figure 6. Correlation between suitable variables and corn yield for each treatment at the R5 stage. 

It is worth noting that the 𝑅ଶ of the suitable variables and yield is significantly lower 
for the AWP than for the other treatments at both growth stages. The 𝑅ଶ for the AWP 
treatment is in the range of 0–0.16 at V6 and 0–0.10 at R5. For biochar treatment, the 𝑅ଶ is 
in the range 0.11–0.40 at V6 and 0.10–0.37 at R5. The 𝑅ଶ for the gypsum treatment is in 
the range of 0.28–0.35 at V6 and 0.16–0.48 at R5. For the fallow, the selected variables in-
dicated a higher correlation with yield as compared with other treatments. The 𝑅ଶ is in 
the range of 0.13–0.48 at V6 and 0.01–0.48 at R5. Furthermore, the VIs show a similar cor-
relation at both growth stages across different treatments, indicating their suitability for 
use in yield prediction irrespective of the growth stage. 

3.3. Impact of the Number of Variables on ML Performance 
The optimal number of variables is crucial in obtaining accurate results from any ML 

model. For each treatment, the impact of the number of variables (i.e., one variable, two 
variables, and so on) on ML performance was assessed to derive the optimal number of 
variables to use in the final yield prediction at both stages. The hyperparameter of the ML 
models was optimized using the grid search 5-fold cross-validation method before as-
sessing their performance. 

Figures 7 and 8 and Tables 5 and 6 present the prediction accuracies of the ML models 
using a different number of variables at the V6 and R5 growth stages. In most cases, ML 
models produced the best prediction results using the top one or two variables across 
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different treatments at both stages. The top one or two variables having a higher correla-
tion with yield indicate a higher contribution to predicting yield accurately as compared 
with variables showing a lesser correlation with yield. The addition of more variables did 
not improve the model’s performance significantly, except for a few occasions. As com-
pared with other ML models, the DNN shows a higher sensitivity to the number of vari-
ables. For example, for the AWP treatment at V6, the 𝑅ଶ of DNN increased from 0.58 to 
0.67 when the number of variables increased from one to two but showed a decreasing 
trend in performance when the number of variables increased to three (0.64) or four vari-
ables (0.62). 

 
Figure 7. Impact of the number of suitable variables on ML models’ performance in yield prediction 
at the V6 stage. 

Table 5. Impact of the number of suitable variables on ML models’ performance for each treatment 
at the V6 growth stage. The bold font indicates the best accuracy achieved by the ML models for 
each treatment. 

 Number of Suitable Variables 
One Two Three Four 

 AWP 
 R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

LR 0.62 1.12 0.55 1.21 0.53 1.18 0.52 1.32 
RF 0.68 1.02 0.66 1.09 0.62 1.09 0.57 1.12 

KNN 0.69 1.05 0.65 1.13 0.61 1.23 0.58 1.85 
SVR 0.65 1.17 0.58 1.39 0.53 1.41 0.64 2.45 

DNN 0.58 1.57 0.67 1.62 0.64 1.67 0.62 1.83 
 Biochar 

LR 0.59 1.44 0.55 1.59 0.54 1.70   
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RF 0.63 1.27 0.61 1.35 0.62 1.42   

KNN 0.64 1.70 0.66 1.20 0.68 1.29   

SVR 0.62 1.48 0.67 1.19 0.56 1.41   

DNN 0.57 1.74 0.71 1.08 0.67 1.29   
 Gypsum 

LR 0.59 1.56 0.58 1.66 0.57 1.79   

RF 0.51 1.90 0.56 1.74 0.58 1.64   

KNN 0.60 1.73 0.61 1.49 0.65 1.75   

SVR 0.62 1.87 0.58 1.65 0.57 1.52   

DNN 0.55 3.21 0.51 2.80 0.54 2.26   
 Fallow 

LR 0.84 0.96 0.81 1.00     

RF 0.74 1.03 0.73 1.09     

KNN 0.84 1.25 0.79 1.60     

SVR 0.84 0.69 0.78 1.15     

DNN 0.78 0.99 0.68 1.74     
 All treatments (i.e., combined AWP, biochar, gypsum, and fallow) 

LR 0.32 1.52 0.31 1.54 0.28 1.60   

RF 0.16 1.80 0.19 1.69 0.17 1.68   

KNN 0.30 1.62 0.31 1.54 0.28 1.55   

SVR 0.33 1.52 0.36 1.48 0.29 1.57   

DNN 0.16 2.72 0.18 2.29 0.17 1.99   

 
Figure 8. Impact of number of suitable variables on ML models’ performance in yield prediction at 
the R5 stage. 
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Table 6. Impact of the number of suitable variables on ML models’ performance for each treatment 
at the R5 growth stage. The bold font indicates the best accuracy achieved by the ML models for 
each treatment. 

 Number of Suitable Variables  
One Two Three Four Five 

 AWP 
 R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

LR 0.49 1.15 0.48 1.31 0.51 1.39 0.53 1.62 0.55 1.83 
RF 0.50 1.38 0.51 1.39 0.51 1.33 0.50 1.18 0.45 1.17 

KNN 0.64 1.13 0.59 1.13 0.52 1.31 0.54 1.12 0.54 1.19 
SVR 0.66 1.68 0.59 1.46 0.51 1.42 0.45 1.20 0.47 1.77 

DNN 0.55 2.03 0.55 2.15 0.49 1.68 0.49 1.28 0.54 1.17 
 Biochar 

LR 0.64 1.52 0.58 1.67 0.58 1.99     

RF 0.66 1.55 0.61 1.67 0.61 1.73     

KNN 0.61 1.60 0.56 1.68 0.64 1.65     

SVR 0.60 1.57 0.60 1.60 0.64 1.87     

DNN 0.74 1.27 0.55 2.84 0.50 3.04     
 Gypsum 

LR 0.74 1.39 0.68 1.57 0.57 1.78 0.49 1.74   

RF 0.71 1.17 0.72 1.25 0.68 1.33 0.63 1.39   

KNN 0.80 1.35 0.69 1.76 0.71 1.63 0.69 1.58   

SVR 0.74 1.08 0.66 1.21 0.70 1.45 0.69 1.48   

DNN 0.71 1.37 0.63 1.52 0.69 1.64 0.60 1.58   
 Fallow 

LR 0.72 1.59 0.67 1.67 0.72 1.51 0.77 1.26 0.77 1.34 
RF 0.75 1.30 0.75 1.34 0.77 1.30 0.84 1.22 0.80 1.31 

KNN 0.76 1.23 0.75 1.26 0.77 1.29 0.81 1.41 0.77 1.39 
SVR 0.83 1.05 0.83 1.08 0.80 1.28 0.82 1.23 0.80 1.28 

DNN 0.72 1.72 0.59 2.31 0.59 3.19 0.72 1.69 0.69 1.72 
 All treatments 

LR 0.23 1.64 0.25 1.60 0.25 1.58 0.25 1.58   

RF 0.27 1.60 0.28 1.56 0.31 1.52 0.31 1.52   

KNN 0.36 1.45 0.38 1.45 0.40 1.40 0.40 1.40   

SVR 0.36 1.45 0.41 1.43 0.40 1.41 0.40 1.41   

DNN 0.15 1.88 0.17 2.25 0.18 2.28 0.18 2.28   

The best prediction (i.e., 𝑅ଶ = 0.67 and RMSE = 1.62  Mg/ha) was achieved by the 
DNN for the AWP treatment at V6 when developed using two variables (i.e., red edge and 
NIR). For the biochar treatment at V6, the 𝑅ଶ of DNN increased from 0.57 to 0.71 and 
RMSE decreased from 1.74 to 1.08 Mg/ha when the number of variables increased from 
one to two, but the model’s performance was reduced when developed using three varia-
bles (i.e., 𝑅ଶ = 0.67 and RMSE = 1.29  Mg/ha). Similar inferences can be made at the R5 
stage across different treatments (Figure 8 and Table 6). For example, the RMSE of DNN 
for the AWP treatment decreased from 2.03 to 1.17 Mg/ha when developed using five var-
iables. Similarly, for the AWP treatment, the KNN predicted the yield accurately when 
developed using the top one variable (i.e., GNDVI) with 𝑅ଶ = 0.64 and RMSE = 1.13  
Mg/ha. 

3.4. ML Performance Evaluation in Yield Prediction 
The ML model achieved maximum prediction accuracy using the optimal number of 

variables in comparing their performance for each treatment at both stages (Figure 9 and 
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Table 7). The optimal values of the hyperparameter of the best-performing models are 
presented in Table 8. Most of the ML models show noticeable differences in yield predic-
tion accuracy. As compared to other ML models, the KNN and SVR produced the most 
accurate prediction results. The KNN produced the best prediction accuracy for the AWP 
(𝑅ଶ = 0.69 and RMSE = 1.05  Mg/ha at V6 and 𝑅ଶ = 0.64 and RMSE = 1.13  Mg/ha at 
R5) and gypsum treatments (𝑅ଶ = 0.65 and RMSE = 1.75  Mg/ha at V6 and 𝑅ଶ = 0.80 
and RMSE = 1.35  Mg/ha at R5). The SVR achieved the best prediction accuracy for the 
fallow (𝑅ଶ = 0.84  and RMSE = 0.69   Mg/ha at V6 and 𝑅ଶ = 0.83  and RMSE = 1.05  
Mg/ha at R5) and all treatments (𝑅ଶ = 0.36  and RMSE = 1.48   Mg/ha at V6 and 𝑅ଶ =0.41 and RMSE = 1.41  Mg/ha at R5). The DNN achieved the best prediction accuracy 
for the biochar (𝑅ଶ = 0.71 and RMSE = 1.08  Mg/ha at V6 and 𝑅ଶ = 0.74 and RMSE =1.27  Mg/ha at R5). 

The RF and DNN showed more variability in their performance as compared to SVM 
and KNN with respect to treatments. The LR produced equally good accuracy compared 
with the other models on a few occasions. For example, for the fallow treatment at the V6 
stage, the LR produced a similar prediction accuracy as obtained by the best-performing 
model (i.e., SVR). On a few occasions, the performance of RF and DNN was even poorer 
than that of LR. For the gypsum treatment at the V6 stage, the RF and DNN produced 
even worse prediction accuracies than LR. 

 
Figure 9. Best-performing ML models for each treatment at the V6 and R5 growth stages. 
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Table 7. Best-performing ML models for each treatment using optimal variables at the V6 and R5 
stages. The bold font indicates the best accuracy achieved by the ML models. 

 LR RF KNN SVR DNN 
R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

 Austrian Winter Peas 
V6 0.62 1.12 0.68 1.02 0.69 1.05 0.65 1.17 0.67 1.62 
R5 0.55 1.83 0.51 1.33 0.64 1.13 0.66 1.68 0.54 1.17 

 Biochar 
V6 0.59 1.44 0.63 1.27 0.68 1.29 0.67 1.19 0.71 1.08 
R5 0.64 1.52 0.66 1.55 0.64 1.65 0.64 1.87 0.74 1.27 

 Gypsum 
V6 0.59 1.56 0.58 1.64 0.65 1.75 0.62 1.87 0.54 2.26 
R5 0.74 1.39 0.72 1.25 0.80 1.35 0.74 1.08 0.71 1.37 

 Fallow 
V6 0.84 0.96 0.74 1.03 0.84 1.25 0.84 0.69 0.78 0.99 
R5 0.77 1.26 0.84 1.22 0.77 1.29 0.83 1.05 0.72 1.69 

 All treatments 
V6 0.32 1.52 0.19 1.68 0.31 1.54 0.36 1.48 0.18 1.99 
R5 0.25 1.58 0.31 1.52 0.40 1.40 0.41 1.41 0.18 1.88 

Table 8. Optimal value of hyperparameters of the best-performing ML models at the V6 and R5 
growth stages. 

 
Best-Performing ML 
Model (V6 and R5) 

Optimal Hyperparameter Value 
(V6 and R5) 

Grid Search Space  
(V6 and R5) 

AWP KNN K = 5 K = 13 
K = 1, 3, 5, 7, 9, 11, 13, 15 

Gypsum KNN K = 5 K = 3 

Biochar DNN 
Layer1, layer2, 

layer3 = 7 
Layer1, layer2, 

layer3 = 11 
Layer1, layer2, and layer3 = 1 to 

15. 

Fallow SVR 
C = 10 

Sigma = 0.412 
C = 30 

Sigma = 0.711 

C = 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 
70, 80, 90, 100. Sigma (V6) = 0.412, 

0.917, 3.185. 
Sigma (R5) = 0.189, 0.711, 8.714. 

All treatments SVR 
C = 1 

Sigma = 0.148 
C = 5 

Sigma = 0.387 

C = 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 
70, 80, 90, 100. Sigma (V6) = 0.148, 

1.855, 111.72. 
Sigma (R5) = 0.120, 0.387, 1.878. 

4. Discussion 
Agronomic treatments (i.e., AWP cover crop, biochar, and gypsum) applied from No-

vember 2020 to April 2021 in this study did not increase corn yields compared to the fallow 
treatment after only a year of treatment application (Figure 4 and Table 3). This was at-
tributed to the fact that AWP used nitrogen for growth and the subsequent nitrogen re-
lease through mineralization to meet the ensuing corn crop demands may not have syn-
chronized with corn needs in the first year of corn production [76]. Reduced yields due to 
the use of cover crops and resultant lower availability of nitrogen have been reported else-
where [77]. Biochar’s high carbon-to-nitrogen ratio results in nitrogen immobilization, re-
ducing the available inorganic nitrogen for the corn crop [78,79]. Leaving the soil bare 
during the winter fallow period makes the soil vulnerable to erosion, with potential nu-
trient losses to the environment through surface runoff. The use of gypsum as a soil 
amendment was meant to mitigate phosphorus losses through enhanced soil aggregation 
and water infiltration, thus reducing surface runoff [80] and enhancing phosphorus use 
efficiency. The use of gypsum showed comparable corn yields to traditional fallow prac-
tice in the first year of use. 
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The first and critical step for in-season crop decision-making is yield prediction [81]. 
VIs are sensitive to photosynthesis and overall crop health, which makes them suitable 
input variables in crop yield prediction [17,24,31,34,82–84]. Historically, sensor-based de-
cision systems have relied on simple mechanistic frameworks using single variable infor-
mation, limiting their application [85]. However, we used thirty variables consisting of 
four spectral bands and twenty-six VIs to explore their effectiveness in explaining corn 
yield variability for each treatment individually and combined at the V6 and R5 growth 
stages. Our results indicated that different VIs were suitable for explaining yield variabil-
ity for each treatment at both stages (Table 4). Like AWP, all treatment data (i.e., the com-
bination of each treatment) also indicated a lower correlation with yield. The spatial yield 
variability was well explained by VIs for fallow treatment as compared to other treatments 
at both growth stages. Most of the previous studies have noted a strong relationship be-
tween VIs incorporating red edge wavelength, and crop yield as growth stages progress 
[86]. The red edge, CCCI, RECI, CARI, GNDVI, green, and CVI are among the most suit-
able variables in explaining the corn yield variability in this study. The suitable variables 
found in this study were also found to be suitable in explaining crop yield variability in 
previous studies [87]. For example, Li et al. [61] found the red-edge-based Vis, particularly 
CCCI, to be effective in estimating summer corn plant N concentration and uptake across 
different growth stages. 

The influence of the number of variables on ML performance is vital in obtaining an 
accurate and less complex model [44]. A model developed using relatively fewer variables 
offers a better interpretability of the decision made and is likely to reduce the risk of over-
fitting. In this study, we assessed the impact of the number of selected variables on model 
performance (Figure 7 and Figure 8) and developed the best possible yield prediction ML 
model for each treatment at both growth stages (Figure 9 and Table 7). Most of the ML 
models achieved best-performing results using the top one or two variables that indicated 
a higher correlation with yield. 

The performance of any ML model highly depends on its input variables. ML models 
indicated different levels of prediction accuracy based on different treatments applied 
during the non-growing corn season (Figure 7 and Figure 8). The differences in ML per-
formance of yield prediction for different treatments are linked with their input variables 
and correlation with yield. For example, the yield was most accurately predicted for fal-
low using all ML models compared to the other treatments as its variables indicated a 
higher correlation with yield. The yield prediction model that grouped AWP, biochar, and 
gypsum treatments, and the long-term fallow practice, resulted in lower prediction accu-
racy with Rଶ = 0.36  and RMSE = 1.48  Mg/ha at V6 and Rଶ = 0.41  and RMSE =1.41 Mg/ha at R5. However, yield prediction models that handled the different treatments 
in isolation significantly improved the predictive accuracy with maximum R2 values rang-
ing from 0.64 to 0.83 and RMSE values from 1.05 to 1.75 Mg/ha for both the V6 and R5 
growth stages. The relatively lower R2 values for AWP and biochar treatments were at-
tributed to the treatment’s effects on the use of inorganic nitrogen by AWP for growth and 
nitrogen immobilization by biochar lowering the available nitrogen for the corn crop, 
bringing random variation since this was the first year of treatment. This research showed 
that corn yields could be predicted with similar precision at both vegetative (V6) and re-
productive (R5) stages and that farmer practice should be considered when implementing 
predictive models for reliable outcomes. 

The comparative analysis of ML models with their optimal configuration demon-
strated that KNN and SVR outperform other models at both growth stages (Figure 9 and 
Table 6). Unlike this study, Mupangwa et al. [25] found poor corn yield prediction from 
the SVR but achieved accurate results from KNN. Matsumura et al. [51] achieved the best 
prediction accuracy using neural networks but our study found a higher RMSE from neu-
ral networks, indicating overfitting, possibly due to the limited number of samples. The 
prediction accuracy of RF in this study was not good when obtained from SVR and KNN, 
except on a few occasions, such as for AWP at V6 and fallow at R5. The LR produced a 
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similar prediction accuracy where input variables indicated a higher linear correlation 
with yield, as expected. For example, the prediction accuracy of LR for the fallow treat-
ment is approximately as good as the best-performing ML models (i.e., KNN and SVR), 
but performance decreases where the input variables do not indicate a higher linear cor-
relation with yield as seen in AWP and all treatments at both growth stages. On the other 
hand, other ML models produce a higher prediction accuracy than LR even if there is a 
low to moderate correlation with yield due to their better ability to learn the complex re-
lationship between dependent and independent variables. Furthermore, the experimental 
results demonstrated that selected VIs can be efficiently used in corn yield prediction 
across different growth stages (i.e., V6 and R5) with reasonably good accuracy (Figure 9 
and Table 7). 

This study demonstrated the utility of UAV-based VIs and ML models for predicting 
corn yield with reasonably good accuracy under the constraint of a limited number of 
training data and a lack of knowledge of other variables like soil and weather. Obtaining 
larger training data is practically challenging for small agricultural plots. Studies should 
also focus on assessing how early corn yield can be predicted with adequate accuracy to 
support effective crop management practices and decision-making. Furthermore, the in-
tegration of UAV-based optical and thermal sensors along with ground proximal sensing 
data can potentially improve the prediction results and facilitate a more thorough ground-
based validation of crop yield prediction. Future studies can also explore data augmenta-
tion approaches to derive synthesis training data and their subsequent utilization in de-
veloping different ML and deep learning models for accurate yield prediction and fore-
casting. 

5. Conclusions 
This study demonstrated the potential application of UAV-derived Vegetation Index 

(VIs) coupled with state-of-the-art Machine Learning (ML) models in corn yield prediction 
with a limited number of training samples at the farm scale. Spectral bands and VIs in-
cluding red edge, canopy chlorophyll content index, red edge chlorophyll index, chloro-
phyll absorption ratio index, green normalized difference vegetation index, green spectral 
band, and chlorophyll vegetation index indicated moderate to good correlation with the 
yield at the V6 and R5 growth stages, indicating their suitability for use in predicting yield 
using ML models. 

Support Vector Regression (SVR) and k-Nearest Neighbor (KNN) outperformed the 
other models such as the Linear Regression (LR), Random Forest (RF), and Deep Neural 
Network (DNN) models. The performance of DNN was found to be more sensitive to the 
number of variables used in its development and often produced a higher RMSE than 
other models, mainly due to the limited amount of training data. This study suggests the 
utilization of simpler models like LR or KNN, particularly when input variables indicate 
a strong linear relationship with the dependent variable as these models also offer a better 
model interpretability than the black-box nature of ML. 

Corn yield prediction models under different agronomic practices showed higher ac-
curacy when they were management specific rather than combined. This study high-
lighted the importance of considering agronomic practices and farming history to enhance 
models’ predictive performance. This research also showed that corn yields could be pre-
dicted with adequate accuracy at both vegetative and reproductive stages, which is vital 
in time-sensitive decision-making. Thus, this study confirmed that UAV-derived VIs in 
conjunction with ML models can produce an adequate corn yield prediction even with a 
limited number of training samples and could be effectively used in better-informed crop 
management. 
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