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Abstract: The stubble after cotton harvesting was used as the detection object to achieve the visual
navigation operation for residual film recovery after autumn. An improved (You Only Look Once v3)
YOLOv3-based target detection algorithm was proposed to detect cotton stubble. First, field images
of residual film recycling were collected. Considering the inconsistency between stubble size and
shape, a segmented labeling data set of stubble is proposed. Secondly, the Darknet-53 backbone of
the original YOLOv3 network is improved to accommodate tiny targets. Next, the prediction anchor
box of the improved detection backbone is clustered using K-means++, and the size of the prediction
anchor box suitable for improved YOLOV3 is determined. Finally, for the false detection points after
detection, a mean value denoising method is used to remove the false detection points. Feature
points are extracted from the denoised stubble, and the candidate points are fitted by the least square
method to obtain the navigation line. The optimal model with a mean average precision (mAP) of
0.925 is selected for testing at the test stage. The test results show that the algorithm in this article can
detect the stubble of residual film recovery images at different locations, different time periods, and
different camera depression angles without misdetection. The detection speed of a single image is
98.6 ms. Based on an improvement over YOLOv3, the improved model has a significantly higher
detection rate in different scenarios than YOLOV3. This can provide practical technical support for
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the visual navigation of residual film recovery.
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and a large temperature difference between day and night. Plastic mulch cultivation
technology can increase temperature, preserve moisture, save water, and increase cotton
production. After cotton harvesting, mulch film must be recycled immediately. Otherwise,
the remaining mulch film will change the soil’s physical structure and result in many
problems related to soil pollution and environmental contamination.

Recycling residual film in cotton fields is divided into manual and mechanical re-

cycling. Mechanized residual film recycling is more effective than manual recycling. At
present, mechanized recycling is dominated by post-autumn recycling which is divided
into joint and segmented operations. The joint operations mean the machine can complete
stalk whipping and residual film recovery simultaneously after the cotton harvest. Seg-
mented operations are different. The cotton stalk whipping operation is first carried out
in segmented operations. After the whipping is completed, the film recovery operation is
performed. The machine for segmented operations has a simple structure, high reliability,
and low energy consumption [1]. At present, segmented operations rely on the manual
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driving of tractors to pull working tools. Due to the large cotton plantation area, the driver
must work continuously for an extended period. The high labor intensity makes it difficult
to ensure that the cutter is aligned effectively with the edge of the film to pick up the
film. This leads to the missed collection of the remaining film. In addition, the working
environment is harsh, there is a high dust pollution level, and the work is monotonous.
By developing a navigation operation system for residual film recovery, it is possible to
significantly reduce the labor intensity of drivers and improve the efficiency of residual
film recovery operations.

At present, satellite navigation is widely used in the cultivation of cotton in Xinjiang.
However, unmanned operations can be affected by poor satellite signals or farm envi-
ronment changes. Machine vision can detect navigation paths in real time and correct
deviations [2,3]. The navigation line extraction relies on crop detection. Fast and high-
accuracy crop detection algorithms can ensure the effectiveness of the navigation line in
practical applications [4].

Common crop detection algorithms use color [5-7], texture [8-10], and shape [11-13]
to extract the target. Denoising the extracted targets to determine the crop points. The final
navigation line is obtained by fitting the feature points [14-16]. The single crop detection
algorithm detects crops in images and is fast. However, it is sensitive to environmental
changes. For example, different backgrounds or lighting conditions can affect the crop’s
color and texture [17].

With the development of machine learning, related models have been used for crop
visual detection [18-21]. Machine learning models classify target features and by optimizing
the model parameters or structure, the image is detected according to the input features. The
quality of feature extraction and the number of features determine the model’s recognition
effect. The accuracy and applicability of the machine learning models are better than
common crop row detection algorithms [22]. However, the collected features limit its
applications to other scenarios. The detection effect of the machine learning models will be
reduced if the feature of the image has not been trained by the model and the feature has
changed significantly. In addition, as the detection features increase, the model’s processing
time will increase. This is unsuitable for scenes with high real time requirements, such as
the visual navigation of residual film recovery.

Deep learning has high accuracy and broad applicability compared with other machine
learning and common crop detection algorithms. Bah Mamadou Dian et al. [23] proposed
a model consisting of SegNet and Convolutional Neural Network-based (CNN) Hough
transform to detect crop rows with 93.58% accuracy. Adhikari et al. [24] use a deep neural
network-based semantic map method to extract crop rows. This method accurately detects
the number of rows of rice. Mora-Fallas et al. [25] proposed an instance segmentation
method based on the Mask Region Convolutional Neural Networks (Mask R-CNN) model
which can effectively detect farmland weeds and crops. Menshchikov Alexander et al. [26]
reported a fast and accurate hogweed detection method based on a fully convolutional
neural network. This method identifies the size of hogweed individuals and leaves. Khan
Shahbaz et al. [21] developed a deep learning system for identifying weeds and crops on
farmland. The system’s recognition accuracy of crops and weeds reaches 94.73%. Afonso
Manya et al. [27] reported the results of using the Mask RCNN algorithm to detect tomato
images in the greenhouse. The results show that the detection effect based on the deep
learning method is better than the results reported in earlier work. Alzadjali Aziza et al. [28]
developed and compared two tassel automatic detection methods based on deep learning
models. The F1 score based on the convolutional neural network is 95.9%, and the F1 score
of Faster Region CNN (Faster R-CNN) is 97.9%. Osorio Kavir et al. [29] compared Support
Vector Machines (SVM), YOLOvV3, and Faster RCNN in weed detection. Experiments show
that deep learning’s F1 score is better than SVM. André Silva Aguiar [30] uses deep learning
methods to detect vineyard grape clusters at different growth stages. The results show that
the constructed model detects grape bunches better. A review of the literature on related
crop detection indicates that deep learning has significant potential for crop detection.
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Rapid and accurate stubble detection has high research value. However, there are no
related literature reports on the crop detection problem in residual film recovery. The color
characteristics of the stubble after cotton harvest and stalk whipping are similar to those of
cotton stalks, boll husks, leaves, and soil. These disturbances can obscure or extend the
shape of the stubble, making it difficult for the accuracy and real time performance of image
processing techniques and machine learning algorithms to meet the requirements. Among
the deep learning detection models, YOLOv3 is the widely used target detection algorithm
at present [17,31-35]. The model balances accuracy and real-time metrics. The model
structure is stable and easy to implement for deployment. It can detect cotton stubble
in real time. Based on this information, an improved YOLOvV3 algorithm is proposed
for cotton stubble detection. This work aims to achieve rapid and accurate detection of
cotton stubble and provide reliable technical support for visual navigation of residual film
recovery after autumn.

The rest of the article is organized as follows. In Section 2, data collection and labeling
were carried out. In Section 3, the YOLOv3 model is improved and trained. Section 4
analyzes the improved YOLOv3 model test results. Section 5 discusses the results. Section 6
gives conclusions.

2. Materials and Methods
2.1. Data Acquisition

The images were taken at the recovery sites of the 145th Regiment, 146th Regi-
ment, and 152nd Regiment of the Eighth Division of the Corps. The image resolution
is 640 pixels x 480 pixels. The image acquisition camera is a Wild Forest wide-angle lens
(130° wide-angle), and the camera is installed on the front counterweight of the tractor as
shown in Figure 1 [36]. The camera depression angles are 10°, 30°, and 45°. The captured
images include sunny, cloudy, forward light, backlight, and abnormal driving. A total
of 1800 images were acquired. After adjusting the brightness and enhancing the noise,
2110 images were finally obtained.

Figure 1. (a) the image of the camera installation; (b) the schematic diagram of the image acquisition
process (arrow: direction of machine movement). 1. Residual film recovery equipment 2. Tractor
3. Counterweight 4. Camera 5. Residual film 6. Stubble rows.

2.2. Algorithm Flow

The navigation line extraction algorithm for residual film recovery after autumn based
on improved YOLOV3 is divided into two stages: target detection and navigation line
fitting. The overall process is shown in Figure 2.

(1) Target detection: Labeling the stubble in the collected RGB image of the cotton field
stubble. Construct the YOLOV3 training set. The optimal detection model is obtained
by training the improved YOLOv3. According to the driving habit of residual film
recovery, the stubble row area facing the tractor is selected to construct the ROL Use
the model to locate the stubble in the ROI and output its prediction frame.

(2) Navigation line extraction: Save the stubble position information successfully detected
and output by the model. Remove the stubble false detection points by denoising.
Extract (x, y) and (x + w, y + h) from the stubble detection frame as feature points. The
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navigation line can be obtained by fitting the characteristic points of the stubble by
using the least square method.

Original RGB image ‘ ’ Residual film recycling navigation line

l f

stubble segmentation labeling ‘ ’ least-squares method fitting

Improving the detection framework of
P = ‘ ’ extraction of stubble feature points

|
YOLOv3 I
clustering of anchors } ’ removing false detections I
| f
model training ‘ ’ Stubble Detection |
| f
Optimal detection model ‘ ’ extracting the ROI of input images I

|
|
|
|
|
|

Figure 2. The overall flow of the algorithm.

2.3. Labeling Data Sets

Labeling the stubble data set is a crucial step before model training. Labeling directly
affects training and test accuracy if the labeling box contains noise other than the target.
There is a difference in the shape and size of the stubble. The labeling box can directly select
the entire stubble outline for regular stubbles with an upright shape. When the stubble has
branches and the branches are relatively thick, marking the outline of all the branches will
result in too much noise, such as residual film, soil, and broken leaves and too much noise
will result in inaccurate predictions. The article adopts a segmented labeling method for
stubble shapes with branches. Figure 3 shows the schematic diagram. The central part is
labeled with one label box, and the branch section is labeled with another. However, not all
stubble with branches is labeled. The stubble with little difference in thickness from the
central part is labeled as the sample. If the branch is thin, it is not included in the stubble
data set since the thin branch and broken stubble characteristics are similar which can affect
the prediction.

/
/

\|/ N\ /

(@  (b) (© (d)

Figure 3. Label schematics (a) regular stubble with an upright shape, (b) little difference in thickness
from the central part, (c) little difference in thickness from the central part and (d) branch is thinner
than the central part.

Use the Labellmg tool to label each image one by one and generate the corresponding
“xml” location information file. The target frame position information in “.xml” format is
normalized and converted into “.txt” text. Each “.txt” file contains the category number “c”
of the stubble, the upper-left coordinate information (x, y) of the bounding box, and the
width and height of the box (w, h). In this article, we only need to detect stubble targets, so
the total number of categories is one. The data set is sorted based on the VOC2007 data set
format. The images in the dataset are randomly divided into a training set, validation set,
and test set according to a ratio of 7:2:1. An improved YOLOv3 model is trained on the
training set. The validation set is used to calculate the indicators of the trained model and
select the best training model. The test set is used to check the generalization ability of the
best training model.
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3. Stubble Detection Model Based on Improved YOLOvV3
3.1. YOLOu3 Detection Model

(You Only Look Once v3) YOLOvV3 converts target detection into a regression problem
based on an end-to-end network [37] from the input of the original image to the output
of the final stubble detection frame. The YOLOv3 model first unifies the input image
to 416 pixels x 416 pixels and then divides the image into grids of different sizes. Each
grid is responsible for detecting objects that fall within the grid. The bounding box of the
obtained object contains five predictions: x, y, w, h, and c. The (x, y) is the coordinates of the
upper left corner of the detection frame, w and h are the width and height of the detection
frame, and c is the confidence of the stubble category. The input image of the whole step
passes through a Darknet-53 detection backbone to obtain five predictions of the stubble in
the image.

The original YOLOvV3 backbone is shown in Figure 4. After the input image passes
through the Darknet-53 backbone, there are three detection grids (52 x 52), (26 x 26), and
(13 x 13) responsible for target detection. The grid allocates three anchors of different
sizes to predict the bounding box. Finally, the three output anchors were merged to obtain
prediction information about the stubble.

32 3x3 416x416
64 3x312 208208

208x208
128 3x3/2 104x104

104x104
256 3x3/2 52x52

52x52
512 3x3/2 2626

2626

1024 3x3/2 13x13

13x13

Global
1000

Figure 4. Darknet-53 network before modification.

3.2. Improve the Detection Framework of the YOLOv3 Model

The shape of the stubble after the cotton harvest is diverse. The stubble is divided into
two representative shapes, the first is the thicker stem, and the second is the thinner stem.
Statistics were run on the w and h generated by Labellmg to determine the variation range
of the two types of stubble, where w is the width of the rectangular box, and h is the height
of the rectangular box. The values of w and h reflect stubble width and height. The varied
range of w and h is obtained through statistics, and the distribution is shown in Table 1.

Table 1. Stubble size distribution.

Type Size Distribution
finer stubble (w=1,h=18)~(w=4,h=230)
Thick stubble (w=4,h=14)~(w=15,h =36)

The three grid sizes detected for the original YOLOV3 feature extraction network are
52 x 52,26 x 26 and 13 x 13, respectively. When the input image size is 416 x 416, the
pixel size corresponding to the grid is 8 x 8, 16 x 16 and 32 x 32. We can observe that
as the number of grids decreases, the size of the corresponding detection target increases.
The 13 x 13 grid detection target is a 32 x 32-pixel block, but the largest target for stubble
is 15 x 36. From the statistical results in Table 1, most stubble sizes are unsuitable for
detection on a 13 x 13 grid. The smaller stubble features are easily compressed when the
resolution is reduced from 416 x 416 to 13 x 13. This results in a serious loss of stubble
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information and missed detection. The 13 x 13 grid tends to detect large targets, and the
stubble is relatively small. Therefore, for the original YOLOV3 detection network, this
article removes the 13 x 13 detection layer and replaces 13 x 13 with a 104 x 104 detection
layer. The 104 x 104 grid can detect 4 x 4-pixels blocks, compared to the 13 x 13 grid which
can complete the prediction of finer stubble. The modified detection grids are 104 x 104,
52 x 52, and 26 x 26. The modified detection backbone is shown in Figure 5. Compared to
Figure 4, we remove the 13 x 13 grid output and keep the rest of the network parameters
unchanged. The improved overall YOLOv3 framework is shown in Figure 6. The basic
structure of DBL includes convolution (conv), batch normalization (BN), and leaky relu
operation. The residual unit (res unit) includes two DBL components. Multiple residual
units (resn) contain n residual units. The outputs of resl, res2, re8, and res8 correspond to
the 208 x 208, 104 x 104, 52 x 52, and 26 x 26 grid outputs in Figure 5.

Type Filters Size Output

Convoluntional 32 3x3 416x416
Convoluntional 64 3x3/2 208208
Convoluntional 32 1x1

Convoluntional 64 3x3

Residual 208208
Convoluntional 128 3x%3/2 104x104
Convoluntional 64 1x1

Convoluntional 128 3x3

Residual 104x104
Convoluntional 256 3%3/2 52x52

Convoluntional 128 1x1

Convoluntional 256 3x3

Residual 52x52

Convoluntional 512 3x3/2 26%26

Convoluntional 256 1x1

Convoluntional 512 33

Residual 26%26

Avgpool Global

Connected 1000

Softmax.

Figure 5. The modified Darknet-53 network.

416x416x3 26x26x18
—

10410418

= i @ El: R e -

Figure 6. Improved YOLOv3 model framework.

3.3. Clustering of Anchor

The anchor parameter is introduced in the YOLOV3 algorithm [37]. The anchor is a
set of a priori boxes with fixed width and height values. In stubble detection, the size of
the prior frame directly affects training and detection accuracy. The original priori box
size cannot match the improved detection network well. Prior verification needs to be
re-clustered to obtain its size before model training.

The original YOLOv3 model uses the K-means algorithm which has large randomness
in selecting the initial clustering center. Randomness will cause clustering results to differ
from the optimal global solution. According to the improved detection network and stubble
label, K-means++ is used instead of the K-means algorithm. The clustering algorithm aims
to make the Intersection over Union (IOU) between the anchor box and the ground truth
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(the labeled bounding boxes) as large as possible. The objective function uses IOU as the
measurement standard. The distance formula is defined as follows:

n k
D=min }_ Y [1 - IOUEg;;} . 1)
box=0 cen=0

Among them, the box is the target box of the sample label, cen is the cluster center, and
n and k represent the number of samples and categories in the data set. Appropriate IOU
can well weigh the complexity of the model and the detection recall rate. Figure 7 shows
the clustering effect of the kmeans++ algorithm on the stubble data set. The prior frame
size and IOU value under different k values are sequentially calculated. The comparison
(Table 2) shows that the IOU reaches a higher level when k = 9. As the value of k increases,
the increasing trend of the IOU is not obvious. Too much k value will affect detection speed.
Finally, nine anchor values are determined by kmeans++, the size of which is (3, 15), (4, 10),
(5, 16), (7, 20), (12, 29), (21, 23), (29, 27), (37, 31), and (42, 44). The three grid types 104 x 104,
52 x 52, and 26 X 26 are detected based on the size distribution of anchors, and each grid

scale may predict three anchors.

90

80 [

o—o—0—0

-

\

N

Average I0U/%

N
& g
T T

ol v
o 1 2 3 4 5 8 7 8 9 10 11 12

anchor box(k)

Figure 7. Average IOU corresponds to different k values.

Table 2. Anchor point size of different k values.

k=6 k=7 k=8 k=9 k=10 k=11 k=12
(5, 15) (5, 14) 3, 11) 3, 15) 4, 10) 4, 11) 3,13)
(8,21) (7,18) (5,15) (4, 10) 4, 16) (5,21) (4, 10)
17, 27) 9, 26) (8,21) (5, 16) (5,21) (6, 16) (5, 14)
(25, 21) (1, 21) (1, 21) (7, 20) (6, 16) (8, 23) (5,19)
(29, 29) (25, 31) (1, 31) (12, 29) (8, 24) (17, 31) (8,22)
(37, 35) (29, 25) (29, 25) (1, 23) (17, 23) (21, 21) (17, 23)
(37, 37) (33, 25) (29, 27) (25, 25) (29, 21) (25, 29)

(37, 37) (37, 31) (29, 37) (29, 27) (29, 21)

(42, 44) (33,21) (29, 40) (29, 40)

(42, 37) (33, 33) (33, 29)

(42, 37) (37, 29)

(46, 44)

3.4. Removing False Detections

Due to the complex environmental conditions in the field image recovery of residual
film and a lot of noise interference during the detection phase, it is easy for parts of the
interference to be misidentified as stubble during the subsequent navigation line extraction
process. This article adopts a denoising method based on the mean value to remove false
detection noise at the detection stage.

First, calculate the stubble position distribution in the image. In the collected 640 x 480 res-
olution image, the detected ROI area has been set as the stubble row area (100 x 200 resolution
ROI) driven directly by the tractor. The camera depression angle will affect the stubble position
information. The camera depression angles of 10°, 30°, and 45° are considered in statistical
images. Through the statistics of 300 images, the distance between the two rows of stubble
rows facing the tractor is distributed between 25 and 50 pixels as shown in Figure 8. Select
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the distance d1 = 12.5 and d2 = 25 as the distance threshold. This threshold is used only to
determine the pixel coordinates and is not involved in the subsequent processing of pixels.
Therefore, the threshold is not rounded.

|
Y
J

| I
dmin=25

Y
qY

dmax=>50

Figure 8. Schematic diagram of stubble distribution.

After completing the stubble detection, x of the detection frame provides useful output
information, x is stored as a representative coordinate point of one detection frame, and all
representative coordinate points and index information are saved. Calculate the average
value Xmean of all representative coordinate points. The calculation formula is as follows:

” .
i=0 Xi

Xmean = 2)

Check whether x; information satisfies Xmean-d1 < x; < Xmean + d1, x; < Xmean-d2,
and x; > Xmean + d2. If x satisfies one of the three conditions, it can be judged that the
detection frame of x is outside the area of two rows of stubbles which is a false detection
point. In the subsequent navigation line fitting, this point’s x value and index information
are removed from the feature points to be fitted.

3.5. Model Training

This experiment is based on the Windows 10 operating system. The GPU is NVIDIA
GeForce RTX 2080 (8 GB video memory), the processor is an Intel Core i7-9700k, and the
running memory is 32 G. The model building and training are implemented in Python
based on the PyTorch deep learning framework, and the parallel computing framework
uses CUDA version 10.0.

Before training, the image size is scaled to 416 pixels x 416 pixels, the batch_size is
set to 4, the initial learning rate is set to 0.001, the weight decay is set to 0.0005, and the
momentum decay is set to 0.9. The nine anchors of model training are the anchors after
K-means++ re-clustering.

Figure 9 shows the average Loss value change curve during the improved YOLOvV3
detection network. It can be seen in Figure 9 that when the number of network training
exceeds 6000 training epochs, the Loss value stabilizes around 0.1. The network training
result is ideal because of the subsequent convergence of the Loss value.
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0 2,000 4,000 6,000 8,000 10,000

Number of epochs

Figure 9. Change of Loss value. dashed line: Loss values stabilise.

It is not that more epochs are better for model training. Too much training can overfit
the model. A training model must be evaluated to determine the most effective detection
model. The model’s evaluation index selects mean average precision (mAP), Precision (P),
and Recall (R), and the calculation formula is as follows:

1y .

mAP = E;P(l)ARO(z) 3)

Tp
P=—""_ 4
To 1 Fp 4)

Tp
R=—"— 5
Tp + Fy ©®)

where C: Sample Categories, Tp: correctly divided into the number of positive samples,
Fp: the number of negative samples that are incorrectly divided into positive samples,
Fy: the number of positive samples that are incorrectly divided into negative samples,
P: Precision (that is, the proportion of correctly detected stubble samples in the detection of
positive samples), R: Recall (that is, the proportion of correctly detected stubble samples to
the stubble samples in the dataset), and mAP: mean average precision. Reference to the
common metric mAPs for target detection used in the original YOLOvV3 [37]. Our definition
of a correct detection sample is one in which the IOU between the stubble detection box
and the labeled bounding boxes is greater than 50%.

Figure 10 shows the model’s mAP on the validation set. According to Figure 10, after
9000 training epochs, the overall mAP of the model is relatively stable, and several models
reach 0.925. This is the highest mAP among the models. Ultimately, the model trained
9000 epochs were selected as the optimal model. The optimal model’s Precision, Recall,
and mAP are 0.86, 0.971, and 0.925, respectively. The single image detection time under
this model was 98.6 ms.

100 4

90 A A e o

mAP
8

T T T T T
0 2,000 4,000 6,000 8,000 10,000
Number of epochs

Figure 10. Mean average precision of the model.

4. Results and Analysis

Select different locations, time periods, camera depression angles, and the YOLOv3
detection model before and after the improvement test. The size of the image collected by
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the camera is 640 x 480 resolution. The stubble row directly opposite the tractor operation
is extracted with a 100 x 200 resolution ROI and used as the stubble row detection area.
The ROI area is scaled to 416 x 416 resolution as the input image for the detection model.
The following subsections will give specific test results.

4.1. The Detection Effect of Different Locations

Select residual film recovery field images from different locations for algorithm de-
tection. The main differences between the images are the soil color and the distribution of
broken leaves and stalks. All types of images can detect stubble with ideal results. Select
the four images Figure 11a,c,e,g to represent the four types of places, and Figure 11b,d,f,h
are the corresponding detection results. According to the test results, the color of the
soil in Figure 11a is similar to that of the stalk and much of the stubble in the image has
been incorporated into the soil. Human eyes cannot see stubble intuitively. Under such
conditions, the improved YOLOv3 algorithm can still complete detection without missed
or false detection. In Figure 11c, the residual film is evenly distributed. The stubble at
the top of the image is thinner than that at the bottom. The detection results were better
for detecting both small and large target stubbles. A large amount of residual film on the
ground does not affect this algorithm. Many boll husks, broken leaves, and broken stalks
are visible in Figure 11e. The color is similar to that of stubble which obscures the shape of
the stubble. In this case, the algorithm can still detect the stubble, and the effect is ideal.
Figure 11g shows this is the least noisy of the four place types. The stubble characteristics
and shape are apparent in the image. The algorithm detects all of the stubble.

®

Figure 11. The detection effect of different locations: (a,c,e,g) are the original images, (b,d,f,h) are the

improved YOLOV3 algorithm detection images.

The overall detection rate of stubble is relatively high in several different locations.
The soil color, residual film, broken leaves, and stalks distribution do not affect the detection
rate. In addition, the algorithm for detecting the finer branches of stubble may be missed
since the labeled data set does not label finer branches. However, the central stalk and the
thick branches can be correctly identified.

4.2. Detection Effect in Different Time Periods

Select residual film recovery field images from different time periods for algorithm
detection, and the images are from the same place. Select the four images Figure 12a,c.e,g
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are the original images, and Figure 12b,d,f h are the corresponding detection results. The
periods are morning, noon, and afternoon. Figure 12a shows a morning photograph. The
influence of morning light is not apparent. The algorithm can generally detect the presence
of stubble on the image. There is no missed and false detection, and the effect is better.
Figure 12c shows the area at noon. The light makes the overall image brighter. The stubble
is brighter overall due to sunlight, but intense light does not affect the overall detection
effect. It is worth noting the shadow effect brought by the light. The stubble in the shadow
and the central part of the stubble are blocked by the shadow, easily leading to missed
detection. Figure 12e,g shows the scene in the afternoon. The light is not as intense as noon,
and the overall detection effect of stubble is acceptable. There are two examples of missing
stubbles in Figure 12h because the wheel has crushed the part, and the stubble is absent.
The algorithm is generally less affected by time and ensures stubble detection stability and
accuracy under long-term continuous operation.

Figure 12. The detection effect of different time periods: (a,c,e,g) are the original images, (b,d,f,h) are
the improved YOLOV3 algorithm detection image.

4.3. The Detection Effect of Different Camera Depression Angles

Select the residual film recovery field images under different camera depression angles
for algorithm detection. The main difference between the images is the stubble size. The
size of the stubble in the lower part of the ROI will increase as the depression angle of the
camera increases. The camera depression angle includes 10°, 30°, and 45°. Figure 13a,b
show the results of stubble detection at 10° and 30°. There is little overall difference between
the stubble images collected from the two angles, and stubble can be detected without error.
Figure 13c illustrates an image taken at a 45° angle for the depression. The stubble in the
image is larger than the stubble at a low depression angle. According to the test results,
the larger stubble detection effect is optimal, and no obvious stubbles were missed. The
difference with the low depression angle is that the stubble is sparser at a 45° depression
angle. As the depression angle increases, the detected stubble target becomes larger, and
the detected stubble target frame distribution becomes scattered. The algorithm is generally
unaffected by the camera depression angle, and stubble under different depression angles
can be detected correctly.



Agronomy 2023, 13,1271

12 of 17

Figure 13. Detection effect of different camera angles (a) The camera depression angle of 10° (b) The
camera depression angle of 30° (c) The camera depression angle of 45°.

4.4. Comparison of the Effect of the YOLOuv3 Detection Algorithm before and after the Improvement

To further verify the stubble detection effect of the improved YOLOv3 algorithm.
Choose the YOLOV3 algorithm and the algorithm of this article to carry out the comparison
experiment of stubble detection. The YOLOv3 algorithm uses the original Darknet-53
network in the comparative test. The same sample set is used for algorithm training and
testing. After 4000 training epochs, the model’s Loss value stabilizes around 0.1. Finally,
the model trained for 6000 epochs is selected as the optimal detection model for YOLOv3.

The comparison result is shown in Figure 14 where (a,d,g,j) are the original images.
The background of Figure 14a is complex, and the soil color is similar to stubble. Part
of the stubble appears to blend into the background. It is difficult for the human eye to
distinguish the stubble intuitively. Figure 14b shows the result of YOLOv3. Although there
is no false detection in the result, the missing stubble detection is serious. Compared with
the detection result in Figure 14c of the algorithm in this article, most of the stubble was
not successfully detected. It is worth noting that neither the algorithm in this article nor
YOLOV3 can detect stubble in the upper part of the image. The main reason is that the
part of the stubble in the image is relatively small, and the soil and broken stalks cover
the outline of the stubble seriously. The stubble outline has completely blended into the
background. Both types of algorithms are unable to detect stubble in this case. Figure 14d,g
are located in areas with relatively more impurities, such as broken stems and boll leaves.
Unlike the previous chapter’s images, these two representative images were taken with a
camera shake. The overall image is unclear compared to other images. Shaking can blur
some stubble information in the image. Both detection algorithms cannot detect blurred
stubble. The algorithm proposed in this article can detect some stubble with less blur, but
YOLOW3 still cannot. Figure 14j has a more obvious stubble characteristic. Judging from
the detection results, the two types of algorithms for the stubble below the image can detect
well. The biggest difference is the upper area of Figure 14j. The shape of the stubble at
the upper area is smaller and thinner. YOLOV3 has seriously missed detections for such
small targets. The improved algorithm in this article can complete the detection of such
small targets.

The improved YOLOV3 stubble detection effect is generally better than the YOLOv3
model. It can complete the stubble detection task on a complex background and provide
the basis for the next step of navigation line extraction.
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Figure 14. The detection effects of different algorithms: (a,d,g,j) are the original images, (b,e,h k) are
the detection results of the original YOLOvV3 algorithm, and (cf,i,1) are the improved YOLOv3
algorithm detection results.

4.5. Navigation Line Fitting

For the 100 x 200 resolution ROI area, stubble can be detected by the improved
YOLOv3 model. After the misidentification points are removed, the feature points are used
as candidate points for stubble navigation line fitting. The input feature point information
is (x, y), (x + w, y + h), the coordinates of the upper left corner and the lower right corner
of each stubble detection frame selection box to fit the navigation line. This article selects
the least-squares method with an ideal fitting effect and fast calculation speed to fit feature
points to a straight line. The successfully fitted straight line is the navigation line for the
residual film recovery operation.

The navigation line detection result is shown in Figure 15. According to Figure 15¢,f,
the high accuracy of stubble detection ensures the reliability and stability of navigation
line extraction. The navigation lines in the two images fit well. In Figure 15i, although the
navigation line is successfully fitted, there is an error in the angle of the navigation line. It
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is primarily because the navigation line fits between two stubble rows. The cotton planting
mode of the image collection fields is wide and narrow row planting. The distance between
the two narrow rows is closer. When the camera depression angle is small, the two narrow
lines are very close in the image, and the two lines can be directly fitted to extract the
navigation line. When the camera depression angle is large, the distance between the two
lines will be relatively obvious in the image. If the two-line stubble fitting method is applied,
it can cause a deviation from the overall fitting line due to the stubble miss detection.

Figure 15. Navigation line detection effect: (a,d,g) are the original images, (b,e/h) are the detection
results of the algorithm in this article, (¢ f,i) are the detection results of the navigation line (red line).

Through experiments, we have found that when the camera depression angle is less
than 30°, the two narrow lines in the collected image are relatively close. A more accurate
navigation line can be obtained by direct fitting using the least square method. When
the depression angle is large or the planting mode does not use wide and narrow row
planting, the least square method may not provide a satisfactory fitting result. At this time,
we should analyze the specific scene in detail. However, as far as the stubble detection
algorithm in this article is concerned, the accuracy of stubble detection is high. This can
ensure the accuracy of the navigation line fitting feature points. In follow-up research,
different navigation line fitting algorithms should be used in different scenarios to complete
the extraction process.

5. Discussion

Compared to previous stubble detection algorithms using fused features [36]. Al-
though the detection accuracy was lower than the fusion features, the detection speed was
significantly faster. Real-time performance is one of the most important metrics for visual
navigation tasks. The algorithm in this article sacrifices some detection accuracy, but the
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speed of navigation line fitting can ensure the effective deployment of the model. Mazzia
et al. [32] demonstrate that YOLOvV3 can be deployed in low-power embedded devices for
real-time detection.

Comparing this article’s algorithm with the related YOLOV3 literature, we find many
shortcomings and areas for improvement. First, the processing time of the improved
YOLOV3 algorithm in this article can be further optimized. Yang Li’s study [34] showed
that the YOLOv3 model processed an image in 13 ms by replacing the more lightweight
MobileNetV2 backbone. Second, fusion manual features have high accuracy but consume
large computational resources. However, a few manual features can be combined with
the YOLOvV3 backbone network for detection. Zhiheng Lu’s study [38] showed that the
YOLOv3 model combined with manual features improved detection accuracy, and single
image detection took 420 ms. Processing speed and accuracy are opposite metrics. If
the operation speed is slow, this time will be sufficient to meet the requirements of the
operation. Third, image preprocessing can be used to optimize blurry stubble in images.
Xudong Zhang's study [33] performs bilateral filtering and other operations on the input
image before applying YOLOV3 detection. The image details can be improved, and the
detection accuracy can be improved by about 2% to 3%.

Fourth, the camera depression angle affects target detection results. The most effective
camera depression angle obtained by Wenkai Xu [35] was 30-60°, similar to the results
in Section 4.3 of this article. The stubble detection at 45° was the most accurate of all
images. Although the results are consistent with those reported by Wenkai Xu [35], the
range of camera depression angles tested in this article is relatively small. Fifth, Wenkai
Xu's study [35] also mentions that model hyperparameters impact model accuracy. For
example, batch_size and epoch are mentioned in the article, and we also find similar results
in this article. Even though the training Loss value of the model is stable, the accuracy
will show some small fluctuations as the epoch increases. However, there are many model
hyperparameters, and the impact deserves further study.

6. Conclusions

This article proposes a stubble detection method based on improved YOLOvV3 to
address the problem of visual navigation path extraction in this scene. The residual film
recovery field images at different locations, time periods, and camera depression angles
were selected for stubble detection experiments. The results show that the improved
YOLOv3 algorithm proposed in this article can effectively accomplish the stubble detection
task. By comparing the algorithm in this article with the original YOLOV3 algorithm, the
detection effect is better in normal scenes, complex scenes, and jittery images. This shows
that the algorithm in this article is more efficient and accurate.

The algorithm presented in this article detects stubble satisfactorily, but there are still
shortcomings regarding navigation line fitting. When the distance between two rows of
stubble in the image is too large or the stubble rows are partially missing, it will cause
path extraction errors. In addition, when different planting patterns and stubble rows have
large deflection angles, the article’s noise point removal threshold and ROI selection need
to be further considered. In the next step, we will focus on applying the path extraction
algorithm to the navigation field test. Optimize the parameters in the article to make the
visual navigation algorithm more stable and reliable in actual use.
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