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Abstract: Apples are susceptible to infection by various pathogens during growth, which induces
various leaf diseases and thus affects apple quality and yield. The timely and accurate identification
of apple leaf diseases is essential to ensure the high-quality development of the apple industry.
In practical applications in orchards, the complex background in which apple leaves are located
poses certain difficulties for the identification of leaf diseases. Therefore, this paper suggests a
novel approach to identifying and classifying apple leaf diseases in complex backgrounds. First,
we used a bilateral filter-based MSRCR algorithm (BF-MSRCR) to pre-process the images, aiming
to highlight the color and texture features of leaves and to reduce the difficulty of extracting leaf
disease features with subsequent networks. Then, BAM-Net, with ConvNext-T as the backbone
network, was designed to achieve an accurate classification of apple leaf diseases. In this network, we
used the aggregate coordinate attention mechanism (ACAM) to strengthen the network’s attention
to disease feature regions and to suppress the interference of redundant background information.
Then, the multi-scale feature refinement module (MFRM) was used to further identify deeper disease
features and to improve the network’s ability to discriminate between similar disease features. In our
self-made complex background apple leaf disease dataset, the proposed method achieved 95.64%
accuracy, 95.62% precision, 95.89% recall, and a 95.25% F1-score. Compared with existing methods,
BAM-Net has higher disease recognition accuracy and classification results. It is worth mentioning
that BAM-Net still performs well when applied to the task of the leaf disease identification of other
crops in the PlantVillage public dataset. This indicates that BAM-Net has good generalization ability.
Therefore, the method proposed in this paper can be helpful for apple disease control in modern
agriculture, and it also provides a new reference for the disease identification of other crops.

Keywords: digital agriculture; apple leaf; disease recognition; deep learning

1. Introduction

Apples are one of the world’s most popular fruits [1]. The apple’s cultivation area and
production is increasing year after year due to its high economic and nutritional value [2].
Apples are susceptible to various pathogens during the growing process, which can lead to
a variety of diseases. Lower yields, lower quality, and even serious economic losses can
result from this. Apple disease symptoms are typically first seen on the foliage [3], and the
type of disease that infects apples can be effectively determined by observing the foliage
characteristics. Therefore, the timely and effective identification of apple leaf diseases and
the determination of disease types are important for the accurate control of apple diseases
and a reduction in economic losses.

Traditionally, plant leaf disease diagnosis has relied on manual observation by farmers
or experts, which requires farmer experience and expert knowledge [4]. This is inefficient
and vulnerable to subjective human factors. With the advancement of computer vision
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technology [5], new opportunities for detecting leaf diseases have emerged. For example,
Chakraborty et al. [6] used the Otsu thresholding algorithm to binarize leaf images; in
addition, they also used the SVM algorithm to classify the binarized images of apple leaves
into healthy and infected leaves. Chuan et al. [7] used the thresholding algorithm to segment
leaf images and used the genetic algorithm (GA) for feature extraction to select important
color, texture, and shape features to input into the SVM model for classification, with a 90%
average accuracy. Zamani et al. [8] enhanced the leaf images with histogram equalization,
then used the K-means algorithm to segment the images and extract the leaf features with
principal component analysis. To achieve this, they used the random forests algorithm to
classify the leaf disease images. Tan et al. [9] used the 2D-Renyi algorithm to segment the
images, then fed the image features into the ABC-SVM classifier to determine the disease
type, achieving an accuracy of 98.45%. To a certain extent, the above methods can classify
plant diseases, but they rely too heavily on the manual extraction of shallow features [10],
such as color and texture, while ignoring deeper features in the images. As a result, the
method is less robust and incapable of adapting to changing natural environments.

Deep learning models have been widely used in a variety of livelihood areas [11],
such as forest smoke detection [12,13], crack detection [14,15], and fruit species clas-
sification [16,17], due to their excellent algorithmic performance and their ability
to obtain deep features directly from images. In recent years, certain researchers
have chosen to use deep learning approaches for plant leaf disease identification
and classification. Jiang et al. [18] proposed a deep CNN model for apple leaf dis-
ease detection based on a convolutional neural network (CNN) combined with the
Inception module, which achieved a 78.80% mAP in the detection of five common
apple leaf diseases. Bansal et al. [19] used image enhancement algorithms to prepro-
cess the dataset, and then used multiple sets of pre-trained deep learning models
(DenseNet121, Efficient-NetB7) to achieve a 96.25% disease classification accuracy.
Suo et al. [20] introduced an attention mechanism with an asymmetric multiscale mod-
ule based on CoAtNet to achieve a 95.95% accuracy in the classification of grape leaf
disease. Liao et al. [21] achieved the highest recognition rate of 95.79% for strawberry
leaf disease detection using a two-channel residual network with a multi-directional
attention mechanism. Sun et al. [22] proposed using the mean SSD for real-time apple
leaf disease detection, which achieved an 83.12% mAP at 12.53 FPS. Using multi-level
feature fusion, Yang et al. [23] improved the EfficientNet network to achieve a 99.11%
recognition accuracy. Bi et al. [24] introduced efficient channel attention (ECA) and
dilated convolution on top of MobilenetV3 and achieved a 98.23% accuracy on their
maize leaf disease identification task.

Although the abovementioned studies have achieved excellent results in plant leaf
disease identification, they mostly focus on disease identification scenarios with a single
background. This is not applicable to leaf disease recognition in a field environment
with complex background interferences. Therefore, inspired by the above studies, this
paper aims to achieve efficient apple leaf disease identification in the context of complex
backgrounds with the use of deep learning methods. On this basis, this paper focuses
on the following three problems: (1) in the actual detection of orchards, leaf images are
easily disturbed by noise due to the filming equipment and filming environment, resulting
in unclear leaf disease features in the images, thus influencing the subsequent disease
recognition network; (2) interference from complex backgrounds makes it difficult for the
network to detect small diseases on the leaves, resulting in inaccurate feature extraction;
and (3) apple leaf diseases have inter-class similarities, meaning that different diseases may
present similar features [25]. Considering only the shallow features of leaf diseases is not
sufficient to correctly diagnose the disease.

To address the above three problems, we propose a new method for apple leaf disease
identification in the context of complex backgrounds, the framework of which is shown in
Figure 1. The primary contributions of this manuscript are as follows:
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(1) An MSRCR algorithm based on bilateral filtering is used to perform preprocessing
operations on the images. This method replaces the center-surround function of the
conventional MSRCR algorithm with a bilateral filtering function, which enhances
color while preserving texture features in the image, resulting in clearer images that
facilitate the neural network’s extraction of leaf features.

(2) To achieve the efficient identification and classification of apple leaf diseases in com-
plex backgrounds, this paper proposes a BAM-Net, which is designed as follows:

a. A method called the aggregate coordinate attention mechanism (ACAM) is pro-
posed to address the issue of interference from background information in the
context of feature extraction while against complex backgrounds. This method
assigns feature weights in both the horizontal and vertical directions, then uses
pointwise convolution to correct the weights, improving the network’s focus on
disease features and filtering out redundant interference information.

b. A multi-scale feature refinement module (MFRM) is proposed to address the
issue of misclassification caused by the inter-class similarity of leaf diseases. This
module extracts feature information from multiple scales and refines deep features
through cascaded channel information interactions, identifying disease feature
information similarities and differences.

(3) The proposed method in this paper achieved a recognition accuracy of 95.64% and
an F1-score of 95.25% in a self-made dataset of apple leaf diseases in the context
of complex backgrounds. Compared with other methods, BAM-Net has a higher
recognition efficiency, which provides a reference value for modern producers to
detect and identify apple leaf diseases in a timely fashion. Additionally, it provides
significant help for the early maintenance and production of agriculture.
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2. Materials and Methods
2.1. Data Acquisition

In this study, the apple leaf disease dataset is the basis for studying the clas-
sification of apple leaf diseases. We selected 6 types of apple leaves for research,
and the characteristics of different apple leaves are shown in Table 1 (“Before” and
“After”, respectively, represent before and after the dataset expansion. The specific
concept of data expansion is shown in Section 2.2). The dataset employed in this
study of apple leaves comprises 2 parts: the first part was collected in the southern
apple base of Xiangtan City, Hunan Province. The researchers of this paper used a
Sony A6300 camera with a resolution of 2420 × 3680 to take outdoor photos, totaling
2429 images of healthy and diseased apple leaves at different periods under natural
light conditions. The second part was collected from the Kaggle open dataset Apple-
leaf9 (https://www.kaggle.com/datasets/jasonyangcode/appleleaf9 (accessed on 10
January 2023)) [23]. We compiled the collected apple leaf images, then reclassified the

https://www.kaggle.com/datasets/jasonyangcode/appleleaf9
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apple leaf images in the dataset by consulting experts and scholars and by reviewing
the literature; in addition, we selected images with relatively complex backgrounds.
Finally, we obtained 3500 apple leaf images with complex backgrounds.

Table 1. Types and numbers of complex apple leaf disease datasets.

Category Example Characteristics Number
(Before/After)

Proportion
(Before/After)

Healthy
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2.2. Data Expansion

The training of convolutional neural networks requires the support of a large number
of samples. We used the OpenCV package in Python to expand the original dataset to help
the neural network model train better and to avoid issues such as overfitting. Figure 2
depicts the dataset expansion methods used in this paper, which include vertical flip, mirror
flip, random crop, a brightness increase by 30%, and a brightness decrease by 30%. Table 1
shows the total number of expanded images (17,423 images).
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2.3. BF-MSRCR

The process of acquisition, transmission, and processing is affected by the equipment
and the shooting environment. Some of the apple leaf images in this dataset were of low
resolution, and the color and texture characteristics of the leaves were obscured. This will
have an impact on the subsequent neural network’s extraction of leaf features. Therefore, it
is necessary to pre-process the images for image enhancement before they are input into
the neural network.

In previous studies, the proposed algorithm based on Retinex theory [26] has been
widely used for the image enhancement of low-quality images. MSRCR [27] is an image
enhancement algorithm derived from the Retinex algorithm; it can improve the overall
color contrast of the image and alleviate the blurriness caused by uneven illumination.
However, using MSRCR for image enhancement can lead to a certain degree of blurring
of the texture edges in the image. When classifying leaf diseases, the texture edges of the
leaves is an important factor that affects disease diagnosis. Therefore, it was necessary
to pre-process the images for image enhancement before they were input into the neural
network. MSRCR is a color restoration image enhancement algorithm extended from the
Retinex algorithm, and it can improve the overall contrast in the color of an image and
alleviate the unclear image caused by uneven illumination. However, using MSRCR for
image enhancement may result in some blurriness along the texture edges. Therefore, this
paper adopts a bilateral filter-based MSRCR algorithm (BF-MSRCR) [28] to address this
issue. The algorithm uses a bilateral filter function as the center-surround function of the
MSRCR algorithm to improve image clarity, highlight disease features, and retain as much
of the edge texture information of the leaf images as possible.

BF-MSRCR consists of 2 parts: the multi-scale Retinex algorithm (MSR) and color
recovery. We first used MSR for image clarification. Its expression is shown in Equation (1).

MSRi(x, y) = ∑N
k=1 wk{log[(Ii(x, y))]− log[Hk(x, y)Ii(x, y)]} (1)

where i represents the 3 color channels R, G, and B; Ii(x, y) represents the original image
corresponding to different color channels; N represents the number of scales, which is
empirically set to 3 and represents the large, medium, and small scales; wk represents the
weighting factor of the Nth scale; and Hk(x, y) is the center-surround function of the Retinex
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algorithm. In the MSR algorithm, the center-surround function is generally a low-pass
Gaussian filter function. Its expression is shown in Equation (2).

Fk(x, y) =
1

2πσ2 e(−
(x−x0)

2+(y−y0)
2

2σ2 ) (2)

where (x0, y0) is the centroid of the Gaussian filter window. According to Equation (2), it is
known that the closer the coordinates are to the centroid in the filtering window, the greater
the weight obtained. However, when the pixel is in the edge region, its distance from the
center point is farther and the pixel similarity is lower, which is easily lost in the filtering
process. To reduce the loss of image edge texture information, the bilateral filter function is
used as the center-surround function of MSRCR in this paper. The bilateral filter function
is a nonlinear filter function that can consider the difference of neighboring pixel values for
edge protection during image smoothing. Its expression is shown in Equation (3):

Hk(x, y) = exp

(
− (x− x0)

2 + (y− y0)
2

2σs2 − ‖ f (x, y)− f (x0, y0)‖2

2σr2

)
(3)

where f (x, y) is the image centroid coordinate; f (x0, y0) is the image centroid gray value;
σs is the standard deviation of the null domain; and σr is the standard deviation of the
value domain.

Although BF-MSR can improve the image sharpness and preserve the edge texture
features of the image well, it still causes local color distortion. Therefore, a color recovery
factor needs to be added to perform color recovery processing. The specific expression of
BF-MSRCR is shown in Equations (4) and (5).

BF−MSRCRi(x, y) = Ci(x, y)BF−MSRi(x, y) (4)

Ci(x, y) = β log[αI′i (x, y)] (5)

where Ci denotes the color recovery factor of the ith channel, which is used to adjust the
color ratio of the 3 channels; β denotes the gain constant; and α denotes the controlled
nonlinear intensity. By adjusting the color balance ratio of the 3 original image color
channels adjusted by the color restoration factor, it is possible to effectively enhance the
information in the dark regions and to solve the problem of color distortion in BF-MSR.

Figure 3 displays the apple leaf images processed by different algorithms. MSR
enhancement can improve image clarity, but it may cause color distortion. Although
MSRCR solves the problem of color distortion, it loses the edge features of the image. In
contrast, the BF-MSRCR algorithm effectively addresses these issues by enhancing image
clarity and highlighting disease features while preserving the edge features of the leaf.

2.4. BAM-Net

Firstly, in the context of practical applications in orchards, the identification of apple
leaf diseases is easily disturbed by other factors in the image, such as branches, soil, and
other complex backgrounds, resulting in the network not being able to correctly extract the
disease characteristics of the leaves. Secondly, apple leaf diseases have the characteristics
of inter-class mutation and inter-class similarity. As the degree of disease deepens, leaves
with the same disease may show different texture and color characteristics. Leaves with
different diseases may also have similar disease characteristics. This makes it difficult to
correctly classify apple leaf diseases. To address the aforementioned problems, this paper
proposes BAM-Net for apple leaf disease classification in complex backgrounds using
ConvNext-T [29] as the backbone network.
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The BAM-Net structure, as shown in Figure 4, can be divided into 3 parts:

(1) The first part is the feature extraction network of BAM-Net, which mainly consists
of ConvNext-Stage and ACAM. ConvNext-Stage was used for the basic feature ex-
traction of apple leaf images after BF-MSRCR processing. ACAM was used after each
stage to help the network focus on the important feature information and to filter out
the interference information.

(2) The second part is the feature refinement module, comprising several 1 × 1 convolu-
tions and three 3 × 3 convolutions with varying expansion rates. MFRM divides the
output of the feature from the first part into 4 branches. Then, feature extraction at
different scales and channel information interaction operations are performed in the
4 branches to refine the leaf disease features.

(3) The third part is the classification output module, which includes global average pool-
ing, layer normalization, and linear layers. Firstly, the network’s extracted features are
subjected to global pooling and normalization operations. Then, the fully connected
layer and Softmax function transforms the output into a probability distribution,
providing the classification results for apple leaf disease images.

This article provides detailed descriptions of the ConvNext-T backbone, ACAM, and
MFRM in the subsequent content.

2.4.1. ConvNext-T Backbone

Convolutional neural networks have been used as the dominant model in computer
vision for the past decade [30]. However, in recent years, transformer-like networks, such as
Swin Transformer [31] (Swin-T), have achieved better performance than pure convolutional
neural networks on certain tasks and have rapidly become a research hotspot. The com-
plexity of the internal structure of transformer networks makes them inapplicable for tasks
that require practical applications, such as apple leaf disease classification. To demonstrate
that pure convolutional neural networks still have great room for improvement, Li et al.
combined some of the design ideas of the transformer model and proposed the ConvNext
model from ResNet [32].
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The changes in ConvNext are as follows. (1) Adjust the model scale, i.e., the
number of block stacking, to the same scale as Swin-T. (2) Patchify Stem is changed
to a 4 × 4 convolution with a step size of 4. (3) Depthwise convolution is adopted,
aiming to control the number of channels of the output feature matrix by the number of
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convolution kernels. (4) The feature extraction block of ConvNext adopts an inverted
bottleneck structure, which can reduce information loss during information extrac-
tion. Compared with ResNet and Swin-T, ConvNext has higher accuracy and faster
computation speed.

The task of apple leaf disease classification requires high real-time performance. In
addition, the irregular size and shape of leaf diseases make it difficult to accurately identify
them based on size and shape features alone. The differences between leaf diseases and
their surroundings are an important factor in achieving accurate disease identification. The
7 × 7 large convolution used by ConvNext can effectively capture the relationship between
the extracted features and their contexts. Therefore, we chose ConvNext as the backbone
network of BAM-Net. Training large-scale models often requires more computing resources.
Given the limited computing resources available to our team in this research, which is a
server equipped with an NVIDIA GeForce RTX 3090, we chose the ConvNext-T with the
lowest number of parameters to explore the possibility of using deep learning methods to
improve the efficiency of apple leaf disease classification.

2.4.2. ACAM

During the actual recognition process, the images of apple leaf diseases captured in
real time do not simply contain the leaves to be inspected. Other irrelevant factors such as
tree branches, fruits, and soil in the images will affect the extraction of the features of apple
leaf diseases. Therefore, it is important to enhance the network’s ability to focus on disease
features and to suppress irrelevant interference factors. This will help the network better
learn the disease features and improve the accuracy of apple leaf disease classification.

The attention mechanism is similar to human visual features [33], emphasizing the
degree of importance for important areas through weight size and suppressing interference
backgrounds. Traditional attention mechanisms usually only focus on single-dimensional
feature weights [34], which may overlook important feature information. However, coor-
dinate attention (CA) [35] is a new lightweight attention mechanism that can effectively
capture long-distance dependency relationships by aggregating features along 2 spatial
dimensions and retaining accurate positional information. Therefore, this paper proposes
ACAM based on CA, combined with apple leaf disease features.

The ACAM structure is shown in Figure 4b and consists of 3 parts:

(1) Bi-directional pooling

Traditional global average pooling compresses spatial information into channels,
ignoring direction-related positional information. Therefore, we performed pooling on the
input feature map xc in the X and Y directions separately to capture the precise positional
information. After pooling, feature maps zw and zh with sizes of 1×W× C and 1 × H × C
were generated, respectively. Then, the generated feature maps were multiplied and fed
into a 1 × 1 convolutional kernel to obtain feature map x, thus achieving information
interaction between channels.

zw(w) =
1
H ∑

0≤j≤H
xc(j, w) (6)

zh(h) =
1

W ∑
0≤i≤W

xc(h, i) (7)

x = zw × zh (8)

(2) Aggregate feature correction

After a 1 × 1 convolution, the feature map x is divided into 2 branches: the upper
branch is the feature map zw

1 (1 ×W × C) and the lower branch is the feature map zh
1

(1 × H × C). Since the 2 branched operations are the same, the following is a detailed
description of the aggregate feature correction using the upper branch as an example.
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The original feature map of the upper branch zw
1 is pooled to obtain a 1 × 1 × W

scalar. To mitigate the scale variation and to emphasize smaller objects, point-by-point
convolution is used as a local up-down aggregator. It uses spatial locations for point-by-
point channel interactions and yields a 1-D vector with weights. Subsequently, the feature
map zw

1 is multiplied by a 3 × 3 convolution with a 1-D vector for the purpose of feature
map correction.

zw
2 = f1(zw

1 )× fc[p(zw
1 )] (9)

zh
2 = f1(zh

1)× fc[p(zh
1)] (10)

where f1 represents 3 × 3 convolution; p represents pooling; and fc represents pointwise
convolution. In addition, zw

2 and zh
2 represent the re-calibration maps of the 2 branches.

(3) Feature fusion output

The aggregation-corrected bi-directional spatial feature information zw
2 and zh

2 are
multiplied by the activation function to fuse the feature coordinate information in both
spatial directions. Then, the output feature map xc is obtained by multiplying the residual
structure with the original feature map x′c. The output feature map pays more attention to
apple diseases and less attention to other noises. Therefore, it can attenuate the interference
of irrelevant factors in apple leaf images.

x′c = [δ(zw
2 )× δ(zh

2)]× xc (11)

where δ represents the activation function sigmoid.

2.4.3. MFRM

As apple leaf diseases increase in severity, the same disease may take on different
characteristics. For example, a brown spot is usually a small yellow-brown spot initially, but
over time the spot will take on a dark, black color. In addition, different diseases may also
have very similar characteristics. For example, the initial spots of the Alternaria leaf spot
and rust are both brownish and blotchy. The intraclass variability and interclass similarity
of apple leaf diseases increases the difficulty of classification. In order to fully exploit the
differences and similarities between deep disease features, this paper proposes MFRM,
which extracts features under multiple sensory fields and interacts with the information
via the features of adjacent channels. The structure of MFRM is shown in Figure 4c.

First, we divided the input feature map into 4 branches with the same number of
channels, and each branch used a different operation. The first and second branches
were convolved using a 1 × 1 convolution and 3 × 3 convolution, respectively, aiming to
obtain the salient features of the apple leaf diseases. To reflect the disease features more
comprehensively, we performed operations in the third and fourth branches using dilated
convolution [36] with a void ratio of r = 3 and r = 5, respectively, to obtain the feature
information at different scales.

Then, to enrich the disease feature information, we performed the add operation
on the feature maps between adjacent branches. The fused images passed through a
1 × 1 convolution. This was performed with the aim of achieving information interaction
between the channels and to enhance the expression of the feature maps.

S′2 = f1[add(S1, S2)] (12)

S′3 = f1[add(S′2, S3)] (13)

S′4 = f1[add(S′3, S4)] (14)

where f1 represents the 1 × 1 convolution kernel, and S1, S2, S3, and S4 represent the
feature maps obtained after the first convolution operation for each of the 4 branches.
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Finally, we used the concat method on the feature maps of these 4 branches and passed
them through the activation function GELU. The use of the activation function GELU can
effectively reduce the phenomenon of gradient explosion and gradient disappearance, thus
helping the network to obtain stronger generalization ability.

S = σ[concat(S1, S′2, S′3, S′4)] (15)

where σ represents the activation function GELU and S represents the output feature map.

3. Experimental Results Analysis

In this section, we demonstrate through experiments the superiority of the method
proposed in this paper for apple leaf disease recognition and classification tasks in complex
backgrounds. Specifically, the section is divided into the following parts: (1) in Section 3.1,
we present the experimental settings and parameters, including hardware and software
environments, training methods, and parameter settings; (2) in Section 3.2, we show the
performance evaluation indicators used in this paper; (3) in Section 3.3, we compare BAM-
Net with other networks; (4) in Section 3.4, we assess the efficacy of each module in the
proposed methodology; (5) in Section 3.5, we explore the influence of various modules on
the performance of BAM-Net through ablation experiments; (6) in Section 3.6, we compare
BAM-Net with baseline and state-of-the-art networks; (7) and in Section 3.7, we discuss the
performance of BAM-Net on public datasets, verifying its generalization ability.

3.1. Experimental Environment and Parameter Setting

To ensure the fairness and validity of the experiments, all experiments in this paper
were conducted in the same hardware and software environment. The hardware and
software environments used in this paper are shown in Table 2. To reduce the computational
burden, we set the input size of the images to be uniformly 224 × 223 × 3. The original
dataset was obtained after the data expansion operation in Section 2.2, and a total of
17,688 apple leaf images were obtained.

Table 2. Hardware and software environment.

Hardware
Environment

CPU Intel(R) Xeon(R) Platinum 8352M

ARM 80 GB

Video Memory 50 GB

GPU NVIDIA GeForce RTX 3090

Software
Environment

OS Windows 11

PyTorch 1.11.0

Python 3.8

Cuda 11.3

MATLAB R2019a

In this paper, we undertook a five-fold cross-validation for the training test and
divided the images into training and test sets according to the ratio of 4:1. Moreover, we
conducted five repetitions of the experiments. We chose the average of the results of these
five experiments as the final experimental results. This strategy effectively avoids the
chance of unreliable experimental results.

To improve the training effect of the model, AdamW was used as the training optimizer
in this paper; by considering the actual performance of the hardware device, we set the
initial learning rate to 1× 10−3, the batch size to 64, the epoch to 50, and the momentum
parameter to 5× 10−4.
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3.2. Evaluation Indicators

To assess the efficacy of the proposed model, this paper employed accuracy, precision,
recall, and F1-score as the evaluation metrics for the purpose of classifying apple leaf
diseases. Accuracy denotes the ratio of accurately classified samples to the total number of
samples. Precision refers to the ratio of accurately classified positive samples to predicted
positive samples. Recall represents the ratio of accurately classified positive samples to
the actual positive samples. F1-score is the weighted average of precision and recall. The
specific expression is shown in Equations (16)–(19):

Accuracy =
TP + TN

TN + FN + TP + FP
(16)

Precision =
TP

FP + TP
(17)

Recall =
TP

TP + FN
(18)

F1− Score = 2×Precision× Recall
Precision + recall

(19)

Assume that the healthy apple leaves are positive samples. Then, TP represents the
number of leaves predicted to be healthy and whether the actual situation is healthy; FP
represents the number of leaves predicted to be healthy and whether the actual result is
non-healthy; FN is the number of leaves predicted to be healthy and whether the actual
result is non-healthy; and TN is the number of leaves predicted to be non-healthy and
whether the actual result is non-healthy.

To evaluate the effectiveness of the image enhancement algorithm, this paper uses
average gradient (AG), information entropy (IE), and standard deviation (Std) to evaluate
the quality of the image after enhancement. The corresponding calculation formulas are
as follows:

AG =
1

M× N
×

M−1

∑
i=0

N−1

∑
j=0

√
(F(i, j)− F(i + 1, j))2 + (F(i, j)− F(i, j + 1))2

2
(20)

IE = −
l−1

∑
m=0

p(m) log2 p(m) (21)

Std =

√√√√ 1
M× N

M−1

∑
i=0

N−1

∑
j=0

(F(i, j)− u)2 (22)

AG is the average gradient of the image, which is used to reflect the sharpness of the
image, and Std is the standard deviation of the image, which is used to measure the contrast
level of the image. Moreover, M and N are the length and width of the image, F(i, j) is the
pixel value of the image point, and u is the pixel mean value; IE is the information entropy
of the image, which is used to reflect the amount of information contained in the image;
and p(m) is the distribution density of the image gray level m, where l is the image gray
level and Std is the standard deviation of the image, which is used to measure the contrast
level of the image.

3.3. Comparison with Classical Networks

In this section, we compare BAM-Net with certain conventional classification models:
ConvNext-T [29], VGG-16 [37], ResNet-50 [32], ResNest-50 [38], and Densenet-121 [39].
First, we trained and tested all models in the same environment (the loss vs. accuracy curves
are shown in Figure 5). It can be found that BAM-Net starts to converge at approximately
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20 rounds, and the convergence speed is only lower than VGG-16 and Densenet-121;
however, the average accuracy is significantly higher than the other classification models
in this experiment.
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Table 3 shows the classification accuracies of these six classification models for the
different categories of apple leaves. The BAM-Net proposed in this paper has a high
accuracy in classifying apple leaves of all categories, including 96.84% and 95.61% for the
healthy and brown spot groups, respectively. However, its accuracy in detecting Alternaria
leaf spot is slightly lower than that of ConvNext-T. This is because the sample characteristics
of Alternaria leaf spot samples are very similar to the sample characteristics of rust, which
causes ConvNext-T to misclassify a large number of rust images as Alternaria leaf spot.
This results in a false high precision for Alternaria leaf spot and a low precision for rust.
On the other hand, due to the addition of ACAM and MFRM, the number of parameters of
the BAM-Net model is slightly higher than that of ConvNext-T. This also leads to a higher
training time for BAM-Net than ConvNext-T (+9 min 30 s).

Table 3. Comparison of classification accuracy across different networks.

Network Healthy (%) Brown Spot
(%)

Alternaria
Leaf Spot

(%)
Mosaic (%) Powdery

Mildew (%) Rust (%) Training Time

VGG-16 89.1 86.85 89.72 86.91 86.54 84.27 2 h 48 min 6 s
ResNet-50 92.67 84.19 93.46 85.91 89.05 86.34 2 h 45 min 28 s

Densenet-121 91.76 86.23 90.97 91.99 89.80 88.57 2 h 36 min 35 s
ResNest-50 89.01 90.83 91.93 88.75 90.71 85.83 3 h 4 min 55 s

ConvNext-T 91.03 89.57 95.87 90.18 92.67 88.04 3 h 7 min 13 s
BAM-Net 96.84 95.61 95.59 95.97 95.58 93.36 3 h 18 min 43 s

In order to verify the ability of BAM-Net to recognize interspecific similarities and
intraspecific variations in apple leaf diseases, we compared the disease recognition capa-
bilities of ConvNext-T and BAM-Net on these images and the results were compared. As
shown in Figure 6, ConvNext-T made recognition errors in some images, such as misiden-
tifying rust as Alternaria leaf spot and mosaic as brown spot. This is because in the late
stage of rust, the color of the lesion gradually becomes brown, which is similar to that
of Alternaria leaf spot, while in the late stage of mosaic, the surface of the leaf is almost
occupied by the yellow color that is similar to brown spot symptoms. However, BAM-Net
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still performed extremely well in these special cases and accurately identified these leaf
diseases. This indicates that BAM-Net has a high capability for identifying leaf diseases.
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3.4. Modules Effectiveness Analysis

In Section 3.3, we demonstrated that BAM-Net outperforms other conventional net-
works in the task of identifying and classifying apple leaf diseases in complex backgrounds.
To explore the reasons for this result and to further validate the effectiveness of the proposed
method, we conducted a module effectiveness analysis.

3.4.1. Effectiveness of Image Pre-Processing

In Section 2.3, we visually demonstrated the effects of using MSR, MSRCR, and BF-
MSRCR for image enhancement. Subjectively, BF-MSRCR can effectively highlight the
color and texture features of leaves in the images. In this section, to evaluate the image-
enhancement effects of different algorithms more objectively, we conducted comparative
experiments, the results of which are shown in Table 4. Image quality evaluation after
being enhanced by different algorithms). The images enhanced by BF-MSRCR have higher
average gradients, information entropy, and standard deviation, indicating that BF-MSRCR
also has better performance in improving image clarity and enhancing image details.

Next, we applied the same augmentation techniques, such as flipping, mirroring, crop-
ping, and random brightness adjustments, to the original dataset, the MSRCR-enhanced
dataset, and the BF-MSRCR-enhanced dataset in order to obtain the augmented versions
of each. Then, we trained and tested ConvNext-T on these six datasets separately. Table 5
displays the obtained results. The accuracy of the ConvNext-T model was significantly
improved after dataset expansion, which was due to the small number of samples in the
original dataset. Meanwhile, the expanded dataset provided more learnable features for
the model, which could better simulate apple leaf disease classification in the field envi-
ronment and improved the robustness of the model. By comparing the original dataset
with the image-enhanced dataset, it can be observed that the accuracy of the model was
also improved after image enhancement. This is due to the fact that there are a certain
number of blurred images in the dataset due to the influence of the shooting equipment
and environment when collecting data and because the image enhancement can make
the color features of leaves more obvious, as well as the fact that the model can extract
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more accurate leaf disease features. In addition, the BF-MSRCR-processed dataset had a
higher accuracy than the MSRCR-processed dataset because certain texture features may
be lost when using MSRCR for image enhancement, while BF-MSRCR successfully solved
this problem.

Table 4. Image quality evaluation after being enhanced by different algorithms.

Methods Image Average Gradient Information Entropy Standard Deviation

Original

Agronomy 2023, 13, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 6. Identification results for the presence of interclass mutations as well as interclass similar 

leaf disease images. 

3.4. Modules Effectiveness Analysis 

In Section 3.3, we demonstrated that BAM-Net outperforms other conventional 

networks in the task of identifying and classifying apple leaf diseases in complex 

backgrounds. To explore the reasons for this result and to further validate the effectiveness 

of the proposed method, we conducted a module effectiveness analysis. 

3.4.1. Effectiveness of Image Pre-Processing 

In Section 2.3, we visually demonstrated the effects of using MSR, MSRCR, and BF-

MSRCR for image enhancement. Subjectively, BF-MSRCR can effectively highlight the 

color and texture features of leaves in the images. In this section, to evaluate the image-

enhancement effects of different algorithms more objectively, we conducted comparative 

experiments, the results of which are shown in Table 4. Image quality evaluation after 

being enhanced by different algorithms). The images enhanced by BF-MSRCR have higher 

average gradients, information entropy, and standard deviation, indicating that BF-

MSRCR also has beFer performance in improving image clarity and enhancing image 

details. 

Table 4. Image quality evaluation after being enhanced by different algorithms. 

Methods Image Average Gradient Information Entropy Standard Deviation 

Original 

 

8.73 7.62 49.62 

MSR 

 

4.80 7.81 61.04 

MSRCR 

 

8.61 7.81 61.55 

8.73 7.62 49.62

MSR

Agronomy 2023, 13, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 6. Identification results for the presence of interclass mutations as well as interclass similar 

leaf disease images. 

3.4. Modules Effectiveness Analysis 

In Section 3.3, we demonstrated that BAM-Net outperforms other conventional 

networks in the task of identifying and classifying apple leaf diseases in complex 

backgrounds. To explore the reasons for this result and to further validate the effectiveness 

of the proposed method, we conducted a module effectiveness analysis. 

3.4.1. Effectiveness of Image Pre-Processing 

In Section 2.3, we visually demonstrated the effects of using MSR, MSRCR, and BF-

MSRCR for image enhancement. Subjectively, BF-MSRCR can effectively highlight the 

color and texture features of leaves in the images. In this section, to evaluate the image-

enhancement effects of different algorithms more objectively, we conducted comparative 

experiments, the results of which are shown in Table 4. Image quality evaluation after 

being enhanced by different algorithms). The images enhanced by BF-MSRCR have higher 

average gradients, information entropy, and standard deviation, indicating that BF-

MSRCR also has beFer performance in improving image clarity and enhancing image 

details. 

Table 4. Image quality evaluation after being enhanced by different algorithms. 

Methods Image Average Gradient Information Entropy Standard Deviation 

Original 

 

8.73 7.62 49.62 

MSR 

 

4.80 7.81 61.04 

MSRCR 

 

8.61 7.81 61.55 

4.80 7.81 61.04

MSRCR

Agronomy 2023, 13, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 6. Identification results for the presence of interclass mutations as well as interclass similar 

leaf disease images. 

3.4. Modules Effectiveness Analysis 

In Section 3.3, we demonstrated that BAM-Net outperforms other conventional 

networks in the task of identifying and classifying apple leaf diseases in complex 

backgrounds. To explore the reasons for this result and to further validate the effectiveness 

of the proposed method, we conducted a module effectiveness analysis. 

3.4.1. Effectiveness of Image Pre-Processing 

In Section 2.3, we visually demonstrated the effects of using MSR, MSRCR, and BF-

MSRCR for image enhancement. Subjectively, BF-MSRCR can effectively highlight the 

color and texture features of leaves in the images. In this section, to evaluate the image-

enhancement effects of different algorithms more objectively, we conducted comparative 

experiments, the results of which are shown in Table 4. Image quality evaluation after 

being enhanced by different algorithms). The images enhanced by BF-MSRCR have higher 

average gradients, information entropy, and standard deviation, indicating that BF-

MSRCR also has beFer performance in improving image clarity and enhancing image 

details. 

Table 4. Image quality evaluation after being enhanced by different algorithms. 

Methods Image Average Gradient Information Entropy Standard Deviation 

Original 

 

8.73 7.62 49.62 

MSR 

 

4.80 7.81 61.04 

MSRCR 

 

8.61 7.81 61.55 8.61 7.81 61.55

BF-MSRCR

Agronomy 2023, 13, x FOR PEER REVIEW 16 of 24 
 

 

BF-MSRCR 

 

10.85 7.90 68.84 

Next, we applied the same augmentation techniques, such as flipping, mirroring, 

cropping, and random brightness adjustments, to the original dataset, the MSRCR-

enhanced dataset, and the BF-MSRCR-enhanced dataset in order to obtain the augmented 

versions of each. Then, we trained and tested ConvNext-T on these six datasets separately.  

Table 5 displays the obtained results. The accuracy of the ConvNext-T model was 

significantly improved after dataset expansion, which was due to the small number of 

samples in the original dataset. Meanwhile, the expanded dataset provided more 

learnable features for the model, which could beFer simulate apple leaf disease 

classification in the field environment and improved the robustness of the model. By 

comparing the original dataset with the image-enhanced dataset, it can be observed that 

the accuracy of the model was also improved after image enhancement. This is due to the 

fact that there are a certain number of blurred images in the dataset due to the influence 

of the shooting equipment and environment when collecting data and because the image 

enhancement can make the color features of leaves more obvious, as well as the fact that 

the model can extract more accurate leaf disease features. In addition, the BF-MSRCR-

processed dataset had a higher accuracy than the MSRCR-processed dataset because 

certain texture features may be lost when using MSRCR for image enhancement, while 

BF-MSRCR successfully solved this problem. 

Table 5. The performance of the network before and after image pre-processing. 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Original 91.24 91.19 91.17 91.17 

MSRCR 91.61 91.72 91.26 91.48 

BF-MSRCR 91.94 91.84 91.85 91.84 

Original 

(Extended) 
91.82 91.05 91.56 91.30 

MSRCR 

(Extended) 
92.03 92.24 92.47 92.35 

BF-MSRCR 

(Extended) 
92.18 92.62 92.56 92.58 

3.4.2. Effectiveness of ACAM 

In this section, we introduced SE [40], CBAM [41], and CA [35] to the backbone 

network for comparative tests in order to investigate the classification effectiveness of 

BAM-Net for apple leaf diseases on the effects of different aFention mechanisms. The test 

results are shown in Table 6. The results indicate that CBAM and SE did not perform well 

in the task of apple leaf disease classification. This is because they lack spatial interaction 

with positional information, which makes them less precise in locating disease features 

and irrelevant information. Although ACAM brings more parameters, it has a more 

outstanding performance. Compared with models without an aFention mechanism, the 

F1-score increased by 1.03%, and accuracy increased by 2.67%. This is because the ACAM 

module can emphasize smaller objects, achieve channel interaction, and effectively guide 

the network to increase the aFention to disease feature areas. 

  

10.85 7.90 68.84

Table 5. The performance of the network before and after image pre-processing.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Original 91.24 91.19 91.17 91.17
MSRCR 91.61 91.72 91.26 91.48

BF-MSRCR 91.94 91.84 91.85 91.84
Original

(Extended) 91.82 91.05 91.56 91.30

MSRCR
(Extended) 92.03 92.24 92.47 92.35

BF-MSRCR
(Extended) 92.18 92.62 92.56 92.58

3.4.2. Effectiveness of ACAM

In this section, we introduced SE [40], CBAM [41], and CA [35] to the backbone
network for comparative tests in order to investigate the classification effectiveness of
BAM-Net for apple leaf diseases on the effects of different attention mechanisms. The test
results are shown in Table 6. The results indicate that CBAM and SE did not perform well
in the task of apple leaf disease classification. This is because they lack spatial interaction
with positional information, which makes them less precise in locating disease features
and irrelevant information. Although ACAM brings more parameters, it has a more
outstanding performance. Compared with models without an attention mechanism, the
F1-score increased by 1.03%, and accuracy increased by 2.67%. This is because the ACAM
module can emphasize smaller objects, achieve channel interaction, and effectively guide
the network to increase the attention to disease feature areas.
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Table 6. The impact of different attention networks on BAM-Net.

Method Accuracy (%) F1-Score (%) Param

Without attention 92.18 92.56 27.80 M
+SE 92.64 92.56 27.90 M

+CBAM 92.71 92.87 27.90 M
+CA 93.52 93.38 27.88 M

+ACAM 94.33 94.41 28.14 M

We selected five apple leaf disease images with complex backgrounds to visualize
and validate the effects of different attention mechanisms. According to Figure 7 (Visual
validation of different attention mechanisms), adding SE and CBAM can help the network
focus on the disease feature region compared to not adding attention mechanisms, but the
improvement is limited. Particularly with SE, interference regions similar to the disease
feature still have a significant impact on the network’s ability to extract disease features.
With the addition of CA, the network’s attention is mostly focused on the disease area,
but some non-disease areas that are extremely similar to the disease area can still be
misclassified as disease, affecting disease recognition accuracy. In contrast, the proposed
ACAM in this paper can guide the network to focus on the leaf and disease regions of
apple leaf disease images under different complex backgrounds, effectively suppressing the
interference of complex background information and improving the extraction of disease
feature information and recognition accuracy.
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Figure 7. Visual validation of different attention mechanisms.

3.4.3. Effectiveness of MRFM

Different combinations of dilation rates can affect the performance of MFRM. To
investigate the most suitable dilation rates for apple leaf disease classification, we conducted
a comparative experiment. We set the dilation rate combinations of MFRM to A (1:1:1), B
(1:2:3), C (1:3:5), D (1:5:8), and E (1:8:15), and then added them to the connection between
the backbone network and the classifier. The results are depicted in Figure 8. The effect of
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different expansion rates of MFRM on the performance of BAM-Net. The expansion ratios
for each group are A (1:1:1), B (1:2:3), C (1:3:5), D (1:5:8), and E (1:8:15), respectively.
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It can be seen that the model performs best in all performance indicators when the
expansion ratio in MFRM is 1:3:5. This is due to the fact that when the expansion ratio
is too large, the network cannot capture the minor disease features. Additionally, when
the expansion ratio is too small, the network cannot measure the difference between the
disease and its surrounding well. Additionally, when the expansion ratio in MFRM is 1:3:5,
the model is able to learn from more detailed apple leaf disease features at multiple scales.
The ability of the model to discriminate between similar disease features was improved.

3.5. Ablation Experiment

To evaluate the performance of BAM-Net, we conducted ablation experiments on our
self-made dataset of apple leaf images with complex backgrounds. We gradually added
BF-MSRCR, ACAM, and MFRM to the ConvNext-T backbone network and analyzed and
evaluated the performance of each module by comparing the changes in parameter quantity
and detection accuracy. The ablation experiment outcomes are illustrated in Table 7.

Table 7. Ablation experimental results.

Group Method Accuracy (%) F1-Score (%) Param FPS

1 Convnext-T 91.24 91.17 27.80 M 95.30
2 Convnext-T+BF-MSRCR 92.18 92.56 27.80 M 95.30
3 Convnex-Tt+MFRM 93.59 93.17 28.84 M 77.31
4 Convnext-T+ACAM 93.91 93.41 28.14 M 91.64
5 Convnext-T+ACAM+MFRM 94.79 93.79 29.18 M 74.97

6 Convnext-T+BF-
MSRCR+ACAM 94.33 94.14 28.14 M 91.64

7 Convnext-T+BF-
MSRCR+MFRM 94.06 93.91 28.84 M 77.31

8 BAM-Net 95.64 95.25 29.18 M 74.97

Comparing groups 6–8 with groups 3–5, we observed an improvement in the model
accuracy after image enhancement when using BF-MSRCR. This is because image en-
hancement makes the color and texture features of the leaves more prominent, making
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it easier for the model to extract features. When comparing Group 2 with Group 6, we
found that adding ACAM improved the model’s ability to filter interference information
during feature extraction, resulting in a significant improvement in accuracy (+2.15%).
However, the speed of the model’s disease recognition was not greatly affected, as the
FPS only dropped by 3.66, going from 95.30 to 91.64. When comparing Group 2 with
Group 7, we observed an improvement of 1.88% in model accuracy, which is due to the
enhanced discriminative ability of the model to identify leaf diseases when using MFRM,
which was achieved through further strengthening the feature information extracted from
the backbone network. When comparing Group 2, Group 6, and Group 8, we can see
that MFRM is the main reason for the decrease in model recognition speed as its use of a
multi-branch structure increases the model’s computational consumption to some extent.
When comparing Group 1 with Group 8, we observed that the accuracy of the network
increased by 4.40%, and the F1-score improved by 4.11% when we employed BF-MSRCR,
ACAM, and MFRM, concurrently. Meanwhile, the model’s FPS decreased from 95.30 to
74.97. Nevertheless, the drop in FPS is acceptable compared to the increase in leaf disease
recognition accuracy. The eight experiments fully demonstrate the effects of BF-MSRCR,
ACAM, and MFRM on the model performance.

3.6. Comparison with the Latest Network Model

In this section, we compared BAM-Net with other advanced classification models (i.e.,
Dual-Task Gabor CNN [42], Swin Transformer V2 [43], and FC-SNDPN [44]). The results
are shown in Table 8. On the task of apple leaf disease identification and classification in
complex backgrounds, all of the performance metrics showed an outperformance of the
other methods.

Table 8. Comparison of BAM-Net with the latest networks.

Network Accuracy (%) Precision (%) Recall (%) F1-Score (%) Training Time

Dual-Task Gabor CNN 93.23 93.14 92.93 93.03 2 h 26 min 26 s
Swin Transformer V2 94.77 93.84 94.63 93.72 3 h 46 min 48 s

FC-SNDPN 94.28 94.79 94.57 94.67 3 h 24 min 25 s
BAM-Net 95.64 95.62 95.89 95.25 3 h 18 min 43 s

To visualize the classification network’s ability to identify apple leaf diseases, we
compared the confusion matrices of BAM-Net and the three other networks. In the confu-
sion matrix, the numbers in the diagonal cells indicate the number of correctly predicted
samples, and the numbers in the non-diagonal cells indicate the number of incorrectly
predicted samples. As is shown in Figure 9, among the 3483 apple leaf images (test dataset),
Dual-Task Gabor CNN correctly identified and classified 3247; Swin-Transformer V2 cor-
rectly identified and classified 3301; FC-SNDPN correctly identified and classified 3284;
while BAM-Net correctly identified and classified 3331. Therefore, the BAM-Net model
proposed in this paper had the highest apple leaf recognition and classification efficiency
when compared with the latest networks.

3.7. Generalizability Experiment

The BAM-Net proposed in this paper was mainly used for apple leaf disease classi-
fication in complex backgrounds. Additionally, in this paper, we achieved outstanding
performance on the self-made apple leaves in complex backgrounds dataset. In this section,
to verify the generalization ability of BAM-Net, we re-trained and tested BAM-Net on the
public PlantVillage dataset [45] for three types of plants: apple leaves, corn leaves, and
grape leaves. A total of 3171 apple leaves were divided into four categories; a total of
3852 corn leaves were divided into four categories; and a total of 4062 grape leaves were
divided into four categories. The test results are shown in Table 9. When we utilized
BAM-Net to classify apple leaf diseases on the PlantVillage dataset, the accuracy that was
attained was 99.41%. This result was much higher than the result on the homemade dataset
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of this paper (+3.77%). This is because the backgrounds of the leaf images in the PlantVil-
lage dataset are all very simple, and there is no interference from background information
that is not related to the leaves, such as branches, fruits, and soil, thus allowing BAM-Net
to extract disease features more accurately. BAM-Net also achieved good results when used
on maize and grape leaves, with classification accuracies of 98.19% and 98.52%, respectively.
This is due to the existence of certain similarities among the leaves of different plants,
which means that leaf disease features are mostly reflected in color, texture, and shape. This
proves that BAM-Net has a strong generalization ability, which is not only applicable in the
identification and classification of apple leaf diseases in complex backgrounds but can also
be extended to other plants.
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Table 9. Results of generalization experiments.

Plant Categories Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Apple leaf All categories 99.54 99.39 99.46 99.41

Healthy 100 99.66

Scab 99.17 99.17

Rust 99.01 97.18

Black rot 100 99.55
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Table 9. Cont.

Plant Categories Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Corn leaf All categories 98.31 98.13 98.21 98.19

Healthy 98.17 97.93

Rust 98.54 98.25

Spot 97.64 97.65

Leaf blight 98.90 98.71

Grape leaf All categories 98.47 98.45 98.45 98.52

Healthy 98.59 98.22

Black
measles 98.37 98.93

Leaf blight 98.64 98.75

Black rot 98.28 97.91

4. Conclusions

In this paper, we proposed a network called BAM-Net, which aims to achieve the
efficient identification of apple leaf diseases in complex backgrounds. We constructed a
dataset of apple leaf images, totaling 17,688 images, in a complex background containing
healthy leaves and five categories representing different diseases. To help the network
train better, we used the BF-MSRCR algorithm to perform pre-processing operations on
the leaf images in the original dataset to highlight the leaf color and texture features in
the images. This approach effectively improved the accuracy of the subsequent network
in identifying apple leaf diseases (+1.35%). With BAM-Net, we used ConvNext-T as
the backbone network to extract the basic leaf disease feature information. To help the
network more effectively locate leaves in complex backgrounds, we used ACAM to filter
the complex interference information in images and to improve the network’s focus on
important features. Meanwhile, the MFRM module designed in this paper was used with
the aim to refine the deep feature information and also to improve the network’s ability to
distinguish similar disease features.

In the experimental part of this study, we used a five-fold cross-validation method
to validate the performance of BAM-Net. The results showed that BAM-Net achieved
excellent performance in the classification of six apple leaves with an accuracy of 95.64%
and an F1-score of 95.25%. In particular, for apple leaves suffering from brown spot and
mosaic, the classification accuracy reached 95.61% and 95.97%, respectively. A comparison
with the base network and the latest networks further validated the effectiveness of BAM-
Net, which improved the accuracy of the model while maintaining the standard detection
speed. This provides a reference value for modern agricultural producers to detect and
identify apple leaf diseases in a timely manner and provides significant help for early
agricultural conservation and production.

The proposed method can efficiently identify and classify apple leaf diseases in a
complex context, but there are still the following shortcomings: (1) The dataset contains
only six types of apple leaves, which is not comprehensive enough for practical applications.
Therefore, subsequent studies will help to enrich the apple leaf disease categories in the
dataset to help fruit farmers achieve more comprehensive detection and classification.
(2) Although the number of parameters in BAM-Net was only 28.14M, it is still far from
being truly lightweight. In the future, we will continue to explore more lightweight
strategies and deploy the model on mobile applications. This will enable farmers to
identify apple leaf diseases in real time using their smartphones anytime, anywhere. We
believe that this will help farmers identify and treat apple leaf diseases more quickly,
increasing their productivity and profitability. In addition, we plan to add a cloud-based
database to the mobile app that will allow farmers to access data on known apple leaf
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diseases and their treatments. This will further enhance the app’s functionality and enable
farmers to make more informed decisions about their disease management practices.
Overall, we are committed to improving our technology to better meet the needs of the
agricultural industry.
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