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Abstract: Understanding the genetic background of elite cultivated tomato germplasm resources in
crossbreeding and revealing the genetic basis of complex traits are vital for better-targeted germplasm
expansion and the creation of strong hybrids. Here, we obtained approximately 21 million single-
nucleotide polymorphisms (SNPs) based on the sequencing of 212 cultivated tomato accessions
and the population structure of which was revealed. More importantly, we found that target genes
distributed on chromosomes 1, 5, 9, and 11 may be actively selected in breeding. In particular, the
significant signals related to soluble sugar content (chr1_94170222, chr1_96273188, chr9_4167512,
and chr11_55592768), fruit firmness (chr5_4384919 and chr5_5111452) and gray leaf spot resistance
(chr11_8935252 and chr11_9707993) were also detected on the corresponding chromosomes, respec-
tively. Overall, we reported 28 significant association signals for nine agronomic traits based on a
mixed linear model (MLM), including 114 genes. Among these signals, 21 contained potential novel
genes for six fruit traits. These novel candidate genes located in genomic regions without previously
known loci or on different chromosomes explained approximately 16% of the phenotypic variance on
average in cultivated tomatoes. These findings could accelerate the identification and validation of
novel and known candidate genes and QTLs, improving the understanding of the genetic structure of
complex quantitative traits. These results also provide a basis for tomato breeding and improvement.

Keywords: tomato; sequencing; population structure; GWAS; genetic regions

1. Introduction

Tomatoes (Solanum lycopersicum L.) are a staple vegetable crop with a global distribu-
tion. According to statistics from the Food and Agriculture Organization of the United
Nations (FAO), the global production of tomatoes was more than 189.1 million tons from
5.17 million ha in 2021, which was approximately 4.3 million tons more than in the previous
year (https://www.fao.org/faostat (accessed on 2 February 2023)). Although production is
increasing, crop production is also facing major challenges, including improving the total
quantity of production, optimizing the quality, enhancing resistance (particularly disease
resistance), and coping with instability factors (global climate change)] [1]. It is critical
to breed tomato varieties with a higher yield, more stable production, high nutritional
value, resistance to diseases and insect pests, and greater adaptability to the environment
to satisfy the divergent consumption requirements [2]. However, breeding elite varieties
with multiple favorable characteristics and improved adaptability is a major challenge for
scientists and breeders [3].

The elite commercial tomato cultivars, now widely planted worldwide, are generally
hybrids, because crossbreeding, the most widely used and effective means of genetic im-
provement to select new varieties, can quickly integrate the genes required by multiple
varieties to obtain new varieties with better traits [4,5]. Research has shown that heterosis
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mainly depends on the genetic nature, diversity, and heterogeneity of the parents [6]. There-
fore, as a rich source of natural allelic variants, germplasm is essential for genetic analysis
and subsequent breeding applications. In the process from wild type to large-fruit culti-
vated type, the genetic diversity of modern cultivated tomatoes has relatively progressively
narrowed [7–9]. The continuous occurrence of artificial hybridization and recombination
events, fuzzy division of dominant populations, lack of excellent core germplasm, and
hybridization guidance theory limit the ability of traditional crossbreeding methods to
develop new varieties with aggregated elite traits based primarily on complementary
phenotypic crosses. Breeding practice shows that the location and cloning of numerous
dominant related loci or genes have important guiding significance for the aggregation of
excellent alleles, further improvement of modern elite cultivars, and better breeding of new
varieties. A genome-wide association study (GWAS) combines the analysis of phenotypic
trait data with genome-wide information to identify genes or genetic loci associated with
traits [10]. It was initially applied to maize in plants to reveal the characteristics of candidate
genes [11]. In the last decade, next-generation sequencing technologies (NGS) technologies
have provided a powerful tool to elucidate the breeding history of many crops, such as
grape [12], maize [13], cucumber [14], tomato [8], soybean [15], rice [16], Brassica rapa and
Brassica oleracea [17], and peach [18]. With the development and intense application of NGS,
GWAS has become a recognized strategy for decoding genotype–phenotype associations
in various species [19,20]. Based on single-nucleotide polymorphism (SNP) marker sites,
GWAS has successfully identified the genes and pathways underlying many economically
valuable agronomic traits (particularly yield- and yield-related traits) of crops, including
sorghum [21], rice [22], maize [23], and barley [24]. Currently, this approach is also widely
used in tomatoes to investigate the potential regulatory mechanisms of traits related to
yield [25,26] and quality [27–32]. Flowers and other plant characteristics have also been ex-
amined [3]. The results have shown associations with different traits, proving the potential
of GWAS to reveal the genetic architecture of complex traits [11,33,34]. Although several
loci associated with different traits have been identified in previous studies, these loci are
responsible for only some of the genetic variation in each examined trait in tomatoes [26].
Additionally, previous authors have noted that only a limited portion of the phenotypic
variation of a given trait can be explained in any given GWAS [35]. Hence, more work is
required to reveal the genetic basis of complex traits to better assist molecular breeding.

Here, the population structure relationships in a collection of 212 tomato accessions
representing different genetic backgrounds were revealed. This work reduces random
chance in selecting parents for crosses based solely on phenotype and provides a basis for
the classification and arrangement of germplasm resources and germplasm amplification.
Furthermore, on the basis of the phenotypic identification of nine agronomic traits, GWAS
was performed to identify and mine significant associated loci and candidate genes. These
findings could accelerate the validation of novel and known candidate genes and QTLs,
improving the understanding of the genetic structure of complex quantitative traits. These
results also provide the basis for tomato breeding and improvement.

2. Materials and Methods
2.1. Materials

A set of 212 cultivated tomato accessions were collected and used for association
analysis (Supplementary Materials Table S1). Traits of the set comprised diverse growth
types, fruit colors, fruit sizes, fruit shapes, etc. The seeds of all accessions were selfed
varieties above the 6th generation and were obtained from the Tomato Research Institute,
Northeast Agricultural University, Harbin, Heilongjiang Province, China, which acts as a
national key tomato genetics and breeding unit.

2.2. Field Experiment and Data Collection

Seeds of all accessions were sown at the Horticulture Experimental Station of Northeast
Agricultural University (E 125◦42′~130◦10′, N 44◦04′~46◦40′) on 27 March 2018. The
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seedlings were transplanted to Xiang-yang Farm on 28 April 2018 and field-planted in
plastic greenhouses at the farm on 28 May 2018. To reduce the impact of multiple factors, all
seedlings were planted in the same greenhouses. Each accession was randomly numbered.
Accessions were planted in sequence from L1 to L212. The mode, including ridge farming,
black plastic film mulching, and double-row side-by-side planting, was used. Ridge width
was 80 cm. Each accession was grown in a plot with one row, and each row consisted of
12 plants, with a plant spacing of 40 cm and a row spacing of 30 cm. To reduce deviation
and improve precision in phenotyping, guidelines were fixed on the ground at both ends
of each row, and the seedlings were planted carefully along the lines at the designated
density. During the experiment, normal agronomic field management measures for tomato
production under a shed were applied. The survey and statistics of related traits were
conducted from June to August.

Nine important agronomic traits were comprehensively evaluated and phenotyped to
study the genetic basis of yield, quality, and other related agronomic traits. These traits and
their measuring standards are shown in Table 1.

Table 1. List of 9 agro-morphological traits and their corresponding methods of determination.

Traits Criteria

Plant height (PH)//cm

At harvest for each accession, a measuring tape was used to measure five consecutive
plants, excluding those at the edges of the plot, and the average of the measurements was
taken. For the indeterminate type, plant height was recorded as the distance from the stem
base to the base of the fourth inflorescence in the upright growth state of the plant; for the
determinate type, it was recorded as the distance from the stem base to the base of the apical
inflorescence in the corresponding stage.

Fruit weight (FW)//g This is the total fruit yield of the plant divided by the total number of fruits for
each accession.

First ripening stage (FRS)//d
This is the number of days from sowing to the maturity of the first ripe fruit on a plant. For
each accession, to ensure the consistency of the ripening fruits harvested, the fruits
harvested 5 days after the breaking color stage were all harvested (Br + 5 days).

Fruit firmness (FF)//N

A peel sample of approximately 1 cm2 was removed with a blade positioned at a 120◦ angle
at the shoulder of each fruit. A probe of 1 cm2 was selected, and a handheld durometer
(HANAPI, MODEL GY-4) was used to measure hardness according to the manufacturer’s
instructions. For each accession, five complete fruits were randomly selected from each plot,
and the average value was considered the hardness value of the fruit in the plot.

Soluble sugar content (SSC)//%

In the full fruit period for each accession, five fruits were randomly chosen from each plot.
Each fruit was cut crosswise; the juice was squeezed out by hand and held in a clean, dry
container. Approximately the same amount of liquid was taken from five fruits and mixed
well. The soluble sugar content of the combined juice was determined using a digital
handheld Atago PAL-1 “Pocket” refractometer.

Locule number (LN) The average locule number was recorded from five fruits selected randomly from each plot
for each accession.

Fruit shape (FS)//%

Fruit shape was judged according to the fruit shape index size judge. It was recorded as the
ratio of the longitudinal diameter (H) to the transverse diameter (D). The longitudinal and
horizontal diameters were recorded with a Verniervernier caliper when counting locule
numbers. Flat: H/D ≤ 0.7, oblate: H/D = 0.71~01~0.85, round or nearly round: H/D =
0.86~1.0, oblong: H/D > 1.01.

Green shoulders (GS) Present or absent.

Gray leaf spot resistance (GLSR) Resistant or nonresistant in the natural state.

2.3. Statistical Analyses

Statistical analysis and processing of raw data, such as phenotypes, were performed us-
ing Excel 2016. Cluster analysis of 212 accessions based on phenotypic data was performed
by the software TBtools (Toolkit for Biologists integrating various big-data handling tools,
http://cj-chen.github.io/tbtools/ (accessed on 5 September 2022)). Pearson’s correlation

http://cj-chen.github.io/tbtools/
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was performed for five fruit traits, including FW, LN, SSC, FF, and FS, by the Origin 2019
software (OriginLab company, Northampton, MA, USA). Histograms and heatmaps were
mainly generated with Origin 2019 software. p-values were analyzed for significance by
one-way ANOVA and the LSD test in Origin 2019.

2.4. Whole Genome Resequencing, Sequence Alignment, and Genotype Calling

Total DNA extraction was performed using the leaf tissues of approximately 4.5-month-
old plants from each of the accessions. First, 848 paired-end sequencing libraries with an
insert size of approximately 300 bp were constructed for the project. After sample QC,
the qualified DNA samples were randomly fragmented by Covaris, and the fragments
were collected using magnetic beads. Adenine was added to end-repaired DNA fragments
before adaptor ligation. The fragments were then bridge amplified, and clusters were
generated. Sequencing of these DNA libraries was performed using the Illumina HiSeq
4000 sequencing platform.

First, the reads with a high proportion of adaptors and unknown or low-quality reads
in the raw data were removed. Here, we used the BGI in-house filter SOAPnuke to eliminate
unwanted reads and bases. Clean data were yielded after three-step raw data filtration.
Next, BWA was used to align filtered reads to the reference sequence (SL3.0) [36,37]. SNP
and indel detection processes were performed with GATK (version 3.36) [38]. We used an
analysis tool developed by BGI to perform SNP annotation and classification. The relevant
steps and parameters were as follows:

1. Three-step raw data filtration:

(1) Adaptor trimming. Any sequencing read with adaptor mapping rate higher
than 50% is removed.

(2) Low-quality reads trimming. Any sequencing read which consists of more
than 50% of low-quality bases (Q20 < 50%) is removed.

(3) Contiguous N bases trimming. Any sequencing read with over 2% of N base
read is removed.

2. The steps of SNP and indel calling:

(1) MarkDuplicates (Picard) was used for duplication trimming;
(2) GATK was used for indel realignment to avoid calling errors caused by indels;
(3) GATK was used for base recalibration;
(4) GATK was used for variant, SNP, and indel calling;
(5) The data were corrected. The filtration parameters for SNP calling: “QD < 2.0,

FS > 60.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < −8.0”. The
filtration parameters for indel calling: “QD < 2.0, FS > 200.0, ReadPosRankSum
< −20.0”.

2.5. Population Structure Analysis and Linkage Disequilibrium

The population structure was analyzed using the method of maximum likelihood
method in Admixture 3.0 software [39]. Before using Admixture, we used Plink to obtain
the required data files. The input parameter K varied from 2 to 10, which represented the
assumed groups of simulated populations in ancient times. The source of each sample
can be judged by the Bayesian clustering method. For each value of K, we set the burn-in
to 1,000,000 and ran 20 repeats using different random seeds, and reported the lowest
cross-validation score for each repeat. The cross-validation errors of each result were
compared; finally, the appropriate K was selected as the optimal group stratification value
for the GWAS. A neighbor-joining (NJ) tree and a principal component analysis (PCA) plot
were used to infer the population structure. The phylogenetic tree was constructed using
TreeBest software [40,41]. The genetic relatedness between individuals was constructed,
and the PCA was plotted using the GAPIT tool [42].

For linkage disequilibrium analysis, Haploview software [43] (version 4.2) was used
to calculate the correlation coefficients (r2) of different alleles. We calculated the mean r2
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value in each length range and plotted the relationship between r2 values and paired SNP
distances using the R language for the whole population.

2.6. Population SNP Filtering and Genotype Filling

Based on the results of data alignment to the reference genome (SL3.0), GATK software
was used to identify the various sample genotypes. Next, the genotype differences between
the samples were combined and integrated to produce a population SNP. Beagle software
was used to predict and fill the site of genotype deletion in each sample, and the results
were used for subsequent analysis. The filtering conditions to identify population SNPs
were as follows:

(1) The genotype of each sample had a quality ≥ 20;
(2) The number of unique reads supported by each genotype was greater than 2;
(3) The genotype copy number of each sample was >1.5;
(4) Each population SNP site was biallelic (including only two alleles). The missing rate

of each population SNP site was >0.4.

2.7. Genome-Wide Association Analysis

Based on the genotype dataset generated after the imputation of the missing genotypes,
association analysis was performed using the general linear model (GLM) and mixed linear
model (MLM) algorithms in Tassel 5.0 software [44]. The Manhattan and Q-Q plots were
plotted in R language.

In the GLM analysis, the equation used was as follows:

Y = Xα + e

In the MLM analysis, the equation used was as follows:

y = Xα + Pβ + Kµ + e.

where y is the phenotype, X is the genotype, P is the Q matrix of the results from the
population structure analysis, and K represents the matrix of the relative kinship. Xα and
Pβ are fixed effects, and Kµ and e are random effects. The P matrix was built via the top
five principal components to correct the population structure. The K matrix was built via
the simple matching coefficients matrix and then was compressed.

3. Results
3.1. Phenotypic Variation and Correlation Analysis

The agricultural morphological characterization of germplasm provides essential
information for crop breeding. In this study, the phenotypic values of all traits except for
green shoulders and gray leaf spot resistance were approximately normally distributed
(Supplementary Materials Figure S1). Phenotypic variation of the traits among accessions
was characterized by the mean, standard deviation, range, and coefficient of variation
(Table 2). The smallest and largest phenotypic variations were recorded in the first ripening
stage (4.72%) and fruit weight (35.04%), respectively. According to the cluster analysis of the
phenotypic data, the composition of the 212 accessions could be clearly indicated: cherry
type with high soluble sugar content and small fruit weight, Roman type with large fruit
shape, yellowish large-fruited tomato with large first ripening stage and fruit firmness, and
non-yellowish large-fruited tomato (Figure 1A). The interrelationship among fruit-related
traits was complex (Figure 1B). Especially for some antagonistic traits (such as quality and
yield), balancing these relationships is critical to obtain varieties with comprehensive trait
improvements. In summary, these data revealed extensive variation in the traits, suggesting
the suitability of the genotypic panel for association analysis.
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Table 2. Basic statistics of the phenotypic variations observed for 7 quantitative traits.

Traits Total Mean SD Min. Max. Mode Range CV (%)

PH//cm 212 124.2 20.61 69.7 177.43 123.9 107.73 16.59
FW//g 194 155.39 54.44 9.21 324.17 176.67 314.96 35.04
FRS//d 194 122.4 5.78 108 137 119 29 4.72

LN 212 4.33 1.17 2 8.5 4 6.5 27.04
SSC//% 212 4.8 0.99 3 10.4 4.3 7.4 20.71
FF//N 212 32.44 10.35 16.29 78.6 27.78 62.31 31.91

FS 212 0.91 0.19 0.71 2.49 0.87 1.78 21.38

SD—Standard deviation, CV—Coefficient variation.

Figure 1. Cluster analysis of 212 accessions based on phenotypic data and correlation analysis among
fruit-related traits. (A) Cluster analysis. To reduce the range of fluctuation of the phenotypic value of
each trait between different accessions, the phenotypic value was Log2 (Xi/X) normalized, where
Xi represents the phenotypic value of each trait, and X represents the mean phenotypic value of
the corresponding trait. The phenotypic levels were color-coded according to the normalized color
scale. The following related parameters were used in clustering: Dist method—Euclidean; Cluster
method—Average; Branch form—Equal. (B) Correlation analysis among fruit-related traits. The
numbers in the top right box represent the p values and significance, and the numbers in the bottom
left box represent the correlation coefficients. The correlation levels were color-coded according to
the color scale in the top right corner. The symbols * and ** indicate significance at the 0.05 and 0.01
probability levels, respectively.

3.2. Resequencing and SNP Marker Statistics

To explore the genetic basis of phenotypic variation, the 212 accessions were rese-
quenced at an average depth of 5×. The average coverage of the reference genome was
above 84%, and the mapping rate of the samples varied from 97.69% to 99.85% (Supplemen-
tary Materials Table S2). In total, we obtained 2021.59 Gbp of clean data (Q20 ≥ 95.06%)
after a three-step raw data filtration (Supplementary Materials Table S3).

After filtering out low-quality reads, 24,428,210 SNPs and indels (including 21,821,893
SNPs and 2,628,210 indels) were selected (Figure 2A). Among these variants, the fewest
SNPs (518,799) were located on chromosome 2, and the largest number of SNPs were located
on chromosome 9 (3,347,461). Among the identified SNPs, 2,701,235 SNPs (12.38%) were
located in the genic region. Of them, a total of 408,807 SNPs (1.91%) were located in the CDS,
including 237,015 non-synonymous and 179,861 synonymous mutations (Figure 2A). The
most and fewest non-synonymous/synonymous mutations were found on chromosomes 1
and 11, respectively (Figure 2B). In the genome, the ratio (non-synonymous/synonymous)
was 1.32 on average. Higher ratios were obtained for chromosomes 11, 5, and 9: 1.54, 1.52,
and 1.51, respectively (Figure 2B). This suggests that amino acids were significantly altered.
The distribution of so-called large-effect SNPs (SNPs representing potentially disabling
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gene functions) was further analyzed (Figure 2A). A total of 7720 SNPs were involved in
the premature termination of codons, 3951 SNPs disrupted a splice donor or acceptor site in
the genome, 8085 SNPs were related to a change in the initial methionine residue, and 1276
SNPs replaced the terminator with certain amino acid residues, resulting in a longer ORF.
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3.3. Analyses of Population Structure and Linkage Disequilibrium

To truly reflect the genetic heterogeneity and evolutionary relationships among acces-
sions, we ran Admixture v3.0 software with K values from 2 to 10 based on the previous
population SNP dataset obtained by population sequencing. We clearly observed that the
population could be divided into three different genetic groups when K = 3 (Figure 3B,C).
Each group comprised cherry tomatoes, Roman tomatoes, and non-yellowish and yellow-
ish large-fruited tomatoes, while cherry, Roman, and large-fruited tomatoes that formed
clusters were not identified (Figure 3A). These results were consistent with those of PCA
(Figure 3D). The results of the kinship analysis also indicated that genetic materials derived
from germplasms of different genetic backgrounds infiltrated each other in the breeding
process, resulting in the narrowing of the genetics of the offspring and the complexity of
kinship (Figure 3E). Among the 212 accessions, 112 were clustered in group I, 82 were
scattered in group II, and the remainder were located within group III. Except for L115,
the largest group I could also be divided into two subgroups, I-1 (57 accessions) and I-2
(54 accessions). Therein, it contains a large number of yellowish late-ripening tomatoes:
L38/L153/L155/L157/L158/L165/L166 (I-1) and L201/L205 (I-2); L186/L81/L80 (I-1) and
L175/L177/L76 (I-2) are cherry tomatoes; and L179/L50 (I-1) and L174/L181/L6 (I-2) are
Roman tomatoes. In group II, L83, L185, L203, and L188 are cherry tomatoes; L172 and L51
are Roman tomatoes; and L116, L154, and L204 are yellowish large-fruited tomatoes. In the
smallest group III, L170 are cherry tomatoes; L169 and L173 are Roman tomatoes; and L156
are yellowish large-fruited tomatoes. The most yellowish late-maturing cultivars existed in
group I-1, which may be related to the excessive selection of late-maturing-related genes
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for yield and fruit firmness. The measured LD level is the chromosome distance when
the LD coefficient is reduced to half the maximum value. Within 10 kb, a decay distance
of 6.2 kb for the LD coefficient was observed in the population (Figure 3F). This further
indicated that the LD decay distance of the population was relatively larger, likely because
of the decline in the genetic diversity of the population caused by the continuous selection
of some preferred traits in the artificial crossing process.

Figure 3. Inferred population structure and analyses of linkage disequilibrium in the 212 tomato
accessions. (A) Neighbor-joining tree. (B) Population structure based on K = 2–4 using Admixture. In
the panel, each individual is indicated with a vertical bar partitioned into different colored segments,
whose respective lengths represent the proportion of the individual’s genome in a given group.
(C) Estimated cross-validation error of possible clusters (K) from 2 to 10. (D) PCA of the 212 tomato
accessions. One dot represents each individual. (E) Heatmap of the pairwise kinship matrix of 212
genotypes. (F) Analyses of linkage disequilibrium within the 10 Kbp and 50 Kbp for 212 cultivated
tomato accessions using the SNP data.
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3.4. Genome-Wide Association Studies of Nine Agronomic Traits

After obtaining population analysis, the phenotypic data for nine agronomic traits
were called. We performed GWAS via the GLM and MLM algorithms using the high-
confidence SNP dataset obtained from the sequencing-based genotype dataset to uncover
the most significant marker–trait associations. Next, the Q-Q and Manhattan plots were
evaluated for evidence of p value inflation. The MLM approach, which considered genome-
wide patterns of genetic relatedness, substantially reduced false positives, as shown in
the Q-Q plots (Figures 4 and S2–S8). After multiple tests using standard methods, we
selected a high threshold of −log10 (P) > 8 as a parameter to avoid excessive false positives
and false negatives, and obtain more significant associated loci. A total of 28 significant
signals related to nine agronomic traits of interest were trapped via the MLM based on a
significance threshold of −log10 (P) > 8 significant thresholds (Table 3). Although we also
identified many associated signals via the GLM using the same threshold criteria, all were
discarded because they were complex and likely had too many false positives. Finally, we
focused on 28 significant association signals of the nine agronomic traits from the MLM.
These signal regions contained a total of 114 genes, explaining approximately 16% (from 3%
to 66% for different traits) of the observed phenotypic variance on average (Supplementary
Materials Table S4).
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Figure 4. Genome-wide association studies of plant height and fruit weight. (A,B) Manhattan
and Q-Q plots of the simple model for plant height. (C,D) Manhattan and Q-Q plots of the com-
pressed MLM for plant height. (E,F) Manhattan and Q-Q plots of the simple model for fruit weight.
(G,H) Manhattan and Q-Q plots of the compressed MLM for fruit weight. Chr 00 represents unan-
chored scaffolds. The red horizontal dashed line indicates the genome-wide significance threshold.
Gene numbers in red represent the known genes in the peak region, while gene numbers in black
represent the top four unknown genes with a large phenotypic interpretation rate detected in the
region. The yellow dotted line indicates the peak region where the labeled gene was located.
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Table 3. Genome-wide significant association signals of 9 agronomic traits from the compressed
mixed linear model (MLM).

Trait Chr. Position Major
Allele

Minor
Allele MAF. p Value

(MLM) r2

Plant height 6 46353169 A T 0.12 6.44 × 10−11 0.24
Fruit weight 2 47694175 T C 0.13 4.06 × 10−10 0.25

Green shoulder 10 2013127 A G 0.14 3.44 × 10−13 0.32
Green shoulder 10 2604503 A G 0.13 1.43 × 10−11 0.27
Locule number 2 47985032 A T 0.21 1.66 × 10−10 0.21

Soluble sugar content 1 94170222 G A 0.12 2.27 × 10−10 0.24
Soluble sugar content 1 96273188 C T 0.1 7.58 × 10−09 0.19
Soluble sugar content 9 4167512 G C 0.1 7.76 × 10−09 0.19
Soluble sugar content 11 55592768 A G 0.1 4.18 × 10−09 0.20

Fruit firmness 5 4384919 A G 0.11 9.80 × 10−10 0.22
Fruit firmness 5 5111452 A T 0.15 8.25 × 10−13 0.31

Fruit shape 1 2890288 A G 0.12 3.72 × 10−10 0.23
Fruit shape 2 47951509 C T 0.2 1.57 × 10−12 0.21
Fruit shape 3 62092567 T A 0.19 3.08 × 10−11 0.38
Fruit shape 9 67683800 C T 0.09 1.25 × 10−9 0.16
Fruit shape 11 25414107 A G 0.16 7.09 × 10−19 0.32

First ripening stage 1 85862723 T A 0.2 7.15 × 10−22 0.66
First ripening stage 3 64663939 G A 0.22 2.97 × 10−22 0.67
First ripening stage 5 64226376 T C 0.33 4.42 × 10−22 0.67
First ripening stage 12 7013308 G T 0.33 7.06 × 10−22 0.66
First ripening stage 12 17004519 A G 0.33 6.96 × 10−22 0.66
First ripening stage 12 34197328 A G 0.33 7.12 × 10−22 0.66
First ripening stage 12 48122820 T A 0.33 6.96 × 10−22 0.66
First ripening stage 12 58807917 T C 0.33 7.09 × 10−22 0.66
First ripening stage 12 61166133 A G 0.33 5.86 × 10−22 0.66
First ripening stage 12 61727125 A G 0.34 6.67 × 10−22 0.67

Gray leaf spot resistance 11 8935252 G C 0.21 4.15 × 10−10 0.21
Gray leaf spot resistance 11 9707993 G T 0.11 9.82 × 10−10 0.22

Chr.—Chromosome; MAF.—Minor allele freq.

Plant height revealed associations with two genes located on chromosome 6, explain-
ing 23.5–24.1% of the phenotypic variance (Figure 4C and Supplementary Materials Table
S4). A novel candidate gene, solyc06g074670.3, encoding UDP-apiose/xylose synthase,
was detected in the region of the known gene solyc06g074350.3 (self-pruning/SP) [45]. Fruit
weight showed 15 associated genes on chromosome 2, explaining approximately 7.9%
(5.5–13%) of the phenotypic variance on average (Figure 4G and Supplementary Materials
Table S4). Within this region, in addition to the known gene solyc02g083950.3 (wuschel) [46],
the protein kinase superfamily protein-encoding gene solyc02g084290.2 may also play an
important role in phenotypic variance in this study. For the green shoulder, the 16 genes
originating from two regions on chromosome 10 explained, on average, 18.9% (8.9–25.2%)
of the phenotypic variance (Supplementary Materials Figure S2C and Table S4). Outside the
region of the known gene solyc10g008160.3 (U) [47], a novel candidate gene solyc10g007158.1,
encoding the transcription factor GTE4, was examined.

The 11 associated genes related to locule number on chromosome 2 explained 4.5–12.7%
(average of 7.7%) of phenotypic variation (Supplementary Materials Figure S3C and
Table S4). We found that these genes and the regions in which they were located were
consistent with the fruit weight. It also indicates that the locule number was a major
factor causing the change in fruit weight. Regarding the soluble sugar content, a total of
22 genes were identified on chromosomes 1, 9, and 11, explaining approximately 11.2%
(7.8–16.9%) of the phenotypic variance on average (Supplementary Materials Figure S4C
and Table S4). The 14 genes originating from two regions of chromosome 1 explained,
on average, 11.8% of the phenotypic variance. Outside the region of the known gene
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solyc01g109790.3 (AgpL1) [48], a novel candidate gene, solyc10g007158.1, putatively encod-
ing an HXXXD-type acyl-transferase family protein, was examined. The two genes on
chromosome 9 explained, on average, 11% of the phenotypic variance. The six genes on
chromosome 11 explained, on average, 10.7% of the phenotypic variance. Interestingly, the
gene solyc11g071810.2 (fasciated), which is associated with increased fruit size due to an
increase in locules [49], may also have played an important role in the phenotypic variance
in this study. Four associated genes related to fruit firmness located in two regions of
chromosome 5 explained 6.4–11.8% of the phenotypic variation, with an average of 8.6%
(Supplementary Materials Figure S5C and Table S4). Of these genes, solyc05g011830.3 may
also have played an important role in the phenotypic variance in this study.

Regarding fruit shape, 16 association genes on chromosomes 1, 2, 3, 9, and 11 explained
approximately 15.7% of the phenotypic variance on average (Supplementary Materials
Figure S6C and Table S4). Two genes on chromosome 1 explained, on average, 12.8%
of the phenotypic variance. Five genes on chromosome 2 explained, on average, 10.7%
of the phenotypic variance. Of them, solyc02g083950.3 (wuschel) [46] plays an important
role in phenotypic variance. Five genes on chromosome 3 explained, on average, 28%
of the phenotypic variance. A novel candidate gene solyc01g107080.3, encoding a Myb
transcription factor, may also have played an important role in phenotypic variance in
this study. Three genes on chromosome 9 explained, on average, 12.1% of the phenotypic
variance. A novel candidate gene solyc11g032160.1 on chromosome 11, putatively encoding
Gamma-irradiation and mitomycin c induced 1, may also have played an important role in
phenotypic variance. The first ripening stage revealed associations with 18 genes located on
chromosomes 1, 3, 5, and 12, explaining approximately 36.3% (5–66.2%) of the phenotypic
variance on average (Supplementary Materials Figure S7C and Table S4). A novel candidate
gene solyc01g094550.3 on chromosome 1, putatively encoding acyl-CoA thioesterase, may
also have played an important role in phenotypic variance. Two genes on chromosome 3
explained, on average, 5.1% of the phenotypic variance. A gene on chromosome 5, encod-
ing an MYB transcription factor, explained, on average, 7.1% of the phenotypic variance.
Fourteen genes in seven regions of chromosome 12 explained 8.8–66.2% of the phenotypic
variation, with an average of 40.7%. The genes solyc12g049100.2, solyc12g049160.1, and
solyc12g049300.2 may also have played an important role in the phenotypic variance. Re-
garding gray leaf spot resistance, the 10 genes originating from two regions on chromosome
11 explained approximately 11.2% (4.3–17%) of the phenotypic variance on average (Sup-
plementary Materials Figure S8C and Table S4). Two genes encoded disease resistance
proteins, solyc11g020080.2 and solyc11g020100.2. The gene solyc11g018660.2, putatively
encoding NAC domain-containing protein, may have played an important role in the
phenotypic variance in this study. Here, we revalidated known locus and identified novel
candidate locus, the latter of which will be attractive candidates for follow-up studies to
advance our understanding of the genetic architecture of these traits.

4. Discussion

As shown in this study, there are obvious differences and complex correlations among
phenotypes, and even the group division of phenotypes does not truly reflect the interindi-
vidual heterogeneity in the population structure. Although heterosis depends on the
genetic nature, diversity, and heterogeneity of the parent [6], phenotypic heterogeneity
complementarity is the principle applied in traditional hybrid breeding. This may be one of
the factors contributing to the low efficiency and high random chance of traditional cross-
breeding in production practice [50]. The ambiguity of the genetic background limit better
breed improvement. Studies in maize have indicated that the magnitude of heterosis is cor-
related with the genetic distance among the parental inbred lines [51], and that intergroup
hybrids from different heterotic groups are more vigorous [1]. For maize, the genetically
different heterosis groups can be classified by genotype. The division of heterotic groups
has significantly improved the breeding efficiencies in maize, rice, and other crops [52,53].
Although a few studies are being attempted in this field [54,55], representational heterotic
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groups characterized at the genetic and phenotypic levels have not been established in
tomatoes. This topic will be the focus of future research emphasis to accelerate the breed-
ing progress. Overall, the work reduces the blindness reduced in selecting cross-parents
based solely on phenotype, and provides a basis for the classification and arrangement of
germplasm resources, construction of dominant populations, and germplasm amplification
and improvement.

Analyses of population structure and the genetic nature of traits help to accelerate the
breeding process. So far, GWAS has become a recognized strategy to decode genotype–
phenotype associations in species [19,20]. The main prerequisites for its success are the
population size, differences in sample abundance, and marker density [10,29,30]. Hence,
the establishment and adoption of large-scale heterotic groups may be more conducive to
the discovery of significant loci regulating important agronomic traits. Compared with
previous studies [56–58], a collection of 212 tomato accessions was used in this study, and
our relatively large sample collection comprised only modern accessions, excluding types
such as heirlooms and wild accessions. Although these conditions reduce the genetic
diversity of the set, given the population size and wide variability among sample traits
(Table 2), we believe that this collection was adequate for GWAS. A total of 28 significant
signals related to nine agronomic traits of interest were recorded (Table 3). Of these, seven
likely represent previously known loci for seven traits other than fruit firmness and the
first ripening stage, respectively. These results demonstrate the feasibility and effectiveness
of employing this collection to perform GWAS. The specific loci identified may also be
related to the fact that large-effect QTLs regulating the corresponding traits are commonly
stably selected in breeding and are easily detected in the population of modern cultivated
tomatoes. We found that these known loci were not the most prominent in the association
peak, which is consistent with previous findings that the peak signals of association loci
often appeared near known genes [59]. For a known peak signal region of a related
functional gene that has not been cloned, the true functional gene may be located near
the peak. For instance, the previously reported gene solyc11g018743.1 plays an important
role in the resistance to gray leaf spots [60], but we did not clone the resistance gene
in the corresponding position, and in subsequent verification, the gene solyc11g020100.2
encoding the resistance protein was found and cloned in the region near the peak signal
of this gene [61]. This also suggests that GWAS is a preliminary and reliable approach for
identifying the locations of QTLs, and this phenomenon may provide insight helping us to
verify and clone target functional genes.

Differences in the genetic background of the collection, year, environment and method
of phenotyping and the analysis model used may influence the intensity of associated peak
signals and the extent to which the signal peak deviates from target genes and allow the
identification of new QTLs for the traits under study [26]. In contrast to previous studies,
21 significant association signals were identified in genomic regions without previously
known loci for six traits (except plant height, fruit weight, and locule number), suggesting
the discovery of novel potential QTLs. For five of these signals, candidate genes related
to fruit quality (soluble sugar content and fruit firmness) and resistance were found on
chromosomes 1, 5, 9, and 11. There were higher rates of non-synonymous and synonymous
mutations in coding regions on chromosomes 5, 9, and 11 during SNP detection (Figure 3),
indicating that target genes distributed on these chromosomes may be retained during
breeding due to the active selection of related traits. Previous breeding goals have usually
focused on traits such as resistance, yield, and fruit firmness, which also significantly affect
tomato flavor [3]. Hence, the detection of a large number of QTLs related to fruit quality
(soluble sugar content and fruit firmness) and resistance on these chromosomes may be a
result of such positive selection. For instance, the previously known fruit firmness-related
genes were solyc10g080210 [62], solyc06g051800 [63], and solyc03g111690 [64]. Currently,
we detected novel association signals on chromosome 5. Additionally, previous studies
have shown that the gene AGPL1 (95773188-96773188) can increase the starch content of
immature fruits and the soluble solid content of mature fruits [48]. In genomic regions
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without previously known loci on chromosome 1 (93670222-94670222), we found a novel
gene solyc01g107080.3, which was predicted to encode an HXXXD-type acyl-transferase
family protein. Studies have shown that genes encoding this type of protein play an
important role in the corresponding various chilling effects [65]. We speculated that
the gene may function in regulating the accumulation of soluble sugar contents. These
candidate loci explained >10% of the phenotypic variation in the two traits (Table 3). Thus,
these genes may play an important role in regulating the corresponding traits.

Although fruit weight is one of the main factors affecting yield, the fruit weights and
soluble sugar contents were significantly negatively correlated (Figure 2B). Improvements
in yield frequently result in quality penalties, and there is thus considered to be a trade-off
between quality and yield. Therefore, the coordination of these traits is critical for the
integration of cultivars with overall excellent traits [66]. Currently, very little is known
about the intrinsic regulatory mechanism of this coordinated relationship. Although many
main effect sites that regulate fruit weight have been identified, such as fw1.1, fw1.2, fw2.1,
fw2.2, fw2.3, fw3.1, fw3.2, fw4.1, fw9.1, fw11.3, lc, fas, FAB, and FIN, only four of these sites
have been cloned: fw2.2, fw3.2, lc, and fas [67]. In this study, we only detected the lc gene,
likely because of the selected population composition and differences in how these genes
regulate fruit development. The gene lc showed associations with fruit weight, fruit shape,
and locule number. Because the present and previous studies have reported phenotypic
correlations among tomato fruit traits [58,68], the identification of QTLs with pleiotropic
effects is expected. Interestingly, we found that fas, regulating the locule number, could
explain 10.3% of the phenotypic variation in soluble sugar contents. Given the phenotypic
relationship between the two traits, this gene may be used as a negative regulator of soluble
sugar content. However, determining how it functions will certainly require follow-up
research. In addition, although the traits were correlated, we found no other multipotent
QTLs among fruit weight, first ripening stage, soluble sugar content, and fruit firmness,
possibly due to the small number of association signals for these traits in our study. This
result may be due to a small number of association signals for these traits in our study.
Overall, we reported 28 significant association signals for nine traits. Of these, 21 represent
potential novel QTLs for six fruit traits. Although further validation evidence is lacking,
the mining of numerous yield- and quality-related genes provides useful information and
insight for high-yield and high-quality tomato breeding.

5. Conclusions

Collectively, this work provides a molecular theoretical basis for the targeted expansion
and improvement of excellent cultivated tomato germplasm resources used to breed strong
hybrids. This work also highlighted the mining of yield- and quality-related genes. The
identification of numerous novel major loci controlling fruit firmness, shape, weight,
soluble sugar content, and maturity provides useful information and insight for breeding
and reveals further opportunities for in-depth studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13051191/s1, Figure S1: Frequency distribution of vari-
ation of nice traits in 212 cultivated tomato accessions.; Figure S2: Genome wide association studies
for green shoulder. (A) Manhattan plots of the simple model. Chr00 represents unanchored scaffolds.
Red horizontal dashed line indicates the genome-wide significance threshold. (B) Q-Q plot of the
simple model. (C) Manhattan plots of compressed MLM, as in A. (D) Q-Q plot of compressed MLM.
Gene number in red represent known gene in the peak region, while gene number in black represent
top four unknown genes with a large phenotypic interpretation rate detected in the region. The yellow
dotted line indicates the peak region where the labeled gene was located.; Figure S3: Genome wide
association studies for locule number. (A) Manhattan plots of the simple model. Chr00 represents
unanchored scaffolds. Red horizontal dashed line indicates the genome-wide significance threshold.
(B) Q-Q plot of the simple model. (C) Manhattan plots of compressed MLM, as in A. (D) Q-Q plot
of compressed MLM. Gene number in red represent known genes in the peak region, while gene
number in black represent top four unknown genes with a large phenotypic interpretation rate

https://www.mdpi.com/article/10.3390/agronomy13051191/s1
https://www.mdpi.com/article/10.3390/agronomy13051191/s1


Agronomy 2023, 13, 1191 14 of 17

detected in the region. The yellow dotted line indicates the peak region where the labeled gene was
located.; Figure S4: Genome wide association studies for soluble sugar content. (A) Manhattan plots
of the simple model. Chr00 represents unanchored scaffolds. Red horizontal dashed line indicates
the genome-wide significance threshold. (B) Q-Q plot of the simple model. (C) Manhattan plots of
compressed MLM, as in A. (D) Q-Q plot of compressed MLM. Gene numbers in red represent known
genes in the peak region, while gene number in black represent top four unknown gene with a large
phenotypic interpretation rate detected in the region. Gene number in blue font indicate gene known
to have other functions. The yellow dotted line indicates the peak region where the labeled gene
was located.; Figure S5: Genome wide association studies for fruit firmness. (A) Manhattan plots
of the simple model. Chr00 represents unanchored scaffolds. Red horizontal dashed line indicates
the genome-wide significance threshold. (B) Q-Q plot of the simple model. (C) Manhattan plots
of compressed MLM, as in A. (D) Q-Q plot of compressed MLM. Gene number in red represent
known gene in the peak region, while gene number in black represent top four unknown genes with
a large phenotypic interpretation rate detected in the region. The yellow dotted line indicates the
peak region where the labeled gene was located.; Figure S6: Genome wide association studies for
fruit shape. (A) Manhattan plots of the simple model. Chr00 represents unanchored scaffolds. Red
horizontal dashed line indicates the genome-wide significance threshold. (B) Q-Q plot of the simple
model. (C) Manhattan plots of compressed MLM, as in A. (D) Q-Q plot of compressed MLM. Gene
number in red represent known genes in the peak region, while gene number in black represent
top four unknown genes with a large phenotypic interpretation rate detected in the region. The
yellow dotted line indicates the peak region where the labeled gene was located.; Figure S7: Genome
wide association studies for first ripening stage. (A) Manhattan plots of the simple model. Chr00
represents unanchored scaffolds. Red horizontal dashed line indicates the genome-wide significance
threshold. (B) Q-Q plot of the simple model. (C) Manhattan plots of compressed MLM, as in A.
(D) Q-Q plot of compressed MLM. Gene number in red represent known gene in the peak region,
while gene number in black represent top four unknown genes with a large phenotypic interpretation
rate detected in the region. The yellow dotted line indicates the peak region where the labeled gene
was located.; Figure S8: Genome wide association studies for gray leaf spot. (A) Manhattan plots
of the simple model. Chr00 represents unanchored scaffolds. Red horizontal dashed line indicates
the genome-wide significance threshold. (B) Q-Q plot of the simple model. (C) Manhattan plots of
compressed MLM, as in A. (D) Q-Q plot of compressed MLM. Gene number in red represent known
gene in the peak region, while gene number in black represent top four unknown genes with a large
phenotypic interpretation rate detected in the region. The yellow dotted line indicates the peak region
where the labeled gene was located.; Table S1: List of tomato samples with diverse traits; Table S2:
The resequencing depth and mapping rate of sample; Table S3: Data quality of clean data; Table S4:
Associated loci and candidate genes according to gene annotation.

Author Contributions: Conceptualization, J.L. and J.J.; methodology, Z.L.; software, Z.L.; validation,
Z.L. and J.J.; formal analysis, Z.L.; investigation, Z.L. and J.J.; resources, J.J.; writing—original draft
preparation, Z.L.; writing—review and editing, Z.L.; visualization, Z.L.; supervision, J.J.; project
administration, J.J.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (32072589)
and the Heilongjiang Province key research and development plan (2022ZX02B07), and by grants
from the National Natural Science Foundation of China (U22A20496), the China Agriculture Re-
search System (CARS-23-A11), the National Natural Science Foundation of China (32002059), the
Heilongjiang Natural Science Foundation of China (LH2020C10).

Data Availability Statement: The raw sequencing data of this article are stored in the NCBI Sequence
Read Archive under ac-cession number SUB11874557.

Conflicts of Interest: The authors declare no conflict of interest.



Agronomy 2023, 13, 1191 15 of 17

References
1. Hochholdinger, F.; Baldauf, J.A. Heterosis in plants. Curr. Biol. 2018, 28, 1089–1092. [CrossRef]
2. Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.M.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff,

B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754. [CrossRef] [PubMed]
3. Mata-Nicolás, E.; Montero-Pau, J.; Gimeno-Paez, E.; Garcia-Carpintero, V.; Ziarsolo, P.; Menda, N.; Mueller, L.A.; Blanca, J.;

Cañizares, J.; van der Knaap, E.; et al. Exploiting the diversity of tomato: The development of a phenotypically and genetically
detailed germplasm collection. Hortic. Res. 2020, 7, 66. [CrossRef] [PubMed]

4. Huang, X.; Yang, S.; Gong, J.; Zhao, Q.; Feng, Q.; Zhan, Q.; Zhao, Y.; Li, W.; Cheng, B.; Xia, J.; et al. Genomic architecture of
heterosis for yield traits in rice. Nature 2016, 537, 629–633. [CrossRef] [PubMed]

5. Shen, P.; Gao, S.; Chen, X.; Lei, T.; Li, W.; Huang, Y.; Li, Y.; Jiang, M.; Hu, D.; Duan, Y.; et al. Genetic analysis of main flower
characteristics in the F1 generation derived from intraspecific hybridization between Plumbago auriculata and Plumbago auriculata f
alba. Sci. Hortic. 2020, 274, 109652. [CrossRef]

6. Liu, Z.; Jiang, J.; Ren, A.; Xu, X.; Zhang, H.; Zhao, T.; Jiang, X.; Sun, Y.; Li, J.; Yang, H. Heterosis and combining ability analysis of
fruit yield, early maturity, and quality in tomato. Agronomy 2021, 11, 807. [CrossRef]

7. García-Martínez, S.; Andreani, L.; Garcia-Gusano, M.; Geuna, F.; Ruiz, J.J. Evaluation of amplified fragment length polymorphism
and simple sequence repeats for tomato germplasm fingerprinting: Utility for grouping closely related traditional cultivars.
Genome 2006, 49, 648–656. [CrossRef] [PubMed]

8. Lin, T.; Zhu, G.; Zhang, J.; Xu, X.; Yu, Q.; Zheng, Z.; Zhang, Z.; Lun, Y.; Li, S.; Wang, X.; et al. Genomic analyses provide insights
into the history of tomato breeding. Nat. Genet. 2014, 46, 1220–1226. [CrossRef]

9. Blanca, J.; Montero-Pau, J.; Sauvage, C.; Bauchet, G.; Illa, E.; Díez, M.J.; Francis, D.; Causse, M.; van der Knaap, E.; Cañizares, J.
Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genom. 2015, 16, 257. [CrossRef]

10. Huang, X.; Han, B. Natural Variations and Genome-Wide Association Studies in Crop Plants. Annu. Rev. Plant Biol. 2014, 65,
531–551. [CrossRef]

11. Thornsberry, J.M.; Goodman, M.M.; Doebley, J.; Kresovich, S.; Nielsen, D.; Buckler, E.S. Dwarf 8 polymorphisms associate with
variation in flowering time. Nat. Genet. 2001, 28, 286–289. [CrossRef] [PubMed]

12. Myles, S.; Boyko, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.-M.; Ware, D.; et al.
Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA 2011, 108, 3530–3535. [CrossRef]

13. Hufford, M.B.; Xu, X.; van Heerwaarden, J.; Pyhäjärvi, T.; Chia, J.-M.; Cartwright, R.A.; Elshire, R.J.; Glaubitz, J.C.; Guill, K.E.;
Kaeppler, S.M.; et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 2012, 44, 808–811.
[CrossRef] [PubMed]

14. Qi, J.; Liu, X.; Shen, D.; Miao, H.; Xie, B.; Li, X.; Zeng, P.; Wang, S.; Shang, Y.; Gu, X.; et al. A genomic variation map provides
insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 2013, 45, 1510–1515. [CrossRef] [PubMed]

15. Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y.; et al. Resequencing 302 wild and cultivated
accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [CrossRef]

16. Meyer, R.S.; Choi, J.Y.; Sanches, M.; Plessis, A.; Flowers, J.M.; Amas, J.; Dorph, K.; Barretto, A.; Gross, B.; Fuller, D.Q.; et al.
Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat. Genet. 2016, 48, 1083–1088.
[CrossRef]

17. Cheng, F.; Sun, R.; Hou, X.; Zheng, H.; Zhang, F.; Zhang, Y.; Liu, B.; Liang, J.; Zhuang, M.; Liu, Y.; et al. Subgenome parallel
selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.
Nat. Genet. 2016, 48, 1218–1224. [CrossRef]

18. Li, Y.; Cao, K.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Zhao, P.; Guo, J.; Ding, T.; Guan, L.; et al. Genomic analyses of an extensive
collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biol. 2019, 20, 36. [CrossRef]
[PubMed]

19. Wang, H.; Xu, C.; Liu, X.; Guo, Z.; Xu, X.; Wang, S.; Xie, C.; Li, W.-X.; Zou, C.; Xu, Y. Development of a multiple-hybrid population
for genome-wide association studies: Theoretical consideration and genetic mapping of flowering traits in maize. Sci. Rep. 2017,
7, 40239. [CrossRef]

20. Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide Association Studies in Maize: Praise and Stargaze. Mol. Plant 2017,
10, 359–374. [CrossRef]

21. Upadhyaya, H.D.; Wang, Y.-H.; Sastry, D.V.; Dwivedi, S.L.; Prasad, P.V.; Burrell, A.M.; Klein, R.R.; Morris, G.P.; Klein, P.E.
Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions. Genome 2015,
59, 137–145. [CrossRef]

22. Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.-C.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-
wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat.
Genet. 2016, 48, 927–934. [CrossRef]

23. Li, Y.; Li, C.; Bradbury, P.J.; Liu, X.; Lu, F.; Romay, C.M.; Glaubitz, J.C.; Wu, X.; Peng, B.; Shi, Y.; et al. Identification of genetic
variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J. 2016, 86,
391–402. [CrossRef]

24. Maurer, A.; Draba, V.; Pillen, K. Genomic dissection of plant development and its impact on thousand grain weight in barley
through nested association mapping. J. Exp. Bot. 2016, 67, 2507–2518. [CrossRef]

https://doi.org/10.1016/j.cub.2018.06.041
https://doi.org/10.1038/s41587-019-0152-9
https://www.ncbi.nlm.nih.gov/pubmed/31209375
https://doi.org/10.1038/s41438-020-0291-7
https://www.ncbi.nlm.nih.gov/pubmed/32377357
https://doi.org/10.1038/nature19760
https://www.ncbi.nlm.nih.gov/pubmed/27602511
https://doi.org/10.1016/j.scienta.2020.109652
https://doi.org/10.3390/agronomy11040807
https://doi.org/10.1139/g06-016
https://www.ncbi.nlm.nih.gov/pubmed/16936844
https://doi.org/10.1038/ng.3117
https://doi.org/10.1186/s12864-015-1444-1
https://doi.org/10.1146/annurev-arplant-050213-035715
https://doi.org/10.1038/90135
https://www.ncbi.nlm.nih.gov/pubmed/11431702
https://doi.org/10.1073/pnas.1009363108
https://doi.org/10.1038/ng.2309
https://www.ncbi.nlm.nih.gov/pubmed/22660546
https://doi.org/10.1038/ng.2801
https://www.ncbi.nlm.nih.gov/pubmed/24141363
https://doi.org/10.1038/nbt.3096
https://doi.org/10.1038/ng.3633
https://doi.org/10.1038/ng.3634
https://doi.org/10.1186/s13059-019-1648-9
https://www.ncbi.nlm.nih.gov/pubmed/30791928
https://doi.org/10.1038/srep40239
https://doi.org/10.1016/j.molp.2016.12.008
https://doi.org/10.1139/gen-2015-0122
https://doi.org/10.1038/ng.3596
https://doi.org/10.1111/tpj.13174
https://doi.org/10.1093/jxb/erw070


Agronomy 2023, 13, 1191 16 of 17

25. Ye, J.; Wang, X.; Wang, W.; Yu, H.; Ai, G.; Li, C.; Sun, P.; Wang, X.; Li, H.; Ouyang, B.; et al. Genome-wide association study reveals
the genetic architecture of 27 agronomic traits in tomato. Plant Physiol. 2021, 186, 2078–2092. [CrossRef]

26. Kim, M.; Nguyen, T.T.P.; Ahn, J.-H.; Kim, G.-J.; Sim, S.-C. Genome-wide association study identifies QTL for eight fruit traits in
cultivated tomato (Solanum lycopersicum L.). Hortic. Res. 2021, 8, 203. [CrossRef]

27. Ranc, N.; Muños, S.; Xu, J.; Le Paslier, M.-C.; Chauveau, A.; Bounon, R.; Rolland, S.; Bouchet, J.-P.; Brunel, D.; Causse, M.
Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum
var. cerasiforme. G3 Genes|Genomes|Genetics 2012, 2, 853–864. [CrossRef] [PubMed]

28. Xu, J.; Ranc, N.; Muños, S.; Rolland, S.; Bouchet, J.-P.; Desplat, N.; Le Paslier, M.-C.; Liang, Y.; Brunel, D.; Causse, M. Phenotypic
diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor. Appl. Genet. 2013, 126,
567–581. [CrossRef] [PubMed]

29. Ruggieri, V.; Francese, G.; Sacco, A.; D’Alessandro, A.; Rigano, M.M.; Parisi, M.; Milone, M.; Cardi, T.; Mennella, G.; Barone, A.
An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014, 14, 337.
[CrossRef] [PubMed]

30. Sauvage, C.; Segura, V.; Bauchet, G.; Stevens, R.; Do, P.T.; Nikoloski, Z.; Fernie, A.R.; Causse, M. Genome-wide association in
tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014, 165, 1120–1132. [CrossRef]

31. Zhang, J.; Zhao, J.; Xu, Y.; Liang, J.; Chang, P.; Yan, F.; Li, M.; Liang, Y.; Zou, Z. Genome-wide association mapping for tomato
volatiles positively contributing to tomato flavor. Front. Plant Sci. 2015, 6, 1042. [CrossRef]

32. Burgos, E.; De Luca, M.B.; Diouf, I.; Haro, L.A.; Albert, E.; Sauvage, C.; Tao, Z.J.; Bermudez, L.; Asís, R.; Nesi, A.N.; et al.
Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate
metabolism in tomato. Plant J. 2020, 105, 15077. [CrossRef]

33. Beló, A.; Zheng, P.; Luck, S.; Shen, B.; Meyer, D.J.; Li, B.; Tingey, S.; Rafalski, A. Whole genome scan detects an allelic variant of
fad2 associated with increased oleic acid levels in maize. Mol. Genet. Genom. 2008, 279, 1–10. [CrossRef] [PubMed]

34. Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five Years of GWAS Discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [CrossRef]
35. Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. [CrossRef]
36. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760.

[CrossRef]
37. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595.

[CrossRef] [PubMed]
38. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Align-

ment/Map (SAM) format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]
39. Han, B.; Huang, X. Sequencing-based genome-wide association study in rice. Curr. Opin. Plant Biol. 2013, 16, 133–138. [CrossRef]
40. Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and

correlated allele frequencies. Genetics 2003, 164, 1567–1587. [CrossRef] [PubMed]
41. Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4,

406–425. [CrossRef]
42. Patterson, N.; Price, A.L.; Reich, D. Population Structure and Eigenanalysis. PLoS Genet. 2006, 2, e190. [CrossRef] [PubMed]
43. Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005,

21, 263–265. [CrossRef] [PubMed]
44. Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155,

945–959. [CrossRef] [PubMed]
45. Pnueli, L.; Carmel-Goren, L.; Hareven, D.; Gutfinger, T.; Alvarez, J.; Ganal, M.; Zamir, D.; Lifschitz, E. The SELF-PRUNING

gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL.
Development 1998, 125, 1979–1989. [CrossRef] [PubMed]

46. Muños, S.; Ranc, N.; Botton, E.; Bérard, A.; Rolland, S.; Duffé, P.; Carretero, Y.; Le Paslier, M.-C.; Delalande, C.; Bouzayen, M.; et al.
Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol.
2011, 156, 2244–2254. [CrossRef]

47. Powell, A.L.T.; Nguyen, C.V.; Hill, T.; Cheng, K.L.; Figueroa-Balderas, R.; Aktas, H.; Ashrafi, H.; Pons, C.; Fernández-Muñoz, R.;
Vicente, A.; et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development.
Science 2012, 336, 1711–1715. [CrossRef] [PubMed]

48. Petreikov, M.; Shen, S.; Yeselson, Y.; Levin, I.; Bar, M.; Schaffer, A.A. Temporally extended gene expression of the ADP-Glc
pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit. Planta 2006, 224,
1465–1479. [CrossRef]

49. Cong, B.; Barrero, L.S.; Tanksley, S.D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size
during tomato domestication. Nat. Genet. 2008, 40, 800–804. [CrossRef]

50. Li, J.F. (Ed.) Chinese Tomato Breeding; China Agriculture Publishing House: Beijing, China, 2011; Volume 140, pp. 125–127.
51. Moll, R.H.; Lonnquist, J.H.; Fortuno, J.V.; Johnson, E.C. The relationship of heterosis and genetic divergence in maize. Genet. 1965,

52, 139–144. [CrossRef]
52. Xie, F.; He, Z.; Esguerra, M.Q.; Qiu, F.; Ramanathan, V. Determination of heterotic groups for tropical Indica hybrid rice germplasm.

Theor. Appl. Genet. 2013, 127, 407–417. [CrossRef] [PubMed]

https://doi.org/10.1093/plphys/kiab230
https://doi.org/10.1038/s41438-021-00638-4
https://doi.org/10.1534/g3.112.002667
https://www.ncbi.nlm.nih.gov/pubmed/22908034
https://doi.org/10.1007/s00122-012-2002-8
https://www.ncbi.nlm.nih.gov/pubmed/23124430
https://doi.org/10.1186/s12870-014-0337-9
https://www.ncbi.nlm.nih.gov/pubmed/25465385
https://doi.org/10.1104/pp.114.241521
https://doi.org/10.3389/fpls.2015.01042
https://doi.org/10.1111/tpj.15077
https://doi.org/10.1007/s00438-007-0289-y
https://www.ncbi.nlm.nih.gov/pubmed/17934760
https://doi.org/10.1016/j.ajhg.2011.11.029
https://doi.org/10.1038/456018a
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp698
https://www.ncbi.nlm.nih.gov/pubmed/20080505
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/j.pbi.2013.03.006
https://doi.org/10.1093/genetics/164.4.1567
https://www.ncbi.nlm.nih.gov/pubmed/12930761
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1371/journal.pgen.0020190
https://www.ncbi.nlm.nih.gov/pubmed/17194218
https://doi.org/10.1093/bioinformatics/bth457
https://www.ncbi.nlm.nih.gov/pubmed/15297300
https://doi.org/10.1093/genetics/155.2.945
https://www.ncbi.nlm.nih.gov/pubmed/10835412
https://doi.org/10.1242/dev.125.11.1979
https://www.ncbi.nlm.nih.gov/pubmed/9570763
https://doi.org/10.1104/pp.111.173997
https://doi.org/10.1126/science.1222218
https://www.ncbi.nlm.nih.gov/pubmed/22745430
https://doi.org/10.1007/s00425-006-0316-y
https://doi.org/10.1038/ng.144
https://doi.org/10.1093/genetics/52.1.139
https://doi.org/10.1007/s00122-013-2227-1
https://www.ncbi.nlm.nih.gov/pubmed/24231919


Agronomy 2023, 13, 1191 17 of 17

53. Suwarno, W.B.; Pixley, K.V.; Palacios-Rojas, N.; Kaeppler, S.M.; Babu, R. Formation of Heterotic Groups and Understanding
Genetic Effects in a Provitamin A Biofortified Maize Breeding Program. Crop Sci. 2014, 54, 14–24. [CrossRef]

54. He, L.S. Study on division of processing tomato geterosis group and utilization of heterosis models. North. Hortic. 2012, 18, 25–27.
55. Jin, L.; Zhao, L.P.; Wang, Y.L.; Xu, L.P.; Zhou, R.; Song, L.X. Combining ability and division of heterosis group in tomato. Jiangsu J.

Agric. Sci. 2019, 35, 667–675.
56. Ranc, N.; Muños, S.; Santoni, S.; Causse, M. A clarified position for solanum lycopersicum var. cerasiformein the evolutionary

history of tomatoes (solanaceae). BMC Plant Biol. 2008, 8, 130. [CrossRef]
57. Albert, E.; Segura, V.; Gricourt, J.; Bonnefoi, J.; Derivot, L.; Causse, M. Association mapping reveals the genetic architecture of

tomato response to water deficit: Focus on major fruit quality traits. J. Exp. Bot. 2016, 22, 6413–6430. [CrossRef]
58. Phan, M.A.T.; Bucknall, M.P.; Arcot, J. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of

anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion. Food Chem. 2019,
289, 125040. [CrossRef]

59. Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies
of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [CrossRef]

60. Su, X.; Zhu, G.; Huang, Z.; Wang, X.; Guo, Y.; Li, B.; Du, Y.; Yang, W.; Gao, J. Fine mapping and molecular marker development of
the Sm gene conferring resistance to gray leaf spot (Stemphylium spp.) in tomato. Theor. Appl. Genet. 2018, 132, 871–882. [CrossRef]

61. Yang, H.; Wang, H.; Jiang, J.; Liu, M.; Liu, Z.; Tan, Y.; Zhao, T.; Zhang, H.; Chen, X.; Li, J.; et al. The Sm gene conferring resistance
to gray leaf spot disease encodes an NBS-LRR (nucleotide-binding site-leucine-rich repeat) plant resistance protein in tomato.
Theor. Appl. Genet. 2022, 135, 1467–1476. [CrossRef] [PubMed]

62. Bird, C.R.; Smith, C.J.S.; Ray, J.A.; Moureau, P.; Bevan, M.W.; Bird, A.S.; Hughes, S.; Morris, P.; Grierson, D.; Schuch, W. The tomato
polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol. Biol. 1988, 11, 651–662. [CrossRef]

63. Brummell, D.A.; Harpster, M.H.; Civello, P.M.; Palys, J.M.; Bennett, A.B.; Dunsmuir, P. Modification of expansin protein abundance
in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 1999, 11, 2203–2216. [CrossRef]
[PubMed]

64. Uluisik, S.; Chapman, N.H.; Smith, R.; Poole, M.; Adams, G.; Gillis, R.B.; Besong, T.M.D.; Sheldon, J.; Stiegelmeyer, S.; Perez, L.;
et al. Erratum: Corrigendum: Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 2016, 34,
950–952. [CrossRef]

65. Hao, X.; Wang, B.; Wang, L.; Zeng, J.; Yang, Y.; Wang, X. Comprehensive transcriptome analysis reveals common and specific
genes and pathways involved in cold acclimation and cold stress in tea plant leaves. Sci. Hortic. 2018, 240, 354–368. [CrossRef]

66. He, G.M.; Deng, X.W. On the molecular basis of heterosis in plant: Opportunity and challenge. China Basic Sci. 2016, 18, 28–34, 64.
67. Du, M.M.; Zhou, M.; Deng, L.; Li, C.Y.; Li, C.B. Current status and prospects on tomato molecular breeding—From gene cloning

to cultivar improvement. Acta Hortic. Sin. 2017, 44, 581–600. [CrossRef]
68. Hernández-Bautista, A.; Lobato-Ortiz, R.; Cruz-Izquierdo, S.; García-Zavala, J.J.; Chávez-Servia, J.L.; Hernández-Leal, E.;

Bonilla-Barrientos, O. Fruit size QTLs affect in a major proportion the yield in tomato. Chil. J. Agric. Res. 2015, 75, 402–409.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2135/cropsci2013.02.0096
https://doi.org/10.1186/1471-2229-8-130
https://doi.org/10.1093/jxb/erw411
https://doi.org/10.1016/j.foodchem.2019.125040
https://doi.org/10.1038/ng.695
https://doi.org/10.1007/s00122-018-3242-z
https://doi.org/10.1007/s00122-022-04047-6
https://www.ncbi.nlm.nih.gov/pubmed/35165745
https://doi.org/10.1007/BF00017465
https://doi.org/10.1105/tpc.11.11.2203
https://www.ncbi.nlm.nih.gov/pubmed/10559444
https://doi.org/10.1038/nbt.3602
https://doi.org/10.1016/j.scienta.2018.06.008
https://doi.org/10.16420/j.issn.0513-353x.2016-0795
https://doi.org/10.4067/S0718-58392015000500004

	Introduction 
	Materials and Methods 
	Materials 
	Field Experiment and Data Collection 
	Statistical Analyses 
	Whole Genome Resequencing, Sequence Alignment, and Genotype Calling 
	Population Structure Analysis and Linkage Disequilibrium 
	Population SNP Filtering and Genotype Filling 
	Genome-Wide Association Analysis 

	Results 
	Phenotypic Variation and Correlation Analysis 
	Resequencing and SNP Marker Statistics 
	Analyses of Population Structure and Linkage Disequilibrium 
	Genome-Wide Association Studies of Nine Agronomic Traits 

	Discussion 
	Conclusions 
	References

