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Abstract: The rapid and accurate identification of citrus leaf diseases is crucial for the sustainable 

development of the citrus industry. Because citrus leaf disease samples are small, unevenly 

distributed, and difficult to collect, we redesigned the generator structure of FastGAN and added 

small batch standard deviations to the discriminator to produce an enhanced model called 

FastGAN2, which was used for generating citrus disease and nutritional deficiency (zinc and 

magnesium deficiency) images. The performance of the existing model degrades significantly when 

the training and test data exhibit large differences in appearance or originate from different regions. 

To solve this problem, we propose an EfficientNet-B5 network incorporating adaptive angular 

margin (Arcface) loss with the adversarial weight perturbation mechanism, and we call it 

EfficientNet-B5-pro. The FastGAN2 network can be trained using only 50 images. The Fréchet 

Inception Distance (FID) and Kernel Inception Distance (KID) are improved by 31.8% and 59.86%, 

respectively, compared to the original FastGAN network; 8000 images were generated using the 

FastGAN2 network (2000 black star disease, 2000 canker disease, 2000 healthy, 2000 deficiency). 

Only images generated by the FastGAN2 network were used as the training set to train the ten 

classification networks. Real images, which were not used to train the FastGAN2 network, were 

used as the test set. The average accuracy rates of the ten classification networks exceeded 93%. The 

accuracy, precision, recall, and F1 scores achieved by EfficientNet-B5-pro were 97.04%, 97.32%, 

96.96%, and 97.09%, respectively, and they were 2.26%, 1.19%, 1.98%, and 1.86% higher than those 

of EfficientNet-B5, respectively. The classification network model can be successfully trained using 

only the images generated by FastGAN2, and EfficientNet-B5-pro has good generalization and 

robustness. The method used in this study can be an effective tool for citrus disease and nutritional 

deficiency image classification using a small number of samples. 

Keywords: citrus diseases; generative adversarial network; classification network; FastGAN;  

EfficientNet 

 

1. Introduction 

Citrus is one of the most popular fruits in the world. However, for a long time, 

diseases have seriously threatened the growth of citrus. They affect the yield and quality 

of citrus crops and have a significant impact on the citrus industry. In severe cases, the 

diseases can lead to the death of an entire citrus patch. Therefore, improving citrus disease 

prevention technology to effectively prevent the appearance of diseases and produce 

citrus fruit trees with high yield and quality is crucial. The traditional identification of 

citrus pests and diseases relies on the naked eye, which takes a long time and requires 
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certain professional knowledge. An intelligent, low-cost, and highly accurate method for 

citrus disease identification would be more practical [1] (see Abbreviations Section). 

In recent years, deep learning technology has been widely used in the field of 

agriculture, such as in fruit classification and grading [2–4], automatic picking, and the 

diagnosis of diseases and pests [5–8], and the automatic diagnosis of plant diseases is one 

of the most active research areas in agriculture. Several deep learning-based techniques 

for automatic plant disease diagnosis have emerged, which can help farmers reduce the 

economic losses caused by pests and diseases in farming [9]. In crops, disease symptoms 

often appear on the leaves; therefore, crop diseases can be automatically detected by 

applying machine learning techniques to leaf images. For example, Zhang et al. [10] 

segmented diseased leaf images using K-means clustering and extracted shape and color 

features from the lesion information. They classified seven cucumber diseases using 

sparse representation with a presidential recognition rate of 85.7%. Liu et al. [11] proposed 

a WSRD-Net method for wheat stripe rust detection based on a convolutional neural 

network (CNN), which can obtain 60.8% average precision (AP) and 73.8% recall rate on 

a wheat stripe rust dataset. Zhong et al. [12] proposed a three regression, multi-label 

classification and focal loss function methods based on the DenseNet-121 deep 

convolutional network to identify apple leaf diseases with over 93% accuracy on 2464 

images, including six apple leaf diseases.  

Yao et al. [13] used an improved Xception network to classify brown spots and 

anthracnose of peach, eventually obtaining a 98.85% accuracy [14]. Janarthan et al. [15] 

proposed a lightweight, fast, and accurate deep metric learning-based architecture for 

detecting citrus diseases from sparse data to obtain 95.04% detection accuracy. Deep 

learning requires many datasets to support the model training. Otherwise, overfi�ing may 

occur [16]. The main obstacle to using machine learning in agriculture is the small dataset 

and the limited number of annotated samples. This becomes more evident when 

supervised machine learning algorithms that require labeled data are used. The collection 

of a large amount of plant-disease-related data may have the problem of an uneven 

distribution of samples. Some diseases may have a small number of samples, which is not 

enough to train a classification network. Although some public datasets are available, the 

size of the datasets and categories do not meet the requirements of all applications. Using 

simple data enhancement methods such as random inversion, deep random flip, 

increasing contrast, and adding noise [17] can suppress overfi�ing, but the sample data 

are still not sufficiently rich, and the image features are less differentiated from the 

original dataset. Goodfellow et al. [18] proposed a generative adversarial network (GAN) 

using generators and discriminators against each other. GAN is widely used in the field 

of computer vision, such as for image super-resolution reconstruction and image 

defogging [19,20], and can also be used as a data enhancement tool to expand datasets 

[21]. Using generated images introduces more variability, which can improve the training 

process of classification networks and increase accuracy.  

Ma et al. [22] generated blood cell images using a DC-GAN network to increase data 

samples and eliminate data imbalance and missing data labels. Cap et al. [23] proposed a 

LeafGAN by improving CycleGAN using paired datasets to successfully transform 

healthy leaves into diseased leaves. Xiao et al. [24] successfully generated six types of 

citrus leaf images using TRL-GAN, an enhanced version of CycleGAN that removes the 

real scene background from the original images using Mask RCNN. They achieved a 

97.45% accuracy on ResNeXt101 after expanding the original dataset using the generated 

images. However, expanding datasets with adversarial networks increases training time, 

mostly to several days, and generates low-quality images. The resolution of the generated 

images is often below 512 × 512, which cannot retain more details, and the expanded 

dataset has limited performance improvement for the classification network.  

Karras et al. [25] proposed StyleGAN2 based on StyleGAN. The StyleGAN is a 

current high-performance, high-resolution image generation framework capable of 

generating very high-quality images on a wide range of datasets but still requires a large 
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dataset as well as high computational resources and training time [26]. Liu et al. [27] 

proposed the FastGAN network, which can finish training a complete model in a dozen 

hours on a single RTX-2080 GPU, by improving StyleGAN2. However, when applied to 

plant disease sample generation, it produces checkerboard artifacts, loss of details, and 

insufficiently rich sample data. The performance of the classification model degrades 

significantly when the training and test data are very different in appearance or originate 

from different regions, for example, the light of the target in the training data is very 

strong while the light of the target in the test data is very dark, the image acquisition 

devices are different, the geographical locations where they were taken are different, and 

so on.  

Mohanty et al. [28] used 54,306 healthy and diseased leaf images from the 

PlantVillage dataset to train a neural network model for the identification of 26 leaf species 

and obtained an accuracy of 99.3% after cross-validation evaluation. The performance of 

the model decreased to approximately 31% when tested with a set of plant images taken 

in the field because the training set of the model was taken in a laboratory environment, 

and its images had a uniform background. Ferentinos [29] also noted that when the model 

was trained on images taken in a laboratory environment and tested on images taken in a 

planting environment, the accuracy of the model decreased from 99.5% to approximately 

33%. Therefore, changes in background and shooting conditions can have a serious impact 

on the performance of the model.  

Because the background of the FastrGAN2-generated images is not as rich as that of 

the real captured images, the FastrGAN2-generated images and captured images can be 

regarded as coming from different regions. Because our experiments only used the 

FastrGAN2-generated images as the training set to train the model and the real captured 

images to test the performance of the model, this poses a classification network 

performance challenge and requires the classification network to have a high 

generalization capability. 

Here, we propose the FastGAN2 network, which overcomes the checkerboard 

artifact problem of the FastGAN network, improves the quality of generated images, and 

enhances the diversity of the generated images for small datasets. We used the generated 

images only as the training set of the classification network and tested it using images 

taken but not used for training with the FastGAN2 network. Finally, we tested it on 

Densenet121, ResNet50, ShuffleNetv2 [30], Mlp-Mixer [31], MobileNetv3 [32], Vision 

Transformer, Swin Transformer, EfficientNet-B3, EfficientNet-B5 [33], and EfficientNet-

B5-pro and achieved an average accuracy of 93.52%. To improve the generalization of the 

model, this paper proposes an EfficientNet-B5-pro network based on EfficientNet-B5 that 

uses the adaptive angular margin (Arcface) loss with adversarial weight perturbation 

(AWP) mechanism. It achieved the highest performance compared to ten classification 

networks. The main contributions of this study are as follows: 

By redesigning the FastGAN network generator structure and adding small batch 

standard deviations to the discriminator to eliminate checkerboard artifacts, the im-

proved FastGAN is more suitable for citrus disease and nutritional deficiency (zinc and 

magnesium deficiency) image generation. It can generate higher-quality and more 

realistic disease and nutritional deficiency images with higher diversity when trained on 

a small number of datasets. 

The datasets of citrus melanose, citrus nutritional deficiency, and citrus canker leaves 

were expanded, and the generated images had the phenotypic characteristics of the real 

data. With a small dataset, a classification network with 97.04% accuracy was trained 

using only the generated images, which could successfully identify the four types of citrus 

leaves. 

EfficientNet-B5-pro is proposed, which improves EfficientNet-B5 by using the AWP 

mechanism and Arcface loss. It has be�er robustness, be�er generalization ability, and 

higher accuracy compared to the unimproved EfficientNet-B5. 
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2. Materials and Methods 

2.1. Dataset and Test Environment Setup 

Nutritionally deficient citrus leaves and healthy citrus leaves used in this study were 

collected from the orchard of the eastern district of South China Agricultural University. 

Citrus canker leaves were collected on rainy days from the citrus orchard of Dingkeng 

village, Aotou Town, Conghua district, Guangzhou, China, and citrus melanose leaves 

were obtained from published data on the Kaggle competition [34]. The collection device 

was an iPhone 13 Pro Max, the shooting distance was 15–30 cm, the picture resolution was 

3024 × 4032 pixels, the picture storage format was JPG, the picture dates were 18 and 25 

May and 15 and 25 July 2022, and the shooting times were 10:00–12:00 and 14:00–17:00. 

The shooting scene was in natural light conditions. A total of 256 citrus canker leaves, 237 

healthy citrus leaves, 224 nutritional deficiency citrus leaves, and 192 citrus melanose 

leaves were collected. Images are shown in Figure 1. 

 

Figure 1. The four kinds of leaves used in the experiment: (A,E) canker, (B,F) melanose, (C,G) 

healthy, (D) magnesium deficiency, and (H) zinc deficiency; (A–D) is simple background, (E–H) is 

complicated background. 

All collected images were used as the original dataset A. Fifty images of each of the 

four diseases in dataset A were randomly selected as the training set Train-GAN for the 

GAN network. The remaining images were used as the test set Test-CNN for the 

classification network. Using the trained FastGAN2 network, 2000 images were generated 

for each class of disease separately as the training set Train-CNN. The detailed numbers 

of different species of leaves can be found in Table 1.  

Table 1. The number of different species of leaves in each dataset. 

Leaves Train-GAN Train-CNN Test-CNN 

Melanose 50 2000 142 

Healthy 50 2000 187 

Canker 50 2000 206 

Nutritional Deficiency 50 2000 174 

In the training of the FastGAN2 network, the epoch number was set to 30,000, the 

batch size was set to 8, the input image size was 1024, the learning rate of the generator 

and discriminator was 0.0002, and the optimizer was Adaptive Moment Estimation 
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(Adam). In the training of the classification network, the batch size was set to 16, the input 

image size was 256, the cosine annealing learning rate strategy was used [35], and AdamW 

was the optimizer [36]. The experiments were conducted on Ubuntu 20.04 with Python 

3.8, PyTorch 1.10.0, and Cuda 11.3. The graphics card was RTX3090 with 24 GB of video 

memory, and the CPU was AMD EPYC 7543. The framework flowchart of generation and 

classification model are shown in Figure 2. 

 

Figure 2. Framework flowchart of generation and classification. Dataset A is divided into Train-

GAN and Test-CNN. Train-GAN is used to train FastGAN and FastGAN2. The trained FastGAN2 

generates Train-CNN as the training set of CNN and Test-CNN as the tFest set. T-SNE is used to 

evaluate the quality of Train-CNN. FIID and KID are used to compare the ability of FastGAN and 

FastGAN2 to generate images. 

2.2. FastGAN Model 

The FastGAN model was proposed by Liu et al. [27]. The authors improved 

StyleGAN2 by designing the SLE (skip-layer excitation) module, which shortens the 

training time of the original model from several days to a dozen hours. They also proposed 

a self-supervised discriminator that can train the network more stably with a small 

number of training samples and limited computational resources.  

When synthesizing higher-resolution images, the G (Generator) must be deeper and 

have more convolutional layers to meet upsampling requirements. The more 

convolutional the layers, the longer the training time of the model. He et al. [37] designed 

the residual structure ResBlock, which uses cross-layer connections to enhance the 

gradient signal between the layers. However, this also increases computational costs. The 

idea of cross-layer connectivity has been reconstructed in the SLE module. This module 

implements the skip connection as the summation of elements between activations from 

different convolutional layers, which requires the same spatial dimension of activations. 

The module also eliminates the heavy computation of convolution by replacing addition 

with multiplication, as shown in Equation (1), to perform skip connections between 

different resolutions: 

� = ℱ(�low , {��}) ⋅ ����� (1)
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In the formula, � and � are the input and output feature maps of the SLE module, 

respectively. Function ℱ contains the operation on �low , and {��} denotes the learned 

module weights, where �low  and ����� are the feature maps at resolutions of 8 × 8 and 

128 × 128, respectively. 

Figure 3 shows the structure of the SLE module, where the adaptive pooling layer in 

ℱ first downsamples �low  to 4 × 4 along the spatial dimension, and a convolution layer 

further downsamples it to 1 × 1. LeakyReLU is used to model nonlinearity, and another 

convolution layer projects �low   to have the same channel size as ����� . Finally, after 

gating by the sigmoid function, the output of ℱ is multiplied by ����� along the channel 

dimension to obtain a � with the same shape as �����. 

 

Figure 3. SLE module structure. Feature maps at 8 × 8 and 128 × 128 are, respectively, �low  and 

����� in Equation (1). All the black boxes are used to change the size of �low . 

2.3. Improved FastGAN Model 

When the FastGAN model is applied to citrus leaf disease sample generation, the 

generated image disease features are unclear. There is insufficient sample richness and a 

high repetition rate when several thousand images are generated using the trained model. 

To solve these problems and make the model more applicable to citrus disease sample 

generation, we improved FastGAN to propose the FastGAN2 model. 

First, the structure of the original model generator was redesigned. The interpolation 

algorithm used in the original model upsampling is the Nearest Interpolation model, 

which has the fastest calculation speed; however, the effect is poor, and the generated 

image can easily produce jaggedness. We replaced it with the Bilinear model, which uses 

4-pixel points in the original image to calculate the 1-pixel point in the new image to 

smoothen the generated image. Unlike the original model, which uses the same 

upsampling block for all layers, we used upsampling blocks with different strategies for 

different layers. The 42–322 layers representing rough features use a single convolutional 

layer, the 642–2562 layers representing fine features use a convolutional layer and a noise 

layer, and the 5122–10242 layers use two convolutional and two Noisejection layers. For all 

upsampling blocks, the PixelNorm layer replaces the BachNorm layer in the original 

model. The PixelNorm layer is demonstrated in Equation (2), and the improved generator 

structure is shown in Figure 4. The Noisejection layer was independently added to each 

pixel to control random changes. 
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Figure 4. The redesigned generator structure. The blue do�ed line frame contains three different 

upsample blocks. The blue solid line frame represents the size of the feature map, while the red solid 

line frame represents the SLE module in Figure 3. 

��,� =
��,�

� �

�
∑ ���,�

�
�

�
���
��� ��

, 
(2)

In the formula, �  is the number of feature maps, where ��,�  and ��,�  are, 

respectively, the original and normalized feature vectors in pixels (�, �), � = 10��. The 

PixelNorm layer normalizes each pixel point to avoid extreme weights of input noise and 

improve stability.  

Because the FastGAN2 model training is performed on 50 images, it is easy to cause 

mode collapse and generate duplicate images when generating 2000 images. Karras, Aila, 

Laine, and Lehtinen [38] proposed a mini-batch standard deviation to increase the 

diversity of generated samples. To solve this problem, we added it at the end of the 

discriminator of the original model, as shown in Figure 5. The method divides a batch size 

image into X parts evenly, where each part contains batch 
����

�
  images, and finds the 

standard deviation of each image’s feature map at different spatial locations; i.e., NumPy’s 

standard function is used to find the standard along the sample dimension. This results 

in a new feature map, which is then averaged over the feature map to obtain a value, and 

this value is expanded to the size of a feature map and stitched together with the original 

feature map as the input to the next layer, i.e., adding a statistical channel to each image. 
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Figure 5. The minibatch standard deviation flow chart.  Feature map1, 2… N is divided equally 

into multiple parts and finds the standard deviation of each image’s feature map at different spatial 

locations. This results in a new feature map, which is then averaged over the feature map to obtain 

a value, and this value is expanded to the size of a feature map. 

2.4. Improved EfficientNet-B5 

After comparing the classification performances of Densenet121, ResNet50, 

ShuffleNetv2, Mlp-Mixer, MobileNetv3, EfficientNet-B3, and EfficientNet-B5, we found 

that EfficientNet-B5 had the best performance (performance comparison can be found in 

Table 1). Therefore, we improve EfficientNet-B5 by using the AWP mechanism to add 

perturbations to model weights and inputs to increase the robustness of the model. We 

also used Arcface loss and added a cumulative corner margin between elements and 

target weights to enhance intra-class compactness and inter-class variability. Arcface is a 

loss function applied to face recognition, as proposed by Deng et al. [39], and it maximizes 

the classification boundaries in angular space and adds a cumulative angular margin 

between features and target weights to enhance intra-class compactness and inter-class 

differences.  

Arcface was used instead of the softmax loss function because of the high similarity 

of various citrus leaf diseases. The softmax loss function formula is given by Equation (3): 

�� = −
�

�
∑  �

��� log 
�

���
� ������

∑  �
��� �

��
������

, (3)

where �� denotes the deep feature of the ith sample associated with the category �� , � 

denotes the column of weight �, �� is the bias corresponding to �� , � is the number of 

categories, and � is the batch size. 

The softmax loss function does not explicitly optimize the embedding function to 

achieve a higher similarity of samples within categories and a higher diversity of samples 

between categories. It is improved by first se�ing the bias �� to 0, and the inner product 

of the weights and inputs is expressed by Equation (4): 

��
��� = ∥∥��∥∥∥∥��∥∥��� �� (4)
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Processing ��   with ��  regularization makes ∥∥��∥∥  = 1, ( ��  regularization is to 

divide each value in the ��  vector by the modulus of ��  separately to obtain the new �� , 

and the modulus of the new ��  is 1).  

Hence, Equation (5) can be obtained from Equation (3): 

�� = −
�

�
∑  �

��� log
�

∥∥��∥∥ �������
�

�
∥∥��∥∥ �������

�
�∑  �

���,����
�

∥∥��∥∥ ��� ��
, (5)

input ��  is also regularized with ��  by multiplying by scale parameter � . The 

normalization step of the features and weights makes the prediction depend only on the 

angle between the features and weights. Thus, the learned embedding features were 

distributed on a hypersphere of radius s. Because the embedding features are distributed 

around the center of each feature on the hypersphere, a cumulative angular margin is 

added between �� and ��  to enhance the intra-class compactness and inter-class variance 

[40], yielding Equation (6) for the Arcface: 

�� = −
1

�
�  

�

���

log 
����������

����

����������
����

+ ∑  �
���,����

����� ��

 (6)

To improve the generalization ability of the model, an adversarial training 

mechanism (AWP) proposed by Wu et al. [41] was used for EfficientNet-B5. Adversarial 

training introduces noise, which can regularize parameters and improve the robustness 

of the model. The weight loss landscape (WLL) is used to represent the standard 

generalization gap (the difference between the accuracy of the model on the training set 

and the accuracy of the test set) under standard training scenarios. As a result of the AWP 

limiting the flatness of the WLL in adversarial training, a dual perturbation mechanism is 

formed, that is, the adversarial perturbation input and weights. The original adversarial 

loss is given by Equation (7): 

���
�

 �(�),  �(�) =
�

�
∑  �

��� ���
∥∥��

����∥∥�
��

 ℓ(��(��
�), ��), (7)

where �  is the number of training samples, ��
�  is the adversarial sample within a ball 

(bounded by ��  parameterization) centered on the natural sample �� , ��  is the deep 

neural network (DNN) with weight � , ℓ()  is the standard classification loss, such as 

cross-entropy loss, and �(�) is the adversarial loss.  

The AWP algorithm fla�ens the WLL by injecting worst-case weight perturbations 

into a DNN. To improve the test robustness, investigators must focus on training 

robustness and the robustness generalization gap, as shown in Equation (8):  

���
�

 ��(�) + ��(� + �) − �(�)�� → ���
�

 �(� + �), (8)

where �(�) is the original adversarial loss in Equation (7), �(� + �) − �(�) denotes the 

flatness of the WLL, and �  is the perturbation weight that must be carefully chosen. 

Unlike the commonly used random weight perturbation (random direction sampling), the 

adversarial loss of the AWP is significantly increased, as demonstrated in Equation (9): 

���
�

 ���
�∈�

 �(� + �) → ���
�

 ���
�∈�

 
�

�
∑  �

��� ���
∥∥��

����∥∥�
��

 ℓ(����(��
�), ��), (9)

where � is the range of values of the perturbation weights �. The maximization of � 

depends on the entire instance to maximize the entire loss (not the loss of each instance); 

therefore, these two maximizations are not interchangeable. 
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3. Results and Discussion 

3.1. Generate Image Quality Ratings 

The training set Train-GAN was used to train FastGAN for approximately 2.5 h and 

FastGAN2 for approximately 3 h to complete the training of 30,000 epochs. The model 

was saved every 5000 epochs, and the images generated during the training process were 

saved every 1000 epochs. 

T-SNE is a data dimensionality reduction and visualization method [42], which is an 

embedding model that can map data in a high-dimensional space to a low-dimensional 

space and preserve the local characteristics of the dataset. Therefore, when we want to 

classify a high-dimensional dataset, it is not clear whether this dataset has good 

separability (small intervals between similar classes and large intervals between distinct 

classes), and we can project the data into a 2- or 3-dimensional space for observation by 

T-SNE. 

In this study, we reduced the dimensionality of the FastGAN2-generated images and 

the original images to observe their distribution in two-dimensional space. As 

demonstrated in Figure 6, where Figure 6A and Figure 6B are the original images and 

generated images in the two-dimensional space distribution, respectively, by observing 

Figure6A, it can be seen that the interval between the nutritional deficiency leaves and 

healthy leaves is a small boundary and is not clear, indicating that these two types of 

leaves do not exhibit a strong classification of difference; Figure 6B shows that the 

generated images also conform to this distribution. Figure 6C shows the fi�ing of the 

sca�er plot between the generated and original images, the circle symbol representing the 

real image and the cross symbol representing the generated image overlap, which 

indicates that the four generated types of images are in the same distribution as the real 

image. 

 

Figure 6. Sca�er plot of T-SNE after dimensionality reduction: the circles are the real dataset; the 

crosses are the fake dataset. Red = melanose; dark-green = healthy; light green = nutritional 
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deficiency; blue = canker. (A) only real dataset; (B) only fake dataset; (C) combination of real and 

fake dataset. 

The FID is the distance between the generated and real images. A smaller distance 

indicates a well-generated image, that is, a sharp and diverse image. The FID is computed 

through the inception model, which removes the last fully connected layer of the inception 

model used for classification and outputs a 2048-dimensional vector from the previous 

layer. Here, inception no longer performs classification but feature extraction to obtain 

2048-dimensional vectors, and each dimension represents some feature. N was taken for 

each of the generated and real images. After the transformed inception network, each 

obtains an N*2048-dimensional feature vector and then uses Equation (10) to calculate the 

distance between the two N*2048-dimensional feature vectors: 

��� = ∥∥�� − ��∥∥
�

+ ��(∑� + ∑� − 2(∑�∑�)�/��, (10)

where ��  denotes the feature mean of the real image, ��  is the feature mean of the 

generated image, ∑� is the covariance matrix of the real image, and ∑� is the covariance 

matrix of the generated image. 

KID is a GAN generation quality metric that is very similar to FID to assess the degree 

of GAN convergence [43], which does not require the assumption of a normal distribution 

of FID and is an unbiased estimation. 

Table 2 summarizes the comparison of the FID and KID scores of FastGAN2 and 

FastGAN on the four types of leaves. The FID and KID scores of the four kinds of leaves 

generated by the FastGAN2 network are lower than those of the FastGAN network, 

indicating that the improved network generates images with be�er clarity and diversity. 

Table 2. Comparison of FID and KID scores of FastGAN2 and FastGAN on four kinds of leaves. 

Leaves 
FastGAN2 FastGAN 

FID KID FID KID 

Melanose 64.73 3.01 153.52 13.79 

Healthy 73.90 2.18 90.98 4.71 

Canker 55.53 2.21 64.59 3.01 

Nutritional Deficiency 53.56 2.03 54.15 2.01 

Average 61.93 2.36 90.81 5.88 

Figure 7 compares the details of the citrus ulcer images generated by FastGAN2 and 

FastGAN. The images generated by the FastGAN network have unclear lesions, 

checkerboard artifacts on the midvein and tips, and the leaf contours are distorted (not 

continuous). The images generated by the FastGAN2 network are closer to the original 

images, and semantic information remains intact for the whole leaf and enlarged lesions, 

midvein, and leaf tips. Their color, texture, and contour features are more obvious. 
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Figure 7. “Real image”, “FastGAN2”, and “FastGAN” images down the sides and “Leaf”, “Lesion”, 

“Midvein”, and “Leaf tip” images across the top. 

Figure 8 shows the comparison between the image generated by FastGAN and 

FastGAN2 and the original image with the complex background. It can be seen from row 

B that the background of the image produced by FastGAN2 is very close to the original 

image, and the leaf contour and midvein transition are natural. However, it can be seen 

from the image generated by FastGAN in line C that the background of the image is 

seriously distorted, and there are problems such as distortion and unclear leaf contour. 

This indicates that FastGAN2 can also generate high-quality images of diseased citrus 

leaves under complex backgrounds. 

 

Figure 8. Comparison between the image generated by FastGAN and FastGAN2 and the original 

image with the complex background: “Real image”, “FastGAN2” and “FastGAN” images down the 

sides. 



Agronomy 2023, 13, 988 13 of 18 
 

 

Figure 9 compares the four types of citrus leaf images generated by FastGAN2 and 

FastGAN with the original images, and the FastGAN2 generated images are closer to the 

original images than those generated by FastGAN. Figure 10 shows some of the images in 

the dataset Train-CNN generated by the FastGAN2 network; the four generated types of 

citrus leaves match the detailed features of the real images, in which the traces of rain can 

be seen in the background of the generated images. There are reflections formed by water 

on the leaves as the real images of the ulcer leaves were taken on a rainy day. 

 

Figure 9. Comparison of four kinds of citrus leaf images generated by FastGAN and FastGAN2 with 

real images: (A) real dataset; (B) images generated by FastGAN2; (C) images generated by FastGAN. 

 

Figure 10. A portion of the dataset generated by FastGAN2: (A) healthy; (B) nutritional deficiency; 

(C) canker; (D) melanose. 
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3.2. Classified Network Performance Evaluation 

To verify whether the classification network trained using the images generated by 

the FastGAN2 network only can successfully recognize the captured images, we trained 

ten classification networks using the Train-CNN, the image dataset generated by the 

FastGAN2 network, and evaluated the classification network performance using Test-

CNN as the test set with accuracy, recall, precision, and F1-score as the evaluation metrics. 

This is formulated in Equations (11)–(14): 

�������� =
�����

�����������
, (11)

Recall =
��

�����
, (12)

Precision =
��

�����
, (13)

F1-score =
�∗Precision∗Recall 

 Precision � Recall 
, (14)

where �� is the number of samples with a true positive value and positive prediction, 

�� is the number of samples with a true negative value but positive prediction, �� is the 

number of samples with a true positive value but negative prediction, and ��  is the 

number of samples with a true negative value and negative prediction.  

In this study, the images generated by FastGAN and Train-CNN are, respectively, 

used as training sets to train the classification network; Test-CNN was used as the test set 

to evaluate the performance of the classification network. It can be seen from Table 3 that 

the accuracy, precision, recall and F1-score achieved by using FastGAN2 to generate 

images for training ten classification networks are higher than those achieved by 

FastGAN. Among them, EfficientNet-B5 has the highest score in each item, which is 

higher than the average. 

Table 3. Performance comparison of ten kinds of classification networks. 

Network 
Accuracy% Precision% Recall% F1-Score% 

FastGan FastGan2 FastGan FastGan2 FastGan FastGan2 FastGan FastGan2 

Densenet121 82.64 90.97 88.95 93.79 74.21 91.31 72.03 91.61 

Shufflenetv2 80.21 94.64 83.15 94.41 70.71 94.41 70.58 94.37 

Mlp Mixer 82.33 94.22 93.04 95.20 73.83 94.12 73.09 94.47 

MobileNetV3 82.29 92.81 92.63 94.13 73.87 92.49 72.98 93.06 

ResNet50 80.56 91.26 89.99 93.65 71.70 91.56 69.33 91.86 

Vision Transformer 88.54 93.97 89.52 94.52 81.15 94.01 83.47 94.04 

Swin Transformer 88.62 93.42 73.87 95.19 71.17 93.61 71.73 93.88 

EfficientNet-B3 86.11 92.10 86.05 94.12 80.33 92.34 77.15 92.63 

EfficientNet-B5 90.62 94.78 95.15 96.13 86.34 94.98 88.52 95.23 

EfficientNet-B5-pro 94.64 97.04 95.33 97.32 94.75 96.96 94.84 97.09 

Average 85.66 93.52 88.76 94.86 77.80 93.58 77.37 93.82 

The confusion matrix in Figure 11 shows that EfficientNet-B5-pro has be�er 

generalization and robustness [44]. It can be seen from Figure 11A that EfficientNet-B5-

pro judges that the largest number of errors is within the nutritional deficiency leaves, as 

it misjudges 11 nutritional deficiency leaves as healthy leaves. According to the previous 

T-SNE results, it can be seen that this may be due to the higher similarity between healthy 

and nutritional deficiency leaves. Compared with Figure 11B, it can be seen that the 

unimproved EfficientNet-B5 misclassifies more healthy leaves, while EfficientNet-B5-Pro 

has similar discrimination rates for four kinds of leaves, indicating that the improved 

EfficientNet-B5 has be�er intra-class compactness and inter-class difference. 
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Figure 11. Confusion Matrix: (A) EfficientNet-B5-pro; (B) EfficientNet-B5. “M” = melanose; “H” = 

healthy; “C” = canker; “ND” = nutritional deficiency. 

Table 4 depicts the classification results of EfficientNet-B5-pro for four kinds of 

leaves. The nutritional deficiency leaves were divided into two separate groups (zinc and 

magnesium deficiency). In this table, the average score for healthy leaves is the lowest and 

that for nutritionally deficient leaves is the second lowest. This may be due to the high 

similarity and small differences between healthy leaves and nutritionally deficient leaves, 

which makes classification difficult. It can also be seen from the previously mentioned T-

SNE reduced dimensional visualization method that the boundaries between healthy and 

deficient leaves are not clear in the sca�er plot. Figure 12 shows the training loss and test 

accuracy curves of the EfficientNet-B5-pro model. 

 

Figure 12. Training loss and test accuracy of the EfficientNet-B5-pro model. 

Table 4. EfficientNet-B5-pro classification result. 

Leaves F1-Score% Precision% Recall% Average% 

Melanose 98.58 99.29 97.89 98.59 

Healthy 94.79 92.39 97.33 94.84 

Canker 98.56 97.62 99.51 98.56 

Zinc Deficiency 95.92 97.92 94 95.95 

Magnesium Deficiency 96.93 99.3 94.67 96.97 
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4. Conclusions 

In this study, we generated citrus disease and nutritional deficiency phenotype data 

using the FastGAN2 network, trained the classification network using only the generated 

images, and achieved high accuracy on the shot dataset. The impact on the performance 

of classification networks when the training and test sets are from different regions is 

addressed, and the generalization and robustness of classification networks in citrus 

disease and nutritional deficiency leaf identification are improved. Compared to most 

GAN methods for generating plant disease samples, this study does not require pairs of 

data, no background must be removed, and only a small amount of data is required to 

complete the training of the GAN network. Through the model proposed in this paper, 

high-quality citrus disease and nutritional deficiency images are successfully generated. 

After training the classification network solely by using the images generated in this 

paper, citrus disease and nutritional deficiency images in a real environment can be 

successfully identified with high accuracy. Although this study was conducted for citrus 

diseases, the method used can also provide new ideas for the classification and 

identification of other plant diseases where samples are not sufficient. In the future, we 

will develop a mobile application that will deploy the algorithms mentioned in this article 

to a website or software to help fruit farmers identify citrus disease. 
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Abbreviations 

Arcface Adaptive angular margin 

FID Fréchet inception distance 

KID Kernel inception distance 

GAN Generative adversarial network 

G  Generator 

SLE Skip-layer excitation 

DNN Deep neural network 

WLL Weight loss landscape 

AP Average precision 

CNN Convolutional neural network 

AWP Adversarial weight perturbation 

Adam Adaptive moment estimation 
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