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Abstract: Litchi florescence has large flower spikes and volume; reasonable control of the ratio of
male to female litchi flowers is the key operational aspect of litchi orchards for preserving quality and
increasing production. To achieve the rapid detection of male and female litchi flowers, reduce manual
statistical errors, and meet the demand for accurate fertilizer regulation, an intelligent detection
method for male and female litchi flowers suitable for deployment to low-power embedded platforms
is proposed. The method uses multi-teacher pre-activation feature distillation (MPFD) and chooses
the relatively complex YOLOv4 and YOLOv5-l as the teacher models and the relatively simple
YOLOv4-Tiny as the student model. By dynamically learning the intermediate feature knowledge of
the different teacher models, the student model can improve its detection performance by meeting
the embedded platform application requirements such as low power consumption and real-time
performance. The main objectives of this study are as follows: optimize the distillation position
before the activation function (pre-activation) to reduce the feature distillation loss; use the LogCosh-
Squared function as the distillation distance loss function to improve distillation performance; adopt
the margin-activation method to improve the features of the teacher model passed to the student
model; and propose to adopt the Convolution and Group Normalization (Conv-GN) structure for
the feature transformation of the student model to prevent effective information loss. Moreover, the
distilled student model is quantified and ported for deployment to a field-programmable gate array
(FPGA)-embedded platform to design and implement a fast, intelligent detection system for male
and female litchi flowers. The experimental results show that compared with an undistilled student
model, the mAP of the student model obtained after MPFD feature distillation is improved by 4.42
to 94.21%; the size of the detection model ported and deployed to the FPGA-embedded platform is
5.91 MB, and the power consumption is only 10 W, which is 73.85% and 94.54% lower than that of the
detection models on the server and PC platforms, respectively, and it can better meet the application
requirements of rapid detection and accurate statistics of male and female litchi flowers.

Keywords: florescence information monitoring; litchi flowers; sep feature distillation; YOLO; FPGA

1. Introduction

Litchi (Litchi chinensis Sonn.) is a specialty fruit tree extensively cultivated in subtrop-
ical regions and has a high commercial value due to its nutritious properties and good
taste [1,2]. Litchi has a short florescence, large flower spikes, and a large flower volume,
among other characteristics. In the same inflorescence, male and female flowers are het-
erozygous, and the proportion of female flowers is relatively low. Therefore, litchi orchard
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management monitors flowering information and regulates the number of flower spikes
through the rational application of drugs, water, and fertilizer to improve the proportion of
female flowers, create favorable conditions for pollination and fertilization, and enhance
the fruiting rate of litchi [3,4]. The scientific management of litchi orchards must solve
the necessary technical problems, one of which is how to quickly and accurately collect
flowering information.

In recent years, researchers at home and abroad have proposed various solutions
based on machine-vision technology to the problems of litchi orchard flower information
collection and flower detection. To address the need to detect densely clustered litchi
flowers in complex natural environments, Juntao Xiong et al. [5] proposed a deep semantic
segmentation network for detecting litchi flowers and leaf pixels to achieve precision
segmentation of litchi flowers and leaves in natural environments. Lin et al. [6] developed
a model for estimating the number of flower clusters on a single litchi tree using unmanned
aerial vehicle images and computer vision technology, combining the YOLOv4 model and
equation-fitting. An estimation model of the number of flower clusters and bushes on a
single litchi tree was constructed by combining the YOLOv4 model and equation-fitting to
achieve automatic statistics of the number of litchi flower clusters and bushes in the natural
environment. To better measure the flowering intensity of litchi flowers for yield estimation,
Lin et al. [7] combined the number of litchi flowers and their density maps to generate
a density map and the number of litchi flowers by using images of male litchi flowers
as input to a multicolumn convolutional neural network (CNN) to achieve a method for
counting male litchi flowers that is superior to object detection. Ye et al. [8] proposed an
aggregation loss, and an aggregation-loss function combining the polyphyletic loss and
segmentation loss was proposed to improve the robustness of detecting dense flowers and
to detect litchi flowers in dense environments. For other orchard-flowering information
collection requirements, Ambrosio et al. [9] and Sun et al. [10] proposed end-to-end residual
CNNs and fine-tuned DeepLab–ResNet networks to detect flowers of deciduous fruit trees
in natural environments by applying semantic segmentation methods, respectively, to
achieve the detection of multi-scene flowers such as those of apples, pears, and peaches.
Wu et al. [11] proposed an improved YOLOv4 model that combines the channel pruning
method to detect apple flowers in natural environments with different fruit tree species
and light directions. Dorj et al. [12] and Lyu et al. [13] applied color detection algorithms
and cascade fusion object detection methods, respectively, to design embedded systems
capable of automatically detecting citrus flowers in natural environments.

Current research has verified the feasibility of using machine-vision technology to collect
information about litchi flowers, fruits, pests, and diseases in natural environments [14–16].
However, there are specific challenges in the statistical analysis of litchi flowering information.
On the one hand, the number of litchi flowers and the number of flowers of a single flower
spike can reach thousands, and the flowers’ precision is small and mutually obscuring [17,18];
on the other hand, affected by variety, tree age, climate, and other conditions, the number
of flowers of different litchi orchards differs significantly, and litchi flowering has multiple
batches of blooms [19,20]. Therefore, capturing a single moment in the litchi flowering period
of the flower-spike flower-volume detection lacks statistical significance. Generally, horticul-
tural experts select several typical flower spikes, use high-density nylon nets for bagging, and
manually count the dried litchi flowers after they have all fallen off naturally. Furthermore, to
improve statistical efficiency, the collected litchi flowers are manually classified into female or
male collections and then weighed to estimate the flower volume and male-to-female ratio,
inevitably leading to statistical data errors. Therefore, the study of how to achieve rapid
detection and accurate statistics of litchi flowers is consistent with the practical application
requirements of litchi orchard flowering information collection. Furthermore, most related re-
searchers are focused on improving the object-detection effect of different types of florescence.
However, the computational environment is mainly limited to a server, which is difficult
to apply directly to a mobile, embedded platform. In addition, extracting large features is
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computationally intensive, and the data communication rate of embedded edge devices is
limited, making it challenging to ensure real-time data processing.

Therefore, in this study, a multi-teacher pre-activation feature distillation (MPFD)
method is proposed to improve the detection performance of a lightweight object detection
model by guiding it to learn complex model features of dried litchi flowers, and the model
is suitable for edge device applications [21]. In addition, this study proposes porting object
detection models to field-programmable gate array (FPGA) platforms with high parallelism
and accelerated CNN models based on embedded technology: namely, computationally
capable FPGA platforms that can accelerate the computation of CNN models [22–24].
The main contributions of this study are as follows:

(1) A “dual-teacher–single-student”-based feature distillation MPFD-YOLO training
method is proposed to select YOLOv4 and YOLOv5-l, which have relatively complex
network structures, as dual-teacher models and YOLOv4-Tiny, which is relatively
simple, as student models. The detection performance of the student model is im-
proved by dynamically learning the intermediate feature knowledge of the different
teacher models.

(2) The distillation position is optimized before the activation function (pre-activation) to
reduce the feature distillation loss; we propose using the LogCosh-Squared function
as the distillation-distance loss function to improve the distillation performance and
using the margin-activation method to modify the activation function, allowing more
positive features of the teacher model to be passed to the student model; the Conv-GN
structure is used to transform the features of the student model to prevent the loss of
effective information.

(3) Using a hardware and software design approach, the distilled model is format-
converted, quantized, compiled, and processed for deployment to a low-power
FPGA-embedded platform. A rapid intelligent detection system is designed and
implemented for male and female litchi flowers. This study is outlined as follows:
Section 2 shows the collection and processing of experimental data; Section 3 intro-
duces the YOLO-MPFD multi-teacher feature-distillation method; Section 4 introduces
the porting and deployment methods of the detection model on the FPGA-embedded
platform after feature distillation; Section 5 analyzes the experimental results in detail;
Section 6 concludes the study.

2. Experimental Data and Processing Methods

Litchi flower data were collected from February to March 2022 at the Litchi Experi-
mental Park, South China Agricultural University (113°36′ N, 23°16′ E; Guangzhou, China),
with the “Feizixiao” litchi. Five litchi trees greater than ten years of age were selected.
Each tree has more than 200 flower spikes, and every flower spike has thousands of litchi
flowers. The early flowers of litchi were bagged using high-density nylon mesh on several
typical flower spikes; these were collected at the end of the flowering period in the bag
and dried to obtain a sample of dried litchi flowers, as depicted in Figure 1. Considering
the small size and light weight of dried litchi flowers, black corrugated paper was used as
the sampling background to avoid disorderly disturbance of objectives. Images of dried
litchi flowers were taken using a high-definition mobile phone, and LabelImg software
(version 1.8.3) was used for manual labeling. In Figure 2, the red box represents a female
flower with a larger pollen sac, shorter filaments, and a bifid stigma with a ramshorn shape;
the yellow box represents a male flower with a developed receptacle and longer filaments.
The final dataset contains 1237 images of dried litchi flowers; the number of male and
female flowers is 5627 and 2679, respectively, divided into training and test sets according
to the ratio of 8:2, and the data are presented in Table 1.
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Table 1. Datasets of male and female litchi flowers.

Tag Name Training Set Test Set Total Number

Male 4502 1125 5627
Female 2143 536 2679

Bagging litchi flowers

Dried litchi flowers

Flower cluster

Figure 1. Litchi flower spike sleeve with dried flower sample.

(a) (b)

Figure 2. Sample of male and female dried litchi flowers. (a) Litchi flowers (Sparse). (b) Litchi
flowers (Intensive).

3. YOLO-MPFD Multi-Teacher Feature-Distillation Method Design

Traditional knowledge distillation can transfer knowledge from a complex teacher
model to a simple student model at the cost of a slight loss of performance.
However, only lightweight student models can be trained on the soft objects of the teacher-
model output [25,26]. Because the YOLO model is complex, learning only the teacher’s
output feature knowledge is insufficient. There is a significant capacity difference between
the complex teacher model and the simple student model in the middle implicit layer,
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which makes them have different feature representation capabilities [27]. Therefore, the
YOLO-MPFD feature-distillation method is designed to improve the student model’s per-
formance by using the multi-teacher model to select better intermediate feature knowledge
suitable for detecting smaller precisions such as litchi flowers. This method addresses
the “Gap” between the teacher and student models in terms of capacity and thus enables
the implicit layer of the student model to more effectively predict outputs similar to the
outputs of the implicit layer of the teacher. Moreover, the approach enables models with
high performance to meet requirements such as low power consumption and real-time
performance of low-resource devices while not degrading their performance as much as
possible but facilitating model portability for edge platforms.

As shown in Figure 3, the YOLO-MPFD multi-teacher feature-distillation method
primarily consists of three parts: teacher model, student model, and MPFD feature-
distillation loss. Among these, the teacher model consists of YOLOv4 [28] and YOLOv5-l
(edition 5.0) [29] with relatively complex networks, and the student model is
YOLOv4-Tiny [30] with a relatively simple network.

Teacher  .

YOLOv4

YOLOv5-l

Student

YOLOv4-Tiny

Training Image

Tt(Fs) Tt(Fs)Ts(Fs) Ts(Fs)
d

...

...

d Distillation 

Loss

Teacher Transform

Student Transform

...

Figure 3. The framework of the YOLO-MPFD feature distillation network model.

The feature distillation approach aims to obtain the optimal student network model
performance with minimized task loss and feature-variance penalty. If the features after
Teacher Transform are denoted as Ft, the features after Student Transform are denoted as Fs,
and their feature dimensions are denoted as Tt and Ts, respectively; the distance d between
Ft and Fs features, i.e., the distillation loss function Ldistill, is shown in Equation (1).

Ldistill = d(Tt(Ft), Ts(Fs)) (1)

In terms of designing the feature extraction loss of the YOLO-MPFD model and
thus improving the distillation performance, the main tasks in this study include the
following: (1) For two different teacher models, the distillation loss position is set before
the activation function (pre-activation) in the end layer of the backbone network to better
analyze and utilize the value of the activation function and thus deliver more positive
information. (2) To solve the problem of the distillation position before the activation
function, the LogCosh-Squared function is designed as the distillation distance loss function
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to screen out the negative information in the activation function and then improve the
distillation performance. (3) To solve the problem that teacher models have different
activation functions, a margin-activation method applicable to different models is proposed,
which not only effectively transmits the positive information of intermediate features
of different teacher models but also can activate negative information neurons, thereby
minimizing the neuron activation difference between the teacher and student models.
(4) To solve the problem of matching the feature dimensions of the teacher and student
models, we propose using the Conv-GN structure for the feature transformation of the
student model, which can effectively prevent the loss of positive information without
reducing the dimensionality of the teacher features.

3.1. Distillation Feature Position Design

Because the two teacher models have more network layers and inconsistent model
structures compared to the student models, the most-representative distillation points in
the models should be selected as the locations of the feature distillation loss. The two-
dimensional image X (matrix) is input into the teacher model Ft and the student model
Fs, respectively, and the intermediate feature set generated by its location at the precision
distillation location is shown in Equation (2).

T = Ft(X) ∈ RCT×N , S = FS(X) ∈ RCT×N (2)

Generally, the feature maps have the same spatial size N = HW (Height and Width)
but can contain different numbers of channels. As depicted in Figure 4, the input size of
the image is 640 × 640 × 3, and the backbone of all three models consists of convolutional
blocks (CBx) and residual blocks (Resblock). The output channel size of the backbone of
the teacher model YOLOv5-l and YOLOv4 (CT) is 1024, and that of the student model
YOLOv4-Tiny (CS) is 512, which is half that of the teacher model.

YOLOv4-Tiny Backbone

YOLOv4 Backbone

Inputs(640×640×3)

CBM

 Resblock_v4

Resblock-v4(80×80×256 )

CBM CBM CBM
Res
unit

CBM

CBM Concat

CBM

FPN

Inputs(640×640×3)

CBL

 Resblock_v4tiny 

 CBL( 20×20×512 )

YOLOHead
40×40×21

YOLOHead
20×20×21

Resblock-v4Tiny (80×80×128 )
CBL CBL CBL CBL

Concat+Conv

UpSample

Conv

YOLOv5 Backbone

Inputs(640×640×3)

Focus

 CBS

 Resblock _v5

Resblock-v5 (80×80×256 )

CBS Res unit CBS

CBS

CBS

Resblock-v5 (20×20×1024 )

SPP
Res
unit

CBS

CBS

CBS

CBS

ConcatConcat

Concat

×2

P1

P2

 Resblock_v4
 Resblock _v5

P1

CBL
Conv BN LeakyReLU

CBM
Conv BN Mish

Resblock-v4Tiny (20×20×512 )
CBL CBL CBL concat CBL

Concat

Resblock-v4(20×20×1024 )

CBM CBM CBM
Res
unit

CBM

CBM Concat

CBM

CBS
Conv BN SiLU

P2

Concat

CBx
Distillation module position

CBx

Figure 4. Design framework for feature-distillation position optimization.

Because the student model has two output layers with different scales, two feature
distillation locations are connected. In Figure 4, P1 and P2 represent the feature-distillation
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locations of the two teacher models corresponding to the student model, both of which are
the last model of the residual block. The size of the feature-map space and the num-
ber of channels (HWCT) corresponding to the teacher model are 80 × 80 × 256 and
20 × 20 × 1024, respectively, and the (HWCS) of the student model are 80 × 80 × 128
and 20 × 20 × 512, respectively. The teacher model channel CT and the student model
channel CS are multiplicatively related.

The activation function is responsible for processing the output of the upper-layer
neurons and transmitting the result to the lower-layer neurons, which plays a crucial role
in the neural network. In existing studies, the end layer of the middle-module layer is
chosen as the location for feature distillation [31–33]; however, the activation function for
the teacher model lacks the necessary consideration. The two teacher models used the Mish
and SiLU activation functions, respectively. Both allow positive feature information to
pass through but do not consider the neural network’s activation boundaries for negative
feature information values. Therefore, it is difficult to keep the separation boundary
between the teacher and student models consistent. To maximize the retention of teacher-
model information during feature distillation, this study sets the distillation position in
front of the activation function of the residual module’s last convolution block (CBx).
The pre-activation position is depicted in Figure 5. This distillation position enables the
student model to learn the features passed by the teacher model before the activation
function, and the positive and negative values of feature information are therefore retained
before the activation function without any deformation, avoiding the problem of valid
feature information being discarded after the activation function.

CBM

Pre-Activation Position

Conv

BN

Mish

CBS

Conv

BN

Mish

Figure 5. Distillation position before activation function.

3.2. LogCosh-Squared Distance-Loss Function

To obtain the optimal student model Fs that minimizes the training loss value and
incorporates a penalty for feature differences, a teacher model Ft with fixed parameters is
given, and its training loss is expressed in Equations (3) and (4).

Ltask = Llocation + Lcon f idence + Lclass (3)

Loss = Ltask + Ldistill (4)

In Equation (4), the main components are task loss Ltask and distillation loss Ldistill.
In Equation (3), the YOLOv4 standard Loss function is used as the task loss function,
Llocation is the location loss, Lconfidence is the confidence loss, and Lclass is the categorization
loss. Among these, Lconfidence uses a combination of Ciou Loss and Focal Loss to address
the number of difficult and easy samples and the litchi flower data set imbalance [34].
The key to feature distillation is to design the distillation loss Ldistill, as expressed in
Equation (5), which ensures the similarity between the intermediate features T and S.

Ldistill = dp(σT(p(T , S)), σS(S)) (5)
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where σT , σS, and dp denote the teacher feature transform, student feature transform, and
distance function, respectively. During feature distillation, positive feature information is
passed to the student model, but negative feature information after the activation function
does not consider the specific activation boundary value of the neural network. Therefore,
if the feature response of the student model is higher than that of the teacher model, it is a
positive teacher feature, and the distillation loss value should be reduced; otherwise, it is
not necessary to increase the value. For the positive teacher characteristics, the LogCosh-
Squared of hyperbolic cosine (LogCosh-Squared) is used as the distance loss function, which
can reduce the influence of outliers and make the results smoother. Because the distillation
position is set before the activation function (pre-activation), to better measure the difference
between the teacher and student models and ensure that the feature information can
be transferred to the student model after the activation function, we propose using the
LogCosh-Squared function applicable to the pre-activation distillation position as the
distance loss function, as shown in Equation (6).

dp(T , S) =
C

∑
i

N

∑
j

{
0 sij ≤ tij ≤ 0

log
(

cosh
((

tij − sij
)2
)

otherwise
(6)

Here, for any pair of matrices of the same dimension T , S ∈ RC×N.

3.3. Teacher Transform

The teacher feature-transformation process converts the teacher’s hidden features
into an easily transferable form and is an important component of feature extraction.
To retain more useful feature-distillation information, this study proposes a teacher feature-
transformation method (margin-activation) applicable to different activation functions.
Existing studies that use pre-activation as the distillation location only consider the case
where the teacher model is a ReLU activation function [35,36]. The expression of the ReLU
activation function is f (x) = max(0,1), which can apply only a linear mapping to positive
values, and negative values are eliminated and fixed to zero. However, the two teacher
models used in this study contain two activation functions, Mish and SiLU, respectively,
with expressions:

Mish = x ∗ tanh(ln(1 + ex)) (7)

SiLU = x ∗ 1
1 + e−x (8)

The activation boundary of a neuron is a separated hyperplane that determines the
activation and deactivation of a neuron, whereas the hidden layer of a neural network con-
tains a large amount of information suitable for knowledge transfer; however, it is not easy
to achieve perfect transfer due to the high dimensionality and nonlinearity of hidden-layer
neurons [35]. Both Mish and SiLU activation functions allow positive feature information
greater than zero to pass through, but feature information less than zero does not take into
account the specific activation boundary values of the neural network and, therefore, cannot
make the separation boundary between the teacher and student networks as consistent
as possible. Because the feature values of the teacher Ft are the values before activation,
if the value of the teacher network is positive, the student must produce the same value
as the teacher. Conversely, suppose that some value on the teacher network is negative.
In that case, the student needs to produce a value less than zero to keep the neuron in
the same activation state, and this value affects the calculation of the loss-function value.
Therefore, this study combines different activation functions and batch normalization
(BN) layers [37] and proposes a novel margin-activation method with adaptive changes
in activation functions for teacher feature conversion, which preserves positive teacher
features and combines activation functions and boundary values that are less than zero
after BN layers.
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The activation functions Margin-Mish and Margin-SiLU are shown in
Equations (9) and (10), respectively. For the stability of training, the margin value m
is introduced, where the margin value m is a negative value calculated from the BN
layer, and replacing it with the eigenvalues of the teacher model output can retain more
distillation features.

Margin-Mish =

{
x ∗ tanh(ln(1 + ex)) x ≥ 0
m otherwise

(9)

Margin-SiLU =

{
x ∗ 1

1+e−x x ≥ 0
m otherwise

(10)

For channel C and the teacher feature Fi
t of i element, set the boundary value mc of

that channel to the expected value of all training images.

mC = E
[

Fi
t | Fi

t < 0, i ∈ C
]

(11)

Because the BN layer is located when the activation function is preceded, it determines
the feature Fi

t distribution in a batch, and the feature normalization of each channel of the
BN layer can be approximated as a Gaussian distribution with mean µ and variance σ,
Fi

t ∼ N(µ, σ). Using the Fi
t distribution, we can simply calculate the margin value mc for

that channel, as shown in Equation (12). Therefore, using Equation (12), we can obtain
the boundary value m in the channel direction without sampling and training process
averaging, which is combined with Equations (9) and (10) to calculate the margin values of
different activation functions to form a new activation function and complete the feature
transformation of the teacher model.

mC =
1
Z

∫ 0

−∞

x√
2πσ

e−
(x−µ)2

2σ2 dx = µ− σe−
µ2

2σ2

√
2π ×Φ

(
− µ

σ

) (12)

where Φ(.) denotes the normal distribution cumulative distribution function.

3.4. Student Transform

Typically, feature distillation would set the student conversion Ts to the same function
as the teacher conversion Tt [32,38]. However, because the YOLO-MPFD teacher model
and the student model do not have the same feature-distillation-position channel size, we
propose using a 1 × 1 convolution for the student feature conversion to increase the feature
dimension of the student model to make it consistent with the teacher model rather than
reducing the feature dimension, which would result in information loss [35,38,39].

Because the BN operation is performed after each convolutional layer of the student
model, the features from the teacher model also need to undergo the normalization oper-
ation. When using a multi-teacher model for feature distillation training, the batch size
can only be set to a small value because of the numerous calculations required and the
limited performance of the server. Nevertheless, BN requires a large batch size to achieve
good results. Setting the batch size to a very small value leads to an inaccurate estimation
of the batch statistics, thereby significantly increasing the model error. In contrast, group
normalization (GN) [40] is calculated independent of the batch size, which divides the
channels into groups and calculates the mean and variance within each group for normal-
ization. Therefore, this study appends a GN layer after the 1 × 1 convolutional layer, using
the Conv-GN structure as the student-feature conversion method. This method solves the
problem of significant performance degradation of BN in small-batch-size optimization.
It allows the student model to better learn the information about the middle-layer features
of the teacher model. Experiments have proven that it can achieve better results than
traditional BN.
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4. Design of Male and Female Litchi Flower Detection System Based on
FPGA-Embedded Platform

The FPGA-embedded platform used in this study was a Xilinx Zynq UltraScale+TM

MPSoC (AMD, Santa Clara, CA, USA) heterogeneous embedded platform based on the
Linaro 96 Boards Consumer Edition specification, model number Ultra96-V2 [41]. The plat-
form consists of FPGA and ARM processing systems, 154 K system logic units, 71 K lookup
table units, quad-core ARM Cortex A53 application processors, and dual-core Cortex-R5
real-time processors, as well as a deep-learning processor unit (DPU) that can support
different neural network architectures through a reconfigurable hardware architecture.

4.1. FPGA Port Deployment of Feature-Distillation Post Model

The model-porting deployment process after feature distillation is depicted in Figure 6,
and the main steps include three operations: model format conversion, quantization
compilation, and programming processing, as outlined below.

Ultra96Server-side

Programming
(PetaLinux)

Format Conversion
(Tensorflow)

Training Model 

Model Format 
Conversion 

Quantification 
&Compilation

(Vitis AI)

Quantification

Model Quantification

Model Compilation

Model Cross 
Compilation

Create and Generate 
Linux System to SD 

card

Generate Executable File

Runing

Figure 6. FPGA porting and deployment flow of the detection model of male and female litchi flowers.

The model format conversion operation must be performed in the server platform
Tensorflow environment. For the detection model to be quantized in Xilinx Vitis AI
(version 1.2), the training-generated Keras weight files and network architecture files need
to be converted to binary protobuf files. During the conversion process, the nodes are frozen
using the keras_to_tensorflow tool [42] (converting all TF variables into TF constants), and
the inference maps and weights are saved to binary protobuf (.pb) files. During freezing,
the model is frozen, nodes are pruned, and network nodes that do not affect the output
tensor are removed.

The quantization compilation operation needs to be compiled and quantized using
the Xilinx Vitis AI tool on the server platform Linux system. Because the use of floating-
point operations requires large memory bandwidth and wastes too many resources during
FPGA development, the model needs to be quantized by converting the model’s 32-bit
floating-point numbers into 8-bit integer fixed-point numbers. First, the litchi training set is
used as the calibration dataset, combined with the converted format protobuf file, and after
starting the Xilinx Vitis AI Docker, the Tensorflow environment is activated, and the model
is fixed-point quantized using the quantizer tool. Next, according to the FPGA-embedded
platform model, the convolutional structure of model B2304 is selected for deploying and
accelerating the algorithm model. The quantized model is compiled using a compiler to
output the instruction file (elf file) and DPU Kernel information required for the DPU.
Finally, the Xilinx Vitis AI tool output elf file is processed using a cross-compilation tool to
generate a Linux dynamic link library so file, which is ported to the Ultra96-V2 embedded
platform using an SD card.
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In the programming and processing part of the embedded platform, this study uses
the PetaLinux tool to build an embedded Linux system. A Python program was written to
pre-process the litchi flower images using the OpenCV library, DPU library functions, and
APIs on the ARM side and to call DPU to realize the real-time detection and statistics of
male and female litchi flowers.

4.2. Male and Female Litchi Flower Detection System Design

The male and female litchi flower detection system is configured with USB, Micro
SD, DDR, Mini MDPI, and other interfaces, as well as a Uart interface for debugging, and
a slow vibration platform is used to separate sticky dried litchi flowers. The workflow
of the detection system is depicted in Figure 7. The main control platform consists of
two parts–namely, the ARM processing subsystem (PS, Processing System) and FPGA
programmable logic (PL, Programmable Logic)–with the two sides using the AXI bus to
achieve high-speed communication. The PS side acquires the image of a dried litchi flower
through the camera and completes the real-time processing of image data on the embedded
Linux system, including image acquisition, storage, reading, scaling format conversion,
and display of processing results. The PL side acquires the processed images, detection
model weights and biases, and related instructions through the AXI bus and calls the DPU
to achieve accelerated inference of the detection model.

FPGA embedded system

Ultra96-V2

PS

Linux

DDR

memory
USB

Micro

SD
USB

Keyboard

&mouse

Uart
Display

Port

AXI

PL

Object Detection 
Program

Deep Learning
Processor Unit

(DPU)

External 

memory

Figure 7. Workflow of male and female litchi flower detection system.

5. Experimental Results and Analysis

To further analyze the system performance of the male and female litchi flower de-
tection model after feature distillation and its transplantation to the FPGA platform, this
study combined YOLO-MPFD multi-teacher feature distillation with various improvement
strategies to conduct experiments and analyze data results based on different test platforms
such as server, PC, and FPGA, and the configuration environment of each test platform
is presented in Table 2. F1 measure, mean average precision (mAP), and Recall are used
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as the evaluation metrics of model detection accuracy, as shown in Equations (13)–(16).
Frames per second (FPS) is used as the evaluation metric of the model detection speed.

P =
TP

TP + FP
× 100% (13)

R =
TP

TP + FN
× 100% (14)

F1 =
2PR

P + R
× 100% (15)

mAP =
∫ 1

0
P(R)dR× 100% (16)

where P denotes the precision, R the recall, TP the number of true-positive samples, FP the
number of false-positive samples, and FN the number of false-negative samples.

Table 2. Configuration environment for different test platforms.

No. Platform System Configuration Operating Environment

1 Server Windows 10
Intel Core i9-10900K @ 3.70 GHz Ten-core
CPU, 32 GB RAM, Nvidia GeForce RTX 3080
(10 GB) GPU

The test framework is Tensorflow and
Keras, using CUDA parallel
computing framework with CUDNN
deep neural network
acceleration library

2 PC Windows 10
Intel Core i7-8500U @ 1.80 GHz Four-core
CPU, 16 GB RAM, Nvidia GeForce MX 450
(4 GB) GPU

3 FPGA Linux Xilinx Zynq UltraScale+ MPSoC EV
(Ultra96 SoC)

Compilation environment uses
OpenCV and Xilinx AI runtimes

5.1. Analysis of Model Test Results

To analyze the performance of the MPFD feature-distillation model, first, training
of 150 epochs is performed for YOLOv4 and YOLOv5-l in turn, and the trained model is
used as the teacher model in the feature distillation process. Based on the same training
set and testing environment, the performances of the undistilled YOLOv4-Tiny and the
model after MPFD feature distillation are tested with the following parameters: an input
image size of 640 × 640, a training process with reverse gradient, and a validation process
without reverse gradient; each model was trained for 150 epochs. In order to compare
performance more fairly with respect to algorithm improvement, the test set in this paper is
changeless. In the training process, the repeat holdout cross-validation method is used. For
each training, the data in the training set are randomly divided into an 80% training set and
a 20% validation set. This process repeats five times, the precision, Recall and F1 values of
each training are recorded, and the average of the five times is collated as the evaluation
metric. In this case, the trained YOLOv4-Tiny model is used as a pre-trained model in the
feature-distillation training process. The YOLOv4 standard loss function (Equation (3)) is
used as the training set and test performance metric for the YOLOv4-Tiny model and the
validation metric for the distillation model. The proposed distillation loss (Equation (4)) is
used as a training metric for the distillation model MPFD YOLOv4-Tiny, and the training
process is performed on the server. The variation curves of the model loss values after
YOLOv4-Tiny and distillation are shown in Figure 8, and the model results are compared
in Table 3.
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YOLOv4-Tiny Val

(MPFD)YOLOv4-Tiny Val

Figure 8. Validation set loss values.

Table 3. Feature distillation training results.

Model Size/MB mAP/% Recall/% F1/%

(Teacher1) YOLOv4 244.97 94.24 80.74 86.54
(Teacher2) YOLOv5-l 178.94 94.49 82.50 87.75
(Student)YOLOv4-Tiny 22.60 89.79 73.85 84.01
(MPFD) YOLOv4-Tiny 22.60 94.21 80.90 87.36

The change in the loss function of the neural network model during the training
process can reflect the performance of the completed training model to some extent.
Because the distilled model uses the YOLOv4-Tiny model as the pre-trained student model,
the validation set loss value in the pre-training period of the undistilled YOLOv4-Tiny
model is higher than that of the distilled model, and the overall fluctuation is more remark-
able. However, the convergence speed is faster, and the validation loss value of the distilled
model is lower than that of the undistilled YOLOv4-Tiny model. The overall loss value is
lower, and the fit is better, which proves that MPFD feature distillation can improve the
training effect of the model. Finally, the validation loss value of the undistilled student
model is stable at approximately 2.8, and the validation loss value of the distilled model is
stable at approximately 2.5 with only slight oscillation, which indicates the end of model
fitting and proves that MPFD feature distillation reduces the model training loss value.

As presented in Table 3, the student model improved in all evaluation metrics of
model precision after MPFD feature distillation. Among them, the YOLOv4 and YOLOv5-l
teacher models have similar detection precision with mAP values of 94.24% and 94.49%,
respectively, with only a 0.25% difference between them. In contrast, the mAP value of
the undistilled YOLOv4-Tiny model is only 89.79%. However, the sizes of the two teacher
models, YOLOv4 and YOLOv5-l, are 244.97 and 178.94 MB, respectively, which are 10.84
and 7.92 times larger than that of the student model, YOLOv4-Tiny (22.60 MB), respec-
tively, and neither of them is suitable for deployment to low-power embedded platforms.
The mAP value of the MPFD YOLOv4-Tiny model after feature distillation reaches 94.21%,
which is 4.41% higher than that of the undistilled YOLOv4-Tiny model and is very close
to the mAP value of the teacher model YOLOv4, and the Recall and F1 values are 80.90%
and 87.36%, respectively, which are 7.05% and 3.35% higher than those of the undistilled
YOLOv4-Tiny. Therefore, MPFD feature distillation can improve the detection index of
the student model without changing the model size, making it close to or better than the
teacher model performance.

The Precision–Recall (PR) curve reveals the relation between precision and recall, and
the larger the area it covers, the better the detection result is. In order to evaluate the
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classification effect of the distilled model, the PR curve and AP are used in this paper.
The PR curves of the distilled model are shown in Figure 9, with P representing Precision
and R representing Recall, and the confidence interval is 0.5. The AP values of litchi male
and female flowers can be obtained by calculating the area of the shaded part of the PR
curve. Since five cross-validations were performed, the AP values of litchi male and fe-
male flowers after each training are shown in the figure and averaged separately. The AP
values of litchi male and female flowers were 92.22% and 96.20%; the change trend of the
two PR curves is relatively flat, indicating that the two types of object detection are balanced.
Therefore, the detection results meet the requirements of litchi flower male and
female detection.

Figure 9. PR curves of litchi female and male flowers for the distilled model.

5.2. Ablation Study

To further analyze the performance of different improvement strategies, this study
sequentially tests the performance of different combinations of improvement strategies for
YOLO-MPFD feature distillation using the same training set, training method, and testing
environment. Among them, the base feature distillation method (Baseline) uses YOLOv4
or YOLOv5-l as the single-teacher model and YOLOv4-Tiny as the student model. The
L2 function in FitNets [39] is used as the distance loss function, the convolution + BN is
used as the student transformation, and the feature distillation loss position is set before
the activation function. The test results are presented in Table 4.

Table 4. Results of ablation experiments.

Method mAP/% Recall/% F1/%

YOLOv4-Tiny 89.79 73.85 84.01
Baseline (Teacher1) 91.89 76.02 84.92
Baseline (Teacher2) 92.21 76.05 85.05
+Multiple Teacher 92.67 77.18 85.58

+Loss 93.13 78.47 86.36
+Margin-Activation 93.68 79.31 86.67

+Conv-GN 94.21 80.90 87.36
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As shown in Table 4, by using YOLOv4 (Teacher1) or YOLOv5-l (Teacher2) as a
single-teacher model and training the student model YOLOv4-Tiny using the base feature
distillation method (Baseline), respectively, the mAP values of the trained student models
improved by 2.10% and 2.42%. Moreover, because YOLOv4 and YOLOv4-Tiny have a
more-similar model structure than YOLOv5 and YOLOv4-Tiny, which is more conducive to
the student model learning the feature map knowledge in the implicit layer of the teacher
model, the training result of the teacher model YOLOv4 is slightly better than that of
YOLOv5-l. The category “+Multiple Teacher” indicates that a two-teacher model was used
instead of a single-teacher model. The mAP, Recall, and F1 of the student model trained
by the multi-teacher model are 92.67%, 77.18%, and 85.58%, respectively. All metrics are
improved compared with the training results of the single-teacher model. This is because
the multi-teacher model could provide more explanatory information for the detection
task of the student model. The student model can take advantage of the “Views” of the
teacher model on the precision task and combine the respective strengths of the different
teacher models to improve its model performance. The category “+Loss” indicates that the
LogCosh-Squared function is used as the loss function, which aims to reduce the influence
of outliers and smooth the training results, as well as prevent the transmission of invalid
negative information; “+Margin-Activation” indicates that the margin-activation method
is used to modify the activation functions of different teacher models, thereby retaining
more useful feature distillation information; “+Conv-GN” indicates the use of the Conv-
GN structure for the feature distillation of student models, which aims to address the
performance degradation of BN in small batch optimization. The data in Table 4 show
that various improvement strategies have a positive effect on the training results of the
detection model. After applying various improvement strategies together, the mAP of the
MPFD YOLOv4-Tiny model is 94.21%, which is an improvement of 2.32% (Teacher1) and
2.00% (Teacher2) over the training results of the two single-teacher models, respectively.

To further prove the performance of YOLO-HPFD multi-teacher feature distillation,
the distilled model is compared to other lightweight versions of YOLO in the same test
environment. The experiment uses the same training and test sets for model training and
accuracy testing in TensorFlow (GPU). Speed tests are performed on the same picture
with input sizes of 640 × 480. The experimental results are shown in Table 5. From the
empirical observations, it can be noted that the distilled model has many distinct benefits
over other models. The mAP, Recall, and test speeds of YOLOv4-Tiny-MPFD are 94.21%,
80.90% and 17.93ms–all better than the other models. In addition, although the model
size of YOLOX-Tiny is the smallest, its Recall is the worst among all models, and it is
12.66 ms slower than YOLOv4-Tiny-MPFD. Thus, the distilled model has the best overall
performance and is more compatible with the requirements of the embedded platform.

Table 5. Performance of lightweight models.

Model Size/M mAP/% Recall/% Test Time/ms

YOLOv4-Tiny [30] 22.60 89.79 73.85 38.22
YOLOv5-s [31] 27.28 91.06 70.87 58.50

YOLOv5-s-6.1 [43] 27.11 92.60 76.98 52.39
YOLOX-Tiny [44] 19.34 90.60 69.81 50.88
YOLOv7-Tiny [45] 23.43 92.09 76.22 42.44

YOLOv4-Tiny (MPFD) 22.60 94.21 80.90 38.22

5.3. Visual Analysis of Male and Female Litchi Flower Test Results

The detection results of male and female litchi flowers by applying the YOLOv4-Tiny
model after MPFD feature distillation in the server platform are depicted in Figure 10.
Among them, male litchi flowers (blue detection box) have well-developed receptacles
and longer filaments, whereas female litchi flowers (red detection box) have larger pollen
sacs and shorter filaments, and the stigma is bifid and ramshorn-shaped. Note that there
is a problem with filament shedding in the process of separating litchi flowers using the
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slow-vibration platform (Figure 10 in the white round box for the shedding of filaments),
and even the female flowers of the pollen sacs fall off, which not only results in more
diverse male and female flowers but also has a significant negative impact on the detection
of litchi flowers. The test results show that both male and female litchi flowers can be
successfully detected and classified, and only a tiny portion of the filaments fall off due to
missed detection (yellow box in Figure 10), which can meet the needs of rapid detection of
litchi flowers.

(a) (b)

Figure 10. Test results of the model for the detection of male and female litchi flowers after distillation.
(a) Sparse object. (b) Intensive object.

5.4. Analysis Results of the Distilled Model

The performance tests are conducted by applying the distilled detection model to
the same dataset on the server and FPGA platforms, respectively. The data results are
presented in Table 6. The detection precision of female litchi flowers in different testing
platforms is better than that of male litchi flowers. This is because compared with female
litchi flowers, male litchi flowers are smaller in size, and filaments are more likely to fall
off or even appear to have only the receptacle left, all of which make the detection of
male flowers more difficult. In addition, the distilled model quantization is ported to
the FPGA platform. The mAP value was 93.74%, which is 0.47% lower than that on the
server platform. Because the FPGA platform uses a DPU for neural network accelera-
tion, it needs to convert 32-bit floating-point operations into 8-bit fixed-point operations.
There is a certain precision loss in this conversion process. However, the size of the detec-
tion model ported to the FPGA platform is only 5.91 MB, which is 73.85% lower than that
of the detection model of the server platform. Therefore, the porting operation provides
significant compression of the model size with no significant reduction in the detection
precision of litchi flowers, which improves the real-time detection rate.

Table 6. Comparison of test results of different test platforms.

Platform AP/% Male AP/% Female mAP/% Model Size/MB

Servers 92.22 96.20 94.21 22.60
FPGA 91.71 95.76 93.74 5.91

To verify the real-time detection of the system, the detection effects of the server, PC,
and FPGA platforms on video streams are also compared and tested. The video stream
testing scheme, based on the FPGA platform, is depicted in Figure 11. The camera is
connected to the Ultra96-V2 through the USB interface and captures the video stream of
the litchi flower in real time. The monitor is connected to Ultra96-V2 through an HDMI
interface and displays the real-time detection results processed by Ultra96-V2. The input
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size of the model is 640 × 640, the video stream resolution is 640 × 480, and a power-
metering socket is used to monitor the power consumption of different test platforms.
The data results are shown in Table 7. Among them, the server platform has the fastest
video stream detection rate, based on the GPU/RTX 3080 detection rate of 26 FPS. However,
its power consumption reached 183 W, far exceeding the PC and FPGA platform power
consumption. The FPGA platform has a video stream detection rate of 6 FPS, which is
better than that of the PC platform. In addition, the FPGA platform’s power consumption
is only 10 W, 94.54% and 82.14% lower than that of the server (GPU) and PC (GPU)
platforms, respectively.

Figure 11. Video streaming test based on FPGA platform.

Table 7. Comparison of real-time detection efficiency of different test platforms.

Platform Configuration Detection
Rate/FPS Power/W

Server CPU/core i9-10900K (3.70 GHz deca-core) 11 164
GPU/RTX 3080 (10 GB) 26 183

PC CPU/core i7-8550U (1.8 GHz quad-core) 5 38
GPU/MX150 (4 GB) 4 56

FPGA Ultra96-V2 6 10

To verify the practicality of the male and female litchi flower detection system, this
study also conducts a comparison experiment between system detection and manual
weighing. Considering that the manual weighing method needs to obtain the exact weight
of litchi flowers, this study distinguishes between female and male litchi flowers manually
after randomly selecting five groups of samples. The number of female and male litchi
flowers in each group is 50, and then the weight of a single male and female flower is
estimated using high-precision electronic scales. The experimental comparison samples
consist of five groups. Considering the actual proportion of male and female flowers in a
single spike, the number of male flowers in each group ranges from 200 to 400, whereas
that of female flowers ranges from 30 to 60. The data results (Table 8) show that the average
accuracy of the system detection is 93.25%, which is significantly better than the manual
weighing method in terms of detection efficiency and precision.
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Table 8. System testing vs. manual weighing results.

No. Number of
Male Flowers

Male Flower
Weight/g

Number of
Female
Flowers

Female Flower
Weight/g

Manual
Weighing
Precision

System
Detection
Precision

1 268 0.47 37 0.16 87.09% 92.78%
2 324 0.56 58 0.26 88.04% 93.37%
3 287 0.50 43 0.18 85.42% 93.72%
4 219 0.39 32 0.14 88.27% 93.45%
5 353 0.60 41 0.18 86.40% 92.94%

Total 1451 2.52 211 0.92 87.04% 93.25%

6. Conclusions

The YOLO-MPFD feature-based distillation method for detecting male and female
litchi flowers is proposed. Moreover, the distillation position before the activation func-
tion (pre-activation) is optimized in the distillation loss design. The LogCosh-Squared
distillation distance function, margin-activation for teacher transformation to extract fea-
tures method, and Conv-GN structure based on student transformation to extract features
method are also integrated to improve the feature distillation learning effect of the student
model. The experimental results show that the mAP and F1 of the distilled student model
YOLOv4-Tiny reach 94.21% and 87.36%, respectively, which is an improvement of 4.42%
and 3.29%, respectively, compared with the original detection model. This study designed
a fast detection system for male and female litchi flowers based on an FPGA-embedded
platform through detection-model porting and deployment. The detection precision of male
and female litchi flowers reaches 91.71% and 95.76%, respectively. The size of the quantized
and compiled detection model is only 5.91 MB, and the power consumption is 10 W, which
has the characteristics of low power consumption and easy portability. This model can meet
the demand for rapid detection and accurate statistics of male and female litchi flowers
and provides reliable data support for orchard flowering information monitoring.

In addition, this research still needs improvement; for example, FPGA computing
resources are not fully utilized in this study. The system’s real-time performance and
platform manipulation should be improved. Different varieties of litchi flowers have basic
forms, such as corolla, calyx and stamens, which are morphologically similar. In the next
step, the authors will expand the dataset and conduct experiments on the detection and
statistics of different species of male and female litchi flowers to enhance the robustness
of the model. Furthermore, a data acquisition scheme with a MIPI camera connected to
the PL side of the FPGA platform will be considered to improve the stability and real-time
performance of the system and give full play to the computational advantages of FPGAs.
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