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Abstract: Soybean Glicine max. (L.) Merr. is one of the most major food crops. In some areas, its
responses to different climates have not been well studied, particularly in tropical countries where
other crops are more dominant. Accordingly, we adopted the SIMPLE crop model to investigate
the responses of soybeans to the climate. We conducted two experiments on crop growth in the
Summer–Autumn season of 2020, and Winter–Spring 2021 in the Hoa Binh Commune, in the Mekong
Delta, Vietnam, which is an area that is vulnerable to climate change impacts, to obtain data for our
model input and assessment. The assessment was concerned with the effects of climate variables
(temperature and CO2) on soybean biomass and yield. The results indicated that the SIMPLE model
performed well in simulating soybean yields, with an RRMSE of 9–10% overall. The drought stress
results showed a negative impact on the growth and development of soybeans, although drought
stress due to less rainfall seemed more serious in Spring–Winter 2021 than in Summer–Autumn 2020.
This study figured out the trend that higher temperatures can shorten biomass development and lead
to yield reduction. In addition, soybeans grown under high CO2 concentrations of 600 ppm gave a
higher biomass and a greater yield than in the case with 350 ppm. In conclusion, climate variance can
affect the soybean yield, which can be well investigated using the SIMPLE model.

Keywords: SIMPLE; soybean biomass and yield; climate change; modeling

1. Introduction

Climate varies over time and can cause problems for food crops. For this reason, an
assessment of the responses of crops to the climate is needed, particularly for major food
crops. Soybean, a leguminous annual C3 plant in the Fabaceae family [1], is a food crop that
has caused much concern due to its nutritional values for animals and humans. Soybean
responses to the climate have been widely studied, but the investigation of the responses in
tropical areas is uncommon. For countries where soybean is not a major crop, knowledge
of soybean responses is rarely known.

Previous studies have reported the key effects of climatic factors on soybeans. For
instance, the temperature can affect the soybean yield [2]; for example, an increase of 1 ◦C
in summer led to a decrease in the yield by 16% in Wisconsin, USA [3]. For Rio Grande
do Sul (southern Brazil), a subtropical area, water supply and photothermal quotient are
the factors that cause yield variation [4]. As reported in the study in Matopiba, Brazil, the
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sowing date (in relation to climate) is the determinant of the yield changes [5]. Yield can
also be affected by photoperiod and crop management, which were found in sub-Saharan
Africa [6].

The soybean yield can be assessed using crop models. The models may require a
large number of parameters [7], and they have particular designs and set-up, which can
constrain the model and the assessment of the effects of climate change on crops. Due to
model design, study purposes, and input data requirements, the applicability of the models
is varied, particularly for soybeans. For instance, the model DSSAT/CROPGRO-Soybean
was useful for estimating the soybean yield (i.e., in Matopiba, Brazil [5]) and the optimal
management (i.e., in Phu Pha Man, Thailand [8]). ORCHIDEE-CROP, a process-oriented
terrestrial biogeochemical model based on generic crop phenology [9] performs well for
soybean yield simulation in China [10]. EPIC-Boku helps envision the negative effect
of temperature on the yield [11]. In addition, EPIC-IIASA is applicable for studying the
effects of CO2 on yields in Argentina, Brazil, and the USA [12]. Process-based models
can be coupled with artificial intelligence for crop assessment, i.e., machine learning links
GEPIC to assess the effects of climate change on soybean in Argentina, Brazil, China, and
the USA [13], and the application of artificial neural networks for the yield estimation
in Maryland, USA [14]. The models are different from each other but geographically
dependent, and thus their simulation performance levels are various. In addition, models
may require many data inputs that are somehow not available; therefore, simplified models
with satisfactory performance are preferred for soybean studies.

Tropical areas have particular climatic characteristics that influence soybean growth.
Hence, an assessment of its responses to climate is needed to determine which crop models
can help. Among tropical countries, Vietnam is currently under climatic threat [15], which
is an ideal study case for the assessment. In this region, the Mekong River Delta (MRD) is
widely known for being severely affected by extreme droughts [16]. Studying the responses
in this area may help fulfill the knowledge of the responses to climate for decision-making.
The current investigations of this crop in this area are more experimental but less modeling.
Although the crop models above may be applicable to the assessment, their applications are
limited. In addition, since soybean is not a major crop, studies on its responses to climate
are rare, and so the input data for modeling is not always available; this issue constrains
the application of these models.

In regards to data availability and climate in the Mekong Delta, Vietnam, this study
adopted the SIMPLE model with simplified and open-sourced designs that performed well
in terms of soybean yield estimation for temperate areas in the USA [7]. Through this pilot
study, we assessed the yield and biomass of the soybean (Glycine max. (L.) Merr.) and
then informed the model’s applicability and the effects of climate variation on the crop,
which is necessary to help protect this crop in the context of climate change. Therefore, this
study aims at (1) adopting the SIMPLE model for soybean biomass and yield estimation,
and (2) using the model to assess the soybean biomass and yield under climate change in
temperature and CO2. Our final goal is to investigate how climate variation affects soybean
yield to contribute to crop and food protection.

2. Methods
2.1. Field Experiments

The purpose of field experiments was to obtain data for model input supply (including
parameters), model calibration, and assessment. This study includes two field experiments
on soybean cultivation in 2020 and 2021. The study field is based in Hoa Binh Commune,
Cho Moi district, An Giang province, Vietnam (10◦23′47′′ N, 105◦27′41′′ E), with existing
soybean cultivation (Figure 1) and clay loam soil with an organic matter content of 1.6%
(Table 1). In our experiments, the soybean was grown in rainy season (July to October
2020) and dry season (January to April 2021). Three soybean seeds were sown in a hole,
row by row at 35 cm and plant to plant at 25 cm. After emergence, plants were thinned to
one per hole. To focus on climate effects, this study used the common fertilizing including
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55 kg N, 75 kg P2O5, and 40 kg K2O per hectare and pesticide application schedule currently
practiced in the region. The field measurement includes the following data:

- Sowing date, flowering date, maturity date, and growing time.
- Plant height (cm), leaves number, total vegetative biomass (t ha−1) per 10 days. vege-

tative biomass (t ha−1), and grain yield.
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Figure 1. Study location.

Table 1. Summary of the climatic features in the experiment site.

Climatic Features
Year

2020 2021

Total rainfall (mm) 874.1 89.1
Number of rainy days 62.0 38.0
Mean temperature (◦C) * 30.5 29.0
Mean radiation (MJ m−2d−1) ** 15.8 19.7

*: recorded by Thermo Recorder TR-72Ui (T&D Corp, Japan). **: data from the Agroclimatology Community of
the POWER Data Access Viewer.

The soybean cultivar used in the experiment was a high-yielding variety (DT2006).
Soil properties in field for the experiments are shown in Table 2.

Table 2. Soil properties at the research site.

Items Characteristics

Soil texture
Sand (%) 30
Silt (%) 42
Clay (%) 28
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Table 2. Cont.

Items Characteristics

Soil properties or soil parameters
Total nitrogen (%) 0.17
Total phosphorus (%P2O5) 0.03
Exchangeable potassium (cmol kg−1) 0.23
Field capacity (cm3 cm−3) 0.18
Available water capacity—AWC (cm3 cm−3) 0.14
Runoff curve number—RCN 84
Deep drainage coefficient—DDC 0.18
Root zone—RZD (mm) 329
Ground water level (cm) 35.8
Fertilizer applied
N (kg) 55
P (kg) 75
K (kg) 80

2.2. Modeling of Soybean Yield

This study used the SIMPLE model [7] (with daily timestep) based on crop physiology
with a few parameters and equations. We assume that nutrients are given enough for
soybean, and thus, this does not account for the effects of fertilizers on its growth. In this
sense, this model is appropriate for assessing the climatic effects. This model considers
crop yield as the product of the harvest index (HI) and the fraction of the above-ground
cumulative biomass from sowing to maturity:

Yield = Biomass_cum× HI (1)

where HI is the harvest index, the ratio of grain to total dry matter, and Biomass_cum is
calculated using the following Euler approach:

Biomass_cumi+1 = Biomass_cumi + Biomass_ratei (2)

Biomass_ratei is the daily biomass growth rate, and Biomass_cumi is the cumulative
biomass. Biomass_ratei is determined in Equation (3), which depends on radiation use
efficiency (RUE) of the plant canopy that intercepts daily photosynthesis active radiation
(PAR) [17]. The daily change in plant biomass is affected by stress variables such as high
temperatures, drought, and atmospheric CO2 concentration [18].

Biomassrate =
Radiation× f (Solar)× RUE× f (CO2)× f (Temp)

×min(( f (Heat), f (Water))
(3)

where f (Solar) is the fraction of the solar radiation intercepted by the crop canopy regarding
the Beer–Lambert law of light attenuation [19] ( as cited in Zhao et al., 2019), f (CO2)
is the CO2 impact, f (Heat) is the heat stress function, and f (Water) is the water stress
function [7,18].

f (Solar) for leaf growth and senescence period is as follows:

f (Solar) =


fSolar_max

1+e−0.01(TT−I50A) , lea f growth period
fSolar_max

1+e−0.01(TT−(Tsum− I50B)) , lea f senescence period
(4)

where I50A is the cumulative temperature needed for leaf area development to intercept
50% of solar radiation during canopy closure; I50B is the cumulative temperature needed
from maturity to 50% of radiation interception during canopy senescence. fSolar_max is the
maximum fraction of radiation interception. fSolar_max is used to account for different plant
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spacings. For most high-density crops, this value is set at 0.95 [7]. TT is the cumulative mean
temperature, which is calculated as follows:

∆TT =

{
T − Tbase, T > Tbase

0, T ≤ Tbase
(5)

TTi+1 = TTi + ∆TT (6)

where TTi is the cumulative mean temperature of ith day, ∆TT is the daily added mean
temperature, T is the daily average temperature (TMAX + TMIN)/2, and Tbase is the base
temperature for crop growth and phenological development [7,18].

Temperature stress, heat stress, drought stress, water stress, and CO2 impact are
calculated regarding the suggestions of [7,20–26].

f (Temp) =


0, T < Tbase

T−Tbase
Topt−Tbase

, Tbase ≤ T < Topt

1, T ≥ Topt

(7)

where T is the daily mean temperature, and Tbase and Topt are the base and optimal temper-
ature for biomass growth, respectively, for a given crop species.

f (Heat) =


1, Tmax ≤ Theat

1− T−Tbase
Topt−Tbase

, Theat < Tmax ≤ Textreme

0, Tmax > Textreme

(8)

where Tmax is the daily maximum temperature, Theat is the threshold temperature when
biomass growth rate starts to be reduced by heat stress, and Textreme is the extreme tempera-
ture threshold when the biomass growth rate reaches 0 due to heat stress.

f (CO2) =

{
1 + SCO2(CO2 − 350), 350 ppm ≤ CO2 < 700ppm

1 + 350.SCO2 , CO2 > 700ppm
(9)

where SCO2 is the crop-specific sensitivity of RUE to elevated CO2, and CO2 is the atmo-
spheric CO2 concentration.

f (water) = 1− Swater × ARID (10)

ARID is a standardized index ranging from 0 (no water shortage) to 1 (extreme water
shortage and associated drought stress). ARID is calculated based on water availability and
reference evapotranspiration (Eto). Swater is the sensitivity of RUE to the ARID index.

ARID = 1− min(ETo, 0.096PAW)

ETo
(11)

PAW is plant-available water content in the soil profile for the rooting depth and is
obtained from a simple water balance function, including precipitation, irrigation, surface
runoff, and deep drainage (see [26] for more details). ETo is the reference evapotranspiration,
which is calculated using the Priestley and Taylor approach [23]. The drought stress function
is similarly described by Sinclair et al. [27]. Crop stress occurs when the proportion of plant
available water is smaller than 75%.

The radiation interception depends on drought stress:

I50B, i+1 = I50B, i + Imax, water × (1− f (Water)) (12)

where Imax, water is the maximum daily increase in I50B due to drought stress.
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The radiation interception is affected when the drought stress becomes severe enough [28].

f Solar_water =
{

0.9 + f (Water), f (Water) ≤ 0.1
1, f (Water) > 0.1

(13)

2.3. Model Parameters and Inputs

This study used thirteen parameters to run the SIMPLE model (Table 3), including
cultivar characteristics. Tsum, I50A, and I50B were determined from the observations of
experiment data and the air temperature data. The HI was calculated as described in [29].
The remaining parameters were obtained from the literature.

Table 3. Model parameters.

Name Description Range Note

Cultivars parameters

Tsum
Thermal time requirement from sowing to
maturity in daily mean (◦C days). 2070–2300 *

HI Harvest index. 0.30–0.37 *

I50A

Thermal time requirement after sowing
fraction of light interception to reach 50%
(◦C days).

500–710 *

I50B

Represents natural senescence. Thermal time
requirement from maturity backwards for light
interception to reach 50% (◦C days).

200–250 *

Species parameters

Tbase
Base temperature (daily mean T) for phenology
development and growth (◦C). 6–10 [30]

Topt
Optimal temperature (daily mean T) for
biomass growth (◦C). 25–30 [31]

RUE
Radiation use efficiency (above ground
biomass and below ground, if harvestable,
product is below ground) (g MJ−1m−2).

0.85–1.60 [32]

I50maxH
The maximum daily increase in I50B due to
heat stress (◦C d). 120 [7]

I50maxW
The maximum daily increase in I50B due to
water stress (◦C d). 20 [7]

MaxT Threshold for daily Tmax to start accelerating
senescence due to heat stress (◦C). 40 [33]

ExtremeT Daily Tmax threshold when RUE becomes 0
due to heat stress (◦C). 25–40 [33]

CO2_RUE Relative increase in RUE per 1 ppm elevated
CO2 above 350 ppm. 350–600 [7]

S_Water Sensitivity of RUE to drought stress
(ARID index). 0.6–0.96 [7]

Notes: * data obtained from experiments in this study.

Data calibration and validation of the model were implemented by carrying out a
number of simulations using cultivar parameter sets within a reasonable range (excluding
soil parameter, which was kept the same for all the trials). In both two experiments, the
biomass was measured periodically every 10 days from sowing to maturity date. The
observed data were used to validate the simulation outputs. Tsum (cumulative daily mean
temperature above Tbase) was set so that canopy cover at harvest date was about 80% [7].
After each model run, I50A and I50B were recalibrated based on daily mean temperature
above Tbase and iterative simulations until a good fit to the experimental results was
achieved. Then, the best-fit set of cultivar parameters was used for scenario analysis.

Input variables required to run the SIMPLE model include weather (daily maxi-
mum/minimum temperature, rainfall, and solar radiation), atmospheric CO2 concentra-
tion, sowing/harvesting date, irrigation, initial variables, and four variables characterizing
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the soil (Tables 2 and 3), including fraction of plant’s available water-holding capacity
(AWC; one number for entire soil profile, limited by rooting depth), runoff curve number
(RCN), deep drainage coefficient (DDC), and root zone depth (RZD, a fixed maximum
depth) (Table 4).

Table 4. Input variables of SIMPLE model adapted from Zhao et al. [7].

Input Variables Description Unit

Crop management Sowing date (SowingDate) -
Harvesting date (HarvestDate) -

Irrigation depth (Irri) m

Initial Biomass (InitialBio) Ton
Cumulative temperature (InitialTT) ◦C day

Solar radiation interception (InitialFsolar) -

Soil characteristics Atmospheric CO2 concentration ppm
Soil water-holding capacity (AWC) -

Runoff curve number (RCN) -
Deep drainage coefficient (DDC) -

Root zone depth (RZD) m

Weather Daily maximum temperature (TMAX) ◦C
Daily minimum temperature (TMIN) ◦C

Daily rainfall amount (RAIN) m
Daily solar radiation (SRAD) MJ m−2 day−1

The daily solar radiation (MJ m−2 day−1) was collected from the Agroclimatology
Community of the POWER Data Access Viewer for a period of 2 years from 2020 to
2021 at the experiment location (Figure 1). Air temperature was recorded by Thermo
Recorder TR-72Ui (T&D Corp, Japan) and adapted from the POWER Data Access Viewer
by the NASA Langley Research Center (LaRC) POWER Project funded through the NASA
Earth Science/Applied Science Program (https://power.larc.nasa.gov/data-access-viewer/
(accessed on 1 August 2022)).

2.4. Model Assessment

Calibration was performed using the measured datasets and validation of the model
was performed using measured datasets of the cropping seasons of the year 2020 and 2021.
The model assessment was conducted using the root mean square of error (RMSE) criterion
(Equation (14)).

RMSE =

√
∑n

i=1(Ysim,i −Yi)
2

n
(14)

where Ysim,i is simulated yield, Yi is observed yield, i is the data index, and n is the length of
data. After that, this study calculated RRMSE, which is relative RMSE by dividing RMSE
with average value of measured data as follows:

RRMSE =
RMSE
∑n

i=1 Yi
× 100% (15)

where RRMSE < 10%, 10% < RRMSE < 20%, 20% < RRMSE < 30%, and RRMSE > 30%
indicate excellent, good, fair, and poor models, respectively [34].

2.5. Scenario Analysis

The set of parameters that gave the best fit between simulation and observation was
used as a control treatment to generate scenarios for the purpose of better understanding
the impact of future climate change on agricultural production. Scenario analysis was
implemented with the following incremental changes in mean temperature change: +1 ◦C,

https://power.larc.nasa.gov/data-access-viewer/
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+2 ◦C, +3 ◦C, +4 ◦C, and +5 ◦C and the following atmospheric CO2 concentration changes:
+50 ppm, +100 ppm, +150 ppm, +200 ppm, and +250 ppm.

3. Results and Discussions
3.1. Model Assessment

The model evaluation results showed that the SIMPLE model was applicable to
estimate the biomass and grain yield of soybean. The simulated biomass fit well to the
observed biomass for the two crops (Figure 2). The simulated growing season length was
96 days for Summer–Autumn 2020 and 88 days for Spring–Winter 2021; this is consistent
with that of the soybean cultivar used for the experiments (85–95 days). Significantly
positive relationships were found between the observed and simulated yields for the
Summer–Autumn 2020 season (Figure 3a) and the Spring–Winter 2021 season (Figure 3b).
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The results show that the biomass and yield were well simulated using the SIMPLE
model (Table 5). In this study, model performance testing resulted in an RRMSE of 9–10%
overall for the biomass and yield, which indicates that the applied SIMPLE model is an
excellent model regarding the category described by Jamieson et al. [34]. In a similar case
study in the USA for soybeans with the same modeling approach, the obtained RRMSE
value was about 25.4% [7], which is higher than in our case. Models simulating soybean
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yields may perform in various ways (regarding RRMSE values), which depends on the data
availability and study location. For instance, the RRMSE was 3% for the model AquaCrop
for the case in Ile-Ife, Nigeria [35] while 20% for the model CROPGRO-Soybean in northeast
China [36]. The performance may also rely on modeling approaches. For instance, SAFY
with satellite data of leaf area index (LAI) can help obtain the soybean yield in the southwest
of France with an RRMSE of 2.5%, while coupling Sentinel-2 LAI with crop modeling can
result in an RRMSE of 35.8% overall for the case in Uruguay [37]. Results from this study
show that the adapted SIMPLE model is proper for soybean biomass and yield estimation.

Table 5. Observed and simulated biomass and yields.

Season Crop
Observation (t ha−1) Simulation (t ha−1)

Biomass Yield Biomass Yield

2020 4.801 2.101 5.005 1.852
2021 4.739 2.225 5.466 2.023

3.2. Effects of Climate Variation
3.2.1. Growth Stages

This study figured out the growing season and growth stages of soybean observed
from the two experiments in 2020 and 2021 (Table 6). The results showed that the growth
stages for the Summer–Autumn season 2020 were almost longer compared to the Spring–
Winter 2021, with a variation from 1 to 7 days, depending on each stage of growth.

Table 6. Growth stages of soybean crop in 2020 and 2021.

Stages
Year

2020 2021

Growing period 21 July to 24 October 20 January to 17 April
Bloom 20 August (31 DAP) 18 February (30 DAP)

Seed fill 2 September (44 DAP) 28 February (40 DAP)
Mat 12 October (84 DAP) 7 April (78 DAP)

Harvest date 25 October (96 DAP) 17 April (88 DAP)
Note: DAP—day after planting.

3.2.2. Rainfall and Drought

The weather pattern at the experimental site, in general, was different between the
Summer–Autumn season in 2020 and the Spring–Winter season in 2021, especially con-
cerning the rainfall amount and the number of rainy days, which are also similar to solar
radiation (Table 1 and Figure 4). This may affect the biomass and yield of the soybean crop.
The total biomass of the Summer–Autumn 2020 growing season was 4.801 t ha−1, which
was slightly higher than that in the Spring–Winter 2021 (4.739 t ha−1) (Table 5). The yield
was 2.101 t ha−1 and 2.225 t ha−1 for the Summer–Autumn 2020 and the Spring–Winter
2021, respectively (Table 5).

More rainfall concentrated during 10–21 and 56–90 days after planting for the 2020
period (Table 1 and Figure 4b), which may prolong the vegetative and R5–R7 stages, and
thus lead to the delay of blooming and development, which was similar to [38]. Aberrant
rainfall may shorten or extend the flowering stage [39]. In addition, the solar radiance
was lower than that in the Spring–Winter 2021 (Figure 4a) and thus this may result in the
reduction of solar radiation use efficiency (RUE) and finally the yield.

Drought stress can affect crop growth. The findings in this study reported that the
drought stress simulated by the SIMPLE model was low to medium during the whole
season for both experiments, especially during the 6–84 days after planting for the Spring–
Winter season 2021 (Figure 5a,b). The drought stress was higher during the first 10 days
and 27–54 days after planting in the Summer–Autumn 2020, f(Water) ranged from 0.44 to
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1.0, while for the Spring–Winter season of 2021, f(Water) ranged from 0.52 to 1.0 and widely
distributed during almost all growth stages of the plant. Overall, drought stress had a
relative effect on the growth and development of the soybean; however, during the Spring–
Winter 2021 it seems to be more serious than the Summer–Autumn 2020 because it is usually
less rainy in the dry season (from November to the end of April in the Mekong delta).
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Figure 5. Water stress index (a) and simulated fraction of intercepted photosynthesis active radiation—
fSolar (b) for Summer–Autumn 2020 and Spring–Winter 2021.

More rainfall during the late stage may cause the green canopy to be maintained for a
longer period of time and result in a decrease in time from maturity backwards for the light
interception to reach 50%; this means that the value of I50B becomes lower, and therefore,
the initial development and middle stages may need more time to be completed. It was
quite clearly reflected in the dynamics of the fraction of radiation interception (fSolar) in the
SIMPLE model (Figure 6b). As shown in Figure 6b, increasing I50B caused an acceleration
of canopy senescence and consequently led to the maturity date for the Spring–Winter 2021
being advanced by about 7 days compared to the Summer–Autumn 2020. The impact of
heat stress is similar to that of drought stress.
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3.2.3. Temperature Effects

The observed daily temperature varied from 29.8 ◦C to 40.7 ◦C for Summer–Autumn
season 2020 (Figure 6a), and from 23.2 ◦C to 34.7 ◦C for the Spring–Winter 2021 (Figure 6b).
The average daily temperature in the Summer–Autumn 2020 crop (30.5 ◦C) was slightly
higher than that in the Spring–Winter 2021 (29.0 ◦C). Particularly, the number of days in
which maximum temperature above 35 ◦C were 62 days (Figure 6a) and 44 days (Figure 6b)
during the growing seasons; thus, the extended time of maximum temperature was also
longer and quite higher than that in the Spring–Winter 2021.

The total simulated biomass dynamics for the two crop seasons are shown in Figure 7.
The results from the SIMPLE model showed that a temperature increase caused a significant
decline in the final cumulative biomass. The yield declined by approximately 32% and 14%
compared with the observed yield for the Summer–Autumn and the Spring–Winter 2021
periods, respectively.
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The findings from this study show that temperature significantly affects the soybean
yield, and an elevated temperature can cause a yield reduction. As reported, mid- and
high-latitude areas may benefit from warming temperatures, in which the warming outside
of the core of the growing season is the most beneficial to the yield increase [3]. However,
the benefit of warming depends on how soybeans respond to the change. Indeed, this study
shows that the increase in temperature can lead to a yield reduction, which was similarly
reported in the case in the USA [7]. The effect of temperature on soybeans is caused by their
physiological characteristics. The optimum growth takes place at temperatures between 20
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and 30 ◦C [40]. The yield gradually increases with temperatures up to 29 ◦C to 32 ◦C and
then sharply decreases as temperatures exceed this threshold [41]. In another case, seed set
on sterile male and fertile female soybeans decreased as the daytime temperatures increased
from 30 to 35 ◦C [42], which was alsoS mentioned by Caviness and Fagala [43]. Overall, a
sustained increase in ambient temperature would likely threaten soybean yields [44].

This study confirms the effects of temperature on the yield. The analyses of 51 stations
in China from 1992 to 2011 showed that an increasing temperature can change soybean
phenology and shorten its growth stages [45]. For this reason, warming temperatures
may reduce the yield of soybeans [46]. For instance, a canopy temperature over 20.9 ◦C in
central Illinois can lead to a yield reduction [47]. As predicted, climate change (primarily
temperature change) may result in potential yield losses in the USA, Russia, and India by
15.1–16.1% by the end of the 21st century [48]. This spectrum could also be a potential
problem in Matopiba, Brazil, where meets the predicted yield reductions of over 23% under
RCP 8.5 (2041–2070) due to temperature increases above 3 ◦C [49]. In principle, the warming
temperature during pod filling can inhibit transgenerational seed germination, particularly
for 37 ◦C/29 ◦C (day/time) [50] and then cause a reduction in the seed mass, seeds
per pod, and seeds per plant [47]. For soybean genotype EC 538828, high temperatures
up to 42/28 ◦C (day/night) can decrease its photosynthesis, stomatal conductance, and
seed yield [51]. The evidence above implies that tropical areas, such as Vietnam, with
potential temperature increases in the future can encounter risks of the yield reduction.
For this reason, climate change adaptations in this area should consider not only soybean
genotypes that are tolerant to high temperatures [50] but also cultivation areas (with climatic
conditions) [48]. Since the yield is dependent on temperature, future adaptations to this
issue should consider selecting proper planting dates to avoid temperature extremes [52];
in other words, a cropping calendar change.

3.2.4. CO2 Fertilization Effect

This study simulated total biomass from a free-air CO2 enrichment (Figure 8). The
results indicated that for the control (350 ppm) and high CO2 (600 ppm), the simulations
reproduced the difference in total biomass dynamics, and the 250-ppm enrichment of CO2
concentration increased the simulated final biomass by 2% and 9% for the Summer–Autumn
2020 and the Spring–Winter 2021, respectively, which led to the yield increase.
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Relative yield changes were simulated with increasing temperatures and CO2 concen-
trations, as shown in Figure 9. The soybean yield rapidly decreased in the Summer–Autumn
of 2020 with about a 7% reduction per ◦C increase, while in the Spring–Winter of 2021,
this reduction was about 2.3% (Figure 9a). With an increase in the CO2 concentration, the
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yield increased by about 14% and 16% per 100 ppm for the Summer–Autumn 2020 and the
Spring–Winter 2021, respectively (Figure 9b).
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Besides temperature, CO2 is an influencing factor on the yield. This study reported
the yield enhancement by the CO2 increase, which agreed with the report from historical
analysis of the effects of CO2 on the yield [53]. Zhao et al. [7] found a yield increase of
7% per 100 ppm CO2 in the USA, which is lower than the case in our study. The yield
can increase by up to 26–31% as the free-air CO2 is enriched [54]. The phenomenon of the
increase was also recorded in Pradesh, India [55], and Iowa, USA [56], particularly in major
soybean production countries such as the USA, Brazil, and China [53].

The effects of elevated CO2 on yield are fundamental to the fertilization effect [53].
Historical data analyses showed that the average yields for the USA, Brazil, and China in
2002–2006 (377 ppm CO2 in 2006) were 4.34%, 7.57%, and 5.10% higher, respectively, than
that in 1980 (338 ppm CO2) [53]. In other words, fertilization can increase the yield, i.e.,
the level of 370 ppm CO2 triggered the yield increase for Iowa, USA [57], and the soybean
productivity enhancement [58]. The mechanism of this effect is that rising CO2 levels
can affect the photosynthesis capacity, photosynthetic pigment, and antioxidant levels at
flowering stages, particularly at 400 ppm and 600 ppm levels of CO2 [59]. In addition, the
rising levels of CO2 from 400 to 600 ppm can reduce Fe (negative correlation with the yield)
in soybean seeds, which is the opposite to the elevated temperature [60]. In co-effects, the
increase of 2.1 ◦C together with CO2 of 700 ppm can increase the yield by 31% [61]. Such
evidence showed that elevated CO2 levels may boost the yield increase, which could be
a potential benefit for future climates with high CO2 concentrations in terms of soybean
production. However, soybeans may be co-affected by temperature and CO2, which further
studies should consider.

4. Conclusions

The SIMPLE model performed well in assessing the soybean biomass and yield in this
case study. It is a generic and simple dynamic model based on the known principles of crop
physiology with a few equations and parameters. This model was competent for estimating
the soybean yield under different weather conditions. This study found that drought stress
inhibited the soybean growth, and although drought stress due to less rainfall seemed to be
more serious in Spring–Winter 2021 than in Summer–Autumn 2020, the soybeans grown
in rainy months have a longer growing period and lower yield than those planted in less
rainy months under the same environmental conditions. An increase in temperature can
lead to a yield reduction, while an increase in CO2 can be followed by a yield increase.
Modeling using the SIMPLE model is useful for assessing the responses of soybeans to
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climate impacts, which can be applicable to other studies, particularly in tropical areas with
similar climates.
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