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Abstract: To achieve the non-destructive detection of peanut defects, a multi-target identification
method based on the multispectral system and improved Faster RCNN is proposed in this paper. In
terms of the system, the root-mean-square contrast method was employed to select the characteristic
wavelengths for defects, such as mildew spots, mechanical damage, and the germ of peanuts. Then,
a multispectral light source system based on a symmetric integrating sphere was designed with
2% nonuniformity illumination. In terms of Faster RCNN improvement, a texture-based attention
and a feature enhancement module were designed to enhance the performance of its backbone. In
the experiments, a peanut-deficient multispectral dataset with 1300 sets was collected to verify the
detection performance. The results show that the evaluation metrics of all improved compared
with the original network, especially in the VGG16 backbone network, where the mean average
precision (mAP) reached 99.97%. In addition, the ablation experiments also verify the effectiveness
of the proposed texture module and texture enhancement module in peanut defects detection. In
conclusion, texture imaging enhancement and efficient extraction are effective methods to improve
the network performance for multi-target peanut defect detection.

Keywords: peanut defects; target identification; multispectral; texture attention; texture enhancement

1. Introduction

Due to their high nutritional value and usage as the main raw material for oil, peanuts
are widely grown around the world [1,2]. However, mechanical damage and the ger-
mination of peanuts are common defects in the process of harvesting and storage [3,4].
In addition, peanuts with these defects are more likely to be infected with mold and to
produce toxins, which in turn poses a potential threat to consumers [5]. Therefore, fast and
non-destructive defect inspection of peanuts is essential before processing and selling them.

In past years, computer vision technologies have been widely studied as efficient agri-
cultural product detection approaches for defects, such as mold, mechanical damage, and
germs [6–8]. On the one hand, researchers have tried to explore new photoelectric detection
solutions from hardware setups to highlight defective image features and improve image
quality [9]. On the other hand, new image processing algorithms have been developed to
improve the speed and accuracy of automatic defect detection [10].

To highlight defects of agricultural products, researchers have extensively investigated
multispectral approaches in terms of optoelectronic detection systems [11–13]. Based on the
differences in the reflection spectra of agricultural products, multispectral techniques use
specific spectra to enhance the visibility of defects. Huang et al. designed a multispectral
system to detect mechanical damage in apples using characteristic wavelengths (CWs),
such as 780 nm, 850 nm and 960 nm [14]. The experimental results showed that the apple
defect image features were significantly enhanced, and the defect detection accuracy was
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improved at the CW. Yang et al. designed a detection system for the potato germ, and
25 CWs in the range of 696 to 952 nm were selected for image acquisition [15]. The contrast
between the region of interest (ROI) and the background was enhanced by the proposed
multispectral technique, thereby improving the correct rate of potato germ detection.
Bartolić et al. designed a grain defect detection system, and the experiment results showed
that the differences of grains in the spectral reflectance between healthy and mold-infected
were 7.9–9.6 times clearer when illuminated by the CW [16]. The above studies show that
multispectral technology can significantly enhance the appearance of defect features, which
is of great benefit to improve the accuracy of subsequent feature recognition.

Furthermore, in the passive multispectral image acquisition system, light spots and
shadows on the target object can cause image contamination and affect the image recog-
nition. Therefore, Bandara et al. designed a curcuma longa foreign detection system
based on the integral hemisphere structure, which effectively reduced the spot pollution
in the image [17]. In addition, the researchers also tried to design the image acquisition
system using a symmetric light source structure to reduce the shadows on 3-dimensional
objects [18,19]. These studies show that the uniform light source structure and the sym-
metrical light source structure in the image acquisition system are effective approaches for
improving imaging quality.

To automate the detection of defects in agricultural products, researchers have de-
veloped a series of computer vision algorithms. In the field of peanut defect detection,
studies have commonly focused on the classification and segmentation of defects. On the
one hand, researchers mainly used BP neural networks, support vector machines, and
VGG16 algorithms to achieve the classification of defective images for peanut mold and
other defective features [20–22]. On the other hand, researchers used Otsu, DeepLabv3+,
SegNet, and U-Net algorithms to segment defective peanuts, such as peanut mold, for-
eign objects, and mechanical damage [23,24]. The above studies have made an important
contribution to accelerating the automated detection of peanut defects. Compared to the
data acquisition system of the white light source, the introduction of multispectral lighting
technology is more advantageous in highlighting the features of peanut defects. Despite
these advantages, care needs to be taken during the design of multispectral systems to
avoid the negative effects of illumination nonuniformity and shadows. Therefore, design-
ing a uniform light source based on multispectral technology and symmetrical structure
is beneficial for improving the quality of peanut defect data. Furthermore, the design
of automatic inspection and sorting equipment puts forward requirements for computer
vision algorithms to achieve both multi-target classification and related location informa-
tion. Therefore, in addition to the hot research topics of classification and segmentation, an
automatic identification algorithm that can provide guidance information on defect types
and location information for peanut sorting equipment is of practical interest.

With advantages in terms of classification and localization, Faster RCNN has been re-
searched as a good candidate for the detection of defects in many agricultural products [25].
Basri et al. constructed a dataset of defects in fruit, such as mango, lime, and dragon fruit,
and Faster RCNN was employed to identify and locate the defects [26]. Xi et al. designed
a system based on an improved Faster RCNN for detection in a potato germ dataset [27].
In this research, the anchor points of Faster RCNN were improved by a chaotic optimized
K-Means algorithm, resulting in the 97.71% accuracy of potato germ detection. Bari et al.
designed a rice leaf defect detection system based on an improved Faster RCNN [28]. In
this study, a dataset of rice leaf diseases and pests was first constructed, and then the
region proposal network of Faster RCNN was optimized to achieve 99.25% accuracy. The
above studies show that Faster RCNN is widely used in the target identification tasks for
agricultural products and achieves good accuracy in localization and classification.

Attention mechanism and feature enhancement are reliable strategies to improve
the feature extraction ability of convolutional networks, both of which have outstanding
performance in Faster RCNN. On the one hand, researchers have improved the backbone
network feature extraction efficiency by channels or spatial attention mechanisms [29–31].
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On the other hand, researchers have also tried to enrich the network feature map with the
help of feature enhancement, such as for colors, oriented gradients, RGB, and ROI [32–34].

In summary, a high-quality dataset and an accurate algorithm are essential to achieve
the multi-objective identification of peanut kernel defects. To the best of our knowledge, this
study is the first to apply a target recognition algorithm to the detection of peanut defects.
In terms of the dataset, a target identification dataset is generated, the objects including
healthy peanuts (HPs), moldy peanuts (MPs), mechanically damaged peanuts (MDPs), and
germinated peanuts (GPs). In this process, the root-mean-square contrast (RMSC) algorithm
and the symmetrical integrating sphere structure are employed. The former is used to
select the characteristic wavelengths, while the latter is employed to reduce contamination,
such as light spots and shadows, during the image acquisition process. In terms of the
target identification algorithm, based on the characteristics of the texture differences in
defective peanuts, a texture-based attention module and a feature enhancement module are
proposed to optimize the performance of the classical Faster RCNN. Finally, the improved
network is trained and tested on the collected peanut-defective multispectral dataset.

2. Materials and Methods

In order to achieve the purpose of peanut defect detection, a dataset was prepared,
and then the dataset was used for the neural network training to achieve the target
identification task.

2.1. Peanut Defects Dataset Preparation

The dataset was prepared in the following three steps. First, the CWs of peanut defects
were determined experimentally. Second, a MSI acquisition system was designed based on
the light source of CW, and peanut defect image acquisition was performed. Finally, the
ground truth (GT) labels of the MSIs were manually annotated for the dataset.

2.1.1. Multispectral Characteristic Wavelength

Since regions, such as mold spot, mechanical damage, and the germ in peanuts, have
a different spectral absorption or reflectance, the defective regions will show certain bright
and dark differences under the illumination of CWs [35]. To determine the CWs of peanut
defects, 25 light emitting diodes (LEDs) with different wavelengths in the range of 365–975
nm were selected as light sources for the defective peanut samples, and some representative
ones are shown in Figure 1.
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Figure 1. Grayscale images of peanuts under illumination of different wavelengths: (A) 365 nm,
(B) 377 nm, (C) 440 nm, (D) 470 nm, (E) 520 nm, (F) 594 nm, (G) 652 nm, (H) 698 nm, (I) 766 nm,
(J) 801 nm, (K) 901 nm, (L) 975 nm.
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From Figure 1, it can be observed that there are obvious bright and dark differences
of the defective regions under the illumination of different lights. The mold spot region
appears as brighter irregular patches in the range of 365 to 470 nm and forms a large
contrast with the neighborhood, as shown in Figure 1A–D. The mechanically damaged
region exhibits a brighter feature than the neighborhood under illumination in the range of
377 to 520 nm, as shown in Figure 1B–E. The region of the germ exhibits a brighter feature
than the other regions in the 470–698 nm band, also shown in Figure 1B–E.

Combining the analysis above, it can be concluded that the selection of CW as the light
source helps to highlight the defective regions, such as mold spot, mechanical damage, and
the germ. The difference in the bright and dark contrast between the sample defects and
their neighborhood regions can be adopted as the basis to determine the CWs of sampling
the system.

To achieve the above purpose, the algorithm, followed by three steps, is proposed:
Firstly, the defect is taken as the ROI and segmented manually to analyze the grayscale
characteristics. The segmentation results of the defect regions are shown in Figure 2.
Secondly, as the bright and dark contrast between defects and the neighborhood region
tends to be higher under CW illumination, the contrast ratio between the defect and its
adjacent region (AR) is introduced to quantitatively evaluate the visibility of defects.
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Figure 2. Calculation procedure and results of RMSC: (A) schematic diagram of peanut defects
segmentation and their neighborhoods (The area indicated by the yellow dashed line is adjacent
region, and the area indicated by the blue solid line is defect region); (B–D) calculated results of
root-mean-square contrast at defect wavelengths.

To extract adjacent regions, computer morphological dilation operations are performed
on the defective regions and further intersected with non-defective regions by logical “And”
operations. Therefore, the intersected set is the neighborhood of the defective region. The
above process can be expressed by Equation (1).

AR =
{

D′
}
∩ {H}, (1)

where AR is the pixel set of the adjacent region of defect; H is the pixel set of the non-
defective region. D′ represents the pixel set of the defect area after dilation treatment and
is defined as Equation (2).

D′ = D⊕ S =
{

z
∣∣(Ŝ)z ∩ D 6= ∅

}
, (2)
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where S is the structuring elements of the expansion operation, and z is the element
belonging to S; D is the pixel sets of the defect. The boundary regions extracted by this
method are shown in Figure 2.

Finally, the RMSC is used to evaluate the difference between the defect and the region
defined by Equation (2) [36], which is further applied to quantitatively determine the CW.
The RMSC is defined by Equation (3).

C∂ =

√√√√(
D

∑
d=1

(Id − µ)2)/D, (3)

where C∂ is the value of RMSC; Id is the gray value corresponding to each pixel in the
defective region; and D is the total number of pixels in the defective region. The average
gray value of the region is defined by Equation (4), which is as follows.

µ = (
AR

∑
a=1

Ia)/AR, (4)

where Ia is the grayscale value of each pixel in the AR.
The RMSC of the mold spot, mechanical damage, and germ regions at wavelengths

from 365 to 975 nm is calculated based on the experimental data and is shown in Figure 2.
In Figure 2, a higher RMSC means that the defect area has a more pronounced contrast
between bright and dark within its domain, which indicates the defect and its adjacent
region are easier to distinguish. Accordingly, the CWs for peanut defects of the mold,
mechanical damage, and germ are 440 nm, 470 nm, and 520 nm, respectively. Therefore,
the above CWs are selected as illumination sources for the image acquisition system.

2.1.2. Acquisition System

Furthermore, a multispectral image acquisition system is designed. The system is
based on a symmetric integrating sphere structure, implemented with the aim of reducing
light spots and shadow contamination during image acquisition. As shown in Figure 3, the
image acquisition system consists of a carrier table, charge coupled device (CCD) camera
(MER-132-43U3M-L, Da Heng Image Inc., Beijing, China), computer (Z40, Lenovo, Beijing,
China), and multispectral light source devices.
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A carrier table of 8× 8 cm acts as the sample stage for the peanuts, and a monochrome
CCD camera with a resolution of 1292× 964 pixels is used for image acquisition and storage,
together with a computer. The integral sphere chamber is introduced as a light mixture
structure to provide uniform illumination and reduce local bright spots. Meanwhile, the
integrating spheres are distributed in an axisymmetric manner to provide multiple angles of
incident light to reduce shadows. Each integrating sphere is composed of a hollow spherical
body made of black acrylic material with a radius of 12.5 cm. During the manufacturing
process, a laser engraving machine (WER-1080, Vollerun Inc., Shandong, China) is first
used to etch the entrance and exit apertures with radii of 2 cm and 3 cm, at points (12.5,
0, π/4) and (12.5, 0, π) on the sphere’s surface, respectively. Next, a layer of BaSO4,
approximately 0.1 cm in thickness, is coated on the inner surface of the sphere to form a
complete integrating device. Three types of LED chips with different CWs are soldered
onto a circular Printed Circuit Board (PCB) with a diameter of 2 cm and tightly attached to
the entrance of an integrating sphere, directly coupling the emitting rays into the chamber.
Furthermore, a corresponding driving circuit and system is developed to control each color
channel independently.

In order to better evaluate the quality of the system illumination uniformity, the
metrics of Bias parameter is employed [37], as defined by Equation (5).

Bias = ±((Emax − Emin)/(Emax + Emin)) (5)

where Emax and Emin are the maximum and minimum light intensity on the test area,
respectively. The experimental results of the system Bias are shown in Figure 4.
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As can be seen in Figure 4, an area of approximately 28 cm2 of light uniformity is
achieved in the center of the test area, which has a light inhomogeneity of 2%.

2.1.3. Dataset Acquisition and Labeling

The dataset is prepared in the following steps. First, the HP, MP, MDP, and GP samples
are randomly placed on the carrier table. Then, turn on the monochrome LED with a
peak wavelength of CW and capture images of peanuts under LED illumination using a
monochromic CCD camera. In the process of dataset collection, the LEDs are sequentially
turned on to cover all characteristic wavelengths. Therefore, each sample image in the set
consists of three monochromatic channels. Second, the dataset is enlarged by continuously
updating the peanut kernel samples and adjusting the position and pose. Finally, a total
of 1300 set MSIs of peanut defects are acquired for training, validating, and testing the
algorithm. Further, to obtain the dataset for Faster RCNN training, validation, and testing,
the peanuts in the images are labeled and classified using rectangular boxes, and label files
supporting the Pascal VOC 2012 format are output.

2.2. Target Identification Model
2.2.1. Network Structure

Faster RCNN mainly contains three parts: the backbone network, region proposal
network, and classification network, as shown in Figure 5. The backbone network can be
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composed of convolutional networks, such as VGG and ResNet [38,39], which are used
for image feature extraction and provide feature maps for the subsequent region proposal
network; thus, the backbone network performance is a key factor affecting the target
identification accuracy of Faster RCNN [40].
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In addition, the texture distribution and strength of defective peanuts are important
features for distinguishing defect types. Therefore, we propose a texture attention module
(TAM) and a texture enhancement module (TEM), which are based on the texture feature
extraction mechanism. The two modules are used to optimize the convolutional and
pooling layers of the backbone network.

2.2.2. The Texture Extraction Mechanism Based on Pooling Operation

The pixel brightness intensity of texture regions in digital images varies largely, so the
grayscale gradient between neighbors is used to describe the spatial location and intensity
of the texture [41]. Thus, we designed a texture feature extraction mechanism by pooling
operations in convolutional neural networks.

For a pooling filter of size m × n, the max pooling and average pooling operations are
defined as follows: 

MaxPool f ilter = max(x(i, j))

AvePool f ilter = (
m
∑

i=1

n
∑

j=1
x(i, j))/m ∗ n , (6)

where x(i, j) is the gray value of any pixel in the pooling filter, MaxPoolfilter and AvePoolfilter
denote the max pooling and average pooling results, respectively, of the filter. The difference
of the max pooling minus the average pooling is defined as Equation (7).

∆Pool f ilter = MaxPool f ilter − AvePool f ilter, (7)

As the grayscale of the pixels in the filters changes, the value of ∆Pool f ilter is as follows:{
∆Pool f ilter = 0, for ∀x = y in the filter
∆Pool f ilter > 0, if ∃x 6= y in the filter

, (8)

where x and y are the grayscale values of any two pixels in the filter. Equation (8) shows
that when there is no variation in the grayscale values of the pixels within the filter, the
value of ∆Pool f ilter is 0. Otherwise, it indicates there is variation in the grayscale values
within the filter. Thus, the ∆Pool f ilter of 0 represents that there is no texture inside the
filter. Yet, when its value is greater than 0, texture information exists within the filter. With
increasing values of ∆Pool f ilter, the texture features become more obvious. For a given
image F, the spatial distribution and strength of the texture can be described by a series



Agronomy 2023, 13, 1158 8 of 15

of ordered ∆Pool f ilter. Based on the above theory, the texture map of any image can be
defined as follows:

Mtm(F) = MaxPool(F)− AvePool(F), (9)

where the Mtm(F) is the texture map of F; the MaxPool(F) and AvePool(F) are the max
pooling layer and the average pooling layer in the convolutional network, respectively.
Figure 6 shows the calculation process and visual results of the peanut texture map based
on Equations (6)–(9). Since there is no obvious texture in the background, the difference
between the 2 kinds of pooling operations tends to 0. The gray scale of regions, such as
peanut kernel boundaries and defects, varies greatly; the texture features are effectively
extracted after the above operation. In summary, the texture extraction mechanism based
on the pooling operation can effectively extract the texture features of the image. Therefore,
the mechanism is considered as a basic block and used for the design of the attention
module and feature enhancement module.
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Figure 6. Example of image texture feature extraction based on pooling operation: (A) Peanut gray-
scale image; (B) Texture map; (C) Peanut contour area grayscale matrix; (D) Background grayscale
matrix; (E) Result of MaxPool; (F) Result of AvePool; (G) Result of MaxPool minus AvePool; The
arrows in the figure indicate the direction of data flow.

2.2.3. Texture Attention Module

Based on the texture extraction mechanism described in Section 2.2.2, we designed a
texture attention module, as shown in Figure 7.
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Referring to the architecture of the convolutional block attention mechanism [42], the
TAM is composed of a texture-based channel attention module (TCAM) in series with a
spatial attention module (TSAM). The overall process can be summarized as Equation (10).

Mtam(F) = F⊕ [Mtsam(Mtcam(F))], (10)

where the F ∈ RC×H×W is the input feature map; the Mtam(F) ∈ RC×H×W is the feature
map of TAM; the Mtcam(F), Mtsam(F) are the feature maps of TCAM and TSAM.

In the attention transformation process, TCAM is used to extract the texture intensity
information in F and enable the weights of the texture-rich channels to be adjusted. Then,
TSAM is used to extract the texture coordinate information in Mtcam(F). Thus, the weights of
the spatial regions where texture exists are increased. Thus, TAM achieves the enhancement
of network attention in the channel and space based on texture intensity and coordinate
information, respectively. In addition, the input and output of TAM always keep the same
size, so it can be nested between any two convolutional layers.

• Texture-based channel attention module

The structure of TCAM is shown in Figure 7B, and the channel attention is computed
as Equation (11).

Mtcam(F) = F⊗ σ[GAP(Mtm(F))], (11)

where F ∈ RC×H×W is the input feature map; Mtcam(F) ∈ RC×H×W is the feature map
of TCAM; The σ is the activation function; and GAP is the global average pooling layer.
In the channel attention enhancement process, the texture extraction mechanism based
on Equation (9) is used to compute the texture map of F channel-by-channel, thus the
Mtm(F) ∈ RC×H/2×W/2. In addition, the global average pooling layer is used to vectorize
the 3D feature map Mtm(F) into a 1D vector with a dimension of RC×1×1. For each channel,
the value of this vector reflects the average intensity of the textures inside the channel.
Channels with rich texture are more likely to carry more feature information. Therefore,
the texture intensity feature values can be used to adjust the channel weights of the feature
maps to enhance the network’s attention to channels with rich textures.

• Spatial attention module based on texture

The structure of the TCAM is shown in Figure 7C, and the channel attention is com-
puted as Equation (12).

Mtsam(F′) = F′ ⊗ σ[Up(Mtm(F′))], (12)

where F′ = Mtcam(F) is the feature map output from TCAM; Mtsam(F′) ∈ RC×H×W is the
feature map of TSAM, Up is the upsampling layer, and σ is the activation function.

For spatial attention, the texture extraction mechanism is first used to extract the tex-
ture map of the feature map of TCAM (where the Mtm(F′) = RC×H/2×W/2). After that, the
texture map is upsampled to restore the size of the input (where the Mtm(F′) = RC×H×W).
For each channel, according to Equation (8), the pixels of the non-textured regions on
the feature map are suppressed to 0, while the spatial regions rich in texture have higher
grayscale values. It results in a mask of the texture regions corresponding to the feature
map, as in Figure 6. Thus, the spatial weight of the feature map can be adjusted by the
coordinate information of the texture to enhance the network’s attention to texture-rich
spatial regions.

2.2.4. Texture Enhancement Module

In addition to the attention module designed for the convolutional layer, the mecha-
nism shown in Equation (9) is also applied to the downsampling layer for feature enhance-
ment. The structure of the TEM is shown in Figure 8, which contains a max pooling layer,
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an average pooling layer, and a TEM layer. The process of texture enhancement is defined
as Equation (13).

Mtem(F) = MaxPool(F) + Mtm(F), (13)

where F is the input feature map and Mtem(F) is the feature map of TEM. Firstly, the texture
extraction mechanism is used to obtain the texture map. Secondly, the texture map is
summed with the max pooling layer. Generally, max pooling or average pooling is used for
data downsampling in convolutional neural networks to obtain a larger receptive field.
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The proposed TEM is embedded in the downsampling process and the texture infor-
mation is superimposed on the pooling result, which makes the texture features in the
feature map more prominent.

2.2.5. Model Evaluation

We use intersection of union (IoU), precision (P), recall (R), and average precision (AP)
as metrics to evaluate the effectiveness of the model. Among them, the IoU is the average
of the intersection and concatenation ratios of the prediction box and GT. The P represents
the proportion of area correctly detected in the prediction box. R indicates the proportion
of the correctly detected area in the GT. The AP expresses the area of the PR curve used to
reflect the accuracy rate under different recall rates. Based on the difference between the
prediction box and GT, the prediction results can be classified as true positive (TP), false
positive (FP), and false negative (FN). The above metrics are defined as Equations (14)–(17):

IoU = TP/(TP + FP + FN), (14)

P = TP/(TP + FP), (15)

R = TP/(TP + FN), (16)

AP =
∫ 1

0
P·dR (17)

3. Results
3.1. Training Platform and Parameter Settings

The experiments were conducted on hardware platforms, such as the Intel(R) Core
(TM) i5 CPU and Tesla K40c GPU. The software environment included Python 3.6 and Keras
2.3. The datasets for training, validating, and testing in the experiments contained 728, 312,
and 260 MSIs, respectively. In addition, the anchor box scale was set to [64, 128, 256] pixels
according to the size of the peanut core in the image. The pixel reduction index of each
image channel was set to 64.
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3.2. Model Training and Testing

The Faster RCNN based on VGG16 was trained with the parameters described in
Section 3.1, and the training weights were saved with the minimum loss criterion after
25 epochs. The images of the test dataset were predicted by these weights, whose results
are visualized in Figure 9. By comparing the GT and prediction results, our method
successfully identified the peanut targets in the test images and achieved high localization
and classification accuracy. Moreover, comparing the prediction results of the original
network, our method obviously improved the accuracy of peanut defects identification.
On the one hand, the proposed method did not show any missed or repeated detections in
identifying mechanically damaged and moldy samples. On the other hand, our method
achieved higher confidence scores, especially in classifying mechanically damaged peanuts,
which indicates a bounding box of moldy peanuts closer to the GT.
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470 nm, 520 nm; numbers in the prediction box are confidence scores): (A,D,G) are the labels of
manual classification and localization; (B,E,H) are the results of Faster RCNN based on the VGG16
backbone network; (C,F,I) are the results of Faster RCNN improved with TAM and TEM (the
rectangular boxes represent the localization information. The text above the boxes indicate the
predicted defect types and its confidence level of the algorithm).

Equations (14)–(17) were used to evaluate the proposed algorithm, and the results of
the fivefold cross-validation are shown in Table 1.
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Table 1. Peanut defect identification results based on VGG16 and improved algorithm.

Network Class IoU (%) P (%) R (%) AP (%)

Original

HP 84.03 ± 0.05 92.25 ± 0.20 90.20 ± 0.32 99.73 ± 0.11
MP 84.06 ± 0.07 92.25 ± 0.10 90.23 ± 0.24 99.84 ± 0.16

MDP 82.05 ± 0.14 90.06 ± 0.40 89.05 ± 0.14 99.78 ± 0.09
GP 74.49 ± 0.21 82.58 ± 0.16 80.58 ± 0.17 99.80 ± 0.12

Ours

HP 84.82 ± 0.41 91.06 ± 0.35 92.27 ± 0.15 99.95 ± 0.14
MP 83.49 ± 0.11 90.75 ± 0.19 91.05 ± 0.18 99.95 ± 0.04

MDP 83.60 ± 0.09 91.40 ± 0.04 90.52 ± 0.08 99.97 ± 0.07
GP 80.23 ± 0.13 87.73 ± 0.09 88.03 ± 0.08 99.99 ± 0.09

Overall, the proposed classification method achieves improvements of most of the
classification metrics, according to Table 1. Specifically, R was obviously improved com-
pared with the classical Faster RCNN, which means that our method could produce true
positive bounding boxes that were closer to the GT. In particular, among the two types of
defects with distinct contour features, namely, MDP and GP, all indicators were improved,
indicating the effectiveness of the proposed TAM and TEM. Especially, the identification
accuracy of GP improved the most, with an increase of 5.74%, 5.15%, and 7.45% in terms
of IoU, P, and R, respectively. On the other hand, for the detection of HP and MP, the
introduction of the texture attention mechanism and texture enhancement mechanism
showed competitive results or a slight improvement, which may be due to the similarity of
the contour features of the two types of peanuts. Overall, our method has achieved higher
average scores in detecting all types of peanuts, with a mAP of 99.97%. This indicates that
our method is comprehensively more reliable for peanut defect detection tasks, which will
be more beneficial in guiding sorting equipment to locate defective peanuts.

3.3. Ablation Experiments

To analyze the effectiveness of TAM and TEM, ablation experiments were performed
based on Faster RCNN with different backbone networks, and the results of the fivefold
cross-validation are shown in Table 2. Firstly, it can be seen from Table 2 that the mean
IoU (mIoU) and mAP scores of all three networks improved significantly under TAM. In
addition, the mean P (mP) and mean R (mR) scores of VGG16 and ResNet101 improved
more obviously. This indicates that the module has a significant effect on enhancing the
feature extraction ability of the above three backbone networks.

Table 2. Results of texture attention module and texture enhancement module ablation experiments.

Backbone Network mIoU (%) mP (%) mR (%) mAP (%)

VGG16 78.88 ± 0.14 86.82 ± 0.35 85.03 ± 0.17 99.50 ± 0.14
ResNet50 80.23 ± 0.51 89.56 ± 0.71 85.56 ± 0.21 99.81 ± 0.20
ResNet101 73.61 ± 0.28 81.81 ± 0.24 79.54 ± 0.14 99.44 ± 0.09

VGG16 + TAM 80.31 ± 0.67 88.64 ± 0.37 86.47 ± 0.82 99.84 ± 0.17
ResNet50 + TAM 80.89 ± 0.31 89.15 ± 0.35 86.97 ± 0.19 99.93 ± 0.15

ResNet101 + TAM 76.84 ± 0.18 86.81 ± 0.17 81.95 ± 0.23 99.53 ± 0.11
VGG16 + TEM 81.89 ± 0.34 89.35 ± 0.15 88.77 ± 0.27 99.96 ± 0.09

ResNet50 + TEM 80.07 ± 0.41 88.08 ± 0.29 86.37 ± 0.29 99.85 ± 0.12
ResNet101 + TEM 81.39 ± 0.37 88.89 ± 0.26 88.01 ± 0.41 99.89 ± 0.23

VGG16 + TAM + TEM 82.34 ± 0.49 89.45 ± 0.20 89.67 ± 0.53 99.97 ± 0.12
ResNet50 + TAM + TEM 82.10 ± 0.28 89.79 ± 0.43 88.56 ± 0.47 99.95 ± 0.23
ResNet101+ TAM + TEM 80.66 ± 0.27 90.00 ± 0.47 86.11 ± 0.41 99.67 ± 0.16

Secondly, the mIoU, R, and mAP scores of the three networks improved more signifi-
cantly under the effect of TEM, and the most prominent contribution was that of ResNet101,
which achieved an R improvement of 8.5%. This demonstrates the significant contribution
of TEM in enhancing the network texture features in the above networks.
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Thirdly, all the scores of the three networks increased to different degrees with the com-
bined contribution of TAM and TEM. The best score is for VGG16, which achieved 82.34%,
89.67%, and 99.97% for mIoU, R, and mAP, respectively. This indicates the effectiveness of
the two modules in improving the performance of the Faster RCNN backbone network. In
addition, there was no effect of improvement in the P score when the two modules worked
independently on ResNet50. However, when the modules worked together, the P score of
ResNet50 improved effectively. This implies that the two modules can only achieve the
best results on some networks when used in combination.

In summary, the designed texture-based attention module and feature enhancement
module are not only useful for improving the Faster RCNN backbone network under
independent working conditions, but they also achieve excellent results when working
in collaboration. Therefore, they contribute significantly to the improvement of the target
recognition accuracy for peanut defects.

4. Conclusions

Automated detection of peanut defects is of great importance for ensuring product
quality. To achieve defect classification and localization, this paper proposes a multi-object
recognition scheme for peanut defects based on multispectral imaging and an improved
Faster RCNN algorithm. The main conclusions of this paper are as follows:

(1) To improve the identification of peanut defects in images, we determined the spectral
features of various peanut defects, such as mold, mechanical damage, and embryo,
using experimental methods. We used these spectral features as the light source to
enhance the identification of peanut defects in images. Furthermore, we designed
a uniform light source system based on a symmetrical integral sphere structure to
reduce the impact of light source pollution, such as light spots and shadows.

(2) At the algorithm level, we introduced object recognition algorithms to automate the
classification and localization of peanut defects, providing necessary guidance infor-
mation for subsequent sorting equipment. As traditional convolutional networks have
weak feature recognition abilities for distinguishing healthy peanuts from those with
mold and mechanical damage, we specifically designed a texture attention mechanism
and a texture enhancement module. The experimental results show that the proposed
scheme achieves a maximum mAP of 99.97% (the code and dataset are available
at https://github.com/HyperSystemAndImageProc/Multi-target-Identification-of-
Peanut-Defects. Accessed on 29 July 2022).

In summary, we explored reliable methods to improve the identification accuracy of
peanut defects through texture enhancement at both the hardware and software levels,
providing reliable classification and localization information for mechanical equipment,
such as peanut sorters. This indicates that our method has higher reliability for peanut
defect detection tasks, which will be more beneficial for guiding sorting devices in locating
peanuts. Therefore, we believe that the above defect detection scheme based on hardware
and software cooperation can be extended to other agricultural target recognition fields.
However, there are still several limitations to this study, for example, the research is
represented by three types of peanuts detects to demonstrate it classification capability. To
distinguish multiple defects of more agricultural products would be more adoptable in
practical applications, which requires extending our system in terms of channel numbers
and characteristic wavelengths. Additionally, the field of view of the proposed work is
2D, which may cause blind spots for defect detection. In future work, the design and
introduction of a collaborative rotating sample stage can potentially assist the proposed
method to observe defects in 3D space.
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