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Abstract: The world wine sector is a multi-billion dollar industry with a wide range of economic
activities. Therefore, it becomes crucial to monitor the grapevine because it allows a more accurate
estimation of the yield and ensures a high-quality end product. The most common way of monitoring
the grapevine is through the leaves (preventive way) since the leaves first manifest biophysical
lesions. However, this does not exclude the possibility of biophysical lesions manifesting in the
grape berries. Thus, this work presents three pre-trained YOLO models (YOLOv5x6, YOLOv7-E6E,
and YOLOR-CSP-X) to detect and classify grape bunches as healthy or damaged by the number
of berries with biophysical lesions. Two datasets were created and made publicly available with
original images and manual annotations to identify the complexity between detection (bunches) and
classification (healthy or damaged) tasks. The datasets use the same 10,010 images with different
classes. The Grapevine Bunch Detection Dataset uses the Bunch class, and The Grapevine Bunch
Condition Detection Dataset uses the OptimalBunch and DamagedBunch classes. Regarding the three
models trained for grape bunches detection, they obtained promising results, highlighting YOLOv7
with 77% of mAP and 94% of the F1-score. In the case of the task of detection and identification of the
state of grape bunches, the three models obtained similar results, with YOLOv5 achieving the best
ones with an mAP of 72% and an F1-score of 92%.

Keywords: computer vision; machine learning; object detection; precision agriculture; viticulture

1. Introduction

Grapevine is an important perennial crop globally, cultivated across all continents
except Antarctica, occupying over seven million hectares of land [1]. This crop thrives
in temperate to tropical climates, spanning from 50◦ N to 43◦ S, with Europe having
the highest concentration of vineyards. The world wine sector is a multi-billion dollar
industry with a wide range of economic activities [2]. Producers will increasingly depend
on precision viticulture (PV) to face emerging competition and challenges [3]. PV considers
that the amount and nature of spatiotemporal variations in vineyards are key drivers
for making highly targeted decisions to increase productivity/quality and profitability
and minimize unintended environmental impacts. Therefore, monitoring physical and
physiological traits is increasingly essential to better understand grapevine performance
and improve vineyard management practices. This necessity can be broken down into
two significant objectives: (i) have more precise control over crop yields, consequently
producing better-quality fruits, and (ii) avoid the appearance and proliferation of grapevine
diseases [4,5].

Yield forecasting is of immeasurable value in modern viticulture and for developing
PV. This task is traditionally carried out by counting the so-called yield components,
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such as inflorescences or the number of bunches per vine, and includes their manual and
destructive sampling to determine its weight and size and the number of flowers and
berries. Detecting grapevine bunches is one of the most relevant steps for the success
of yield estimation, as this is the main component and accounts for about 60% of the
forecast [6]. In addition, given the significant impact and economic costs, knowledge about
the damages to grapevine bunches is important to viticulturists, as these are largely related
to yield losses [7]. Damages can occur due to several causes, both abiotic, by mechanical
machines during vineyard management practices or hail, scald and frost damages, and
biotic, through pest and disease attacks, physiological stresses (hydric, thermal, luminous
and nutritional) or fruit set abnormalities [8].

To ensure a high-quality end product, monitoring tasks include observing, detecting,
and reducing damaged berries. However, these tasks are carried out manually and assessed
by visual inspection. The accurate recording of the exterior features of plants by the human
workforce is expensive—labor costs represent about 60% of annual variable costs for
wine grape producers—time-consuming, subjective and error-prone, as they are repetitive,
fatiguing and dependent on the operator’s training and skills. Finding new solutions is
vital, allowing farmers to produce with quality, higher yields and lower costs.

Over the last few years, non-invasive digital technologies and their deployment in
viticulture made it possible to automate tasks and change this paradigm. The most powerful
and widely used technology for yield components and disease detection applications is
computer vision (CV) (e.g., [5]). CV is employed to extract useful information, allowing
the construction of explicit and meaningful descriptions of physical objects from images
or videos [9,10]. In recent years, deep learning (DL) has had a massive impact on the
development of perception and computer vision algorithms due to their strong learning
capabilities and better response to complex scenarios [11]. Convolutional neural networks
(CNNs) are considered the main DL algorithm for computer vision problems and are widely
used in agriculture [12,13]. CNN can be used to analyze, combine, and extract features from
images, having the ability to classify, locate and detect objects [14]. The literature contains
many CNN-based DL models, such as region-based convolutional neural networks (R-
CNNs) [15], Fast R-CNN [16], single shot multi-box detector (SSD) [17], and you only look
once (YOLO) [18], among others. Table 1 resumes the information of the state-of-the-art
about DL for the detection of healthy and damaged grapevine bunches.

The accessibility and visibility of the grapevine bunches are two major challenges
that CV-endowed systems face. Problems, such as the light intensity, overlapping and
occlusion of the bunches to be detected due to the different parts of the plant, hinder
and further delay the intended goal. For example, the percentage of visible bunches
without the leaves occlusion and bunch occlusion is above 50% at maturation [19]. Unlike
conventional methods, DL techniques are a more robust and accurate alternative, with
better responses to occlusion and overlapping problems. Several CNNs have been studied
for this task since they learn the characteristics of the images, thus simplifying the detection
step [4]. To detect grapevine bunches and estimate their pose, Yin et al. [20] evaluated
the state-of-the-art mask region-based convolutional neural network (Mask R-CNN) on a
self-made dataset, reaching an average precision of 89.53%. Ghiani et al. [21] developed
a grapevine bunch detector based on Mask R-CNN and further tested it on two different
datasets—internal and GrapeCS-ML [7] datasets—so that the system would be able to
detect bunches regardless of the grape variety and geographical location. The model
achieved a mean average precision (mAP) of 92.78% and 89.90% on the GrapeCS-ML and
internal datasets, respectively. However, the authors concluded that these values tend
to decrease as the number of bunches in the images increases. Santos et al. [22] created
the Embrapa Wine Grape Instance Segmentation Dataset (WGISD) and compared the
Mask R-CNN model with two models of the YOLO framework (YOLOv2 and YOLOv3).
The Mask R-CNN model presented superior results to the YOLO models, with an F1-score
of 84.00%. Deng et al. [23] presented similar work, using the same WGISD dataset and
adding the YOLOv4 model to the aforementioned comparison to develop the two-stage
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grape yield estimation (TSGYE) method. In this case, the YOLOv4 model outperformed the
Mask R-CNN model in bunch detection, always maintaining a higher mAP score. To better
highlight the different objects of an image, Heinrich et al. [24] applied noise removal and
feature extraction, using thresholds and the background/foreground distinction, to a self-
made dataset and used region-based fully convolutional networks (R-FCN) and faster
region-based convolutional neural network (Faster R-CNN), with the latter performing
better for grapevine bunch detection.

Aguiar et al. [25] trained two state-of-the-art single-shot multibox detectors (SSD Mo-
bileNet v1 and SSD Inception v2) to detect grapevine bunches considering different growth
stages: early stage, just after the bloom, and medium stage, where the grape bunches present
an intermediate development. The SSD MobileNet v1 was the best-performing model,
achieving a mAP of 66.96%. For grape yield spatial variability assessment, Sozzi et al. [26]
evaluated the YOLOv4 model to detect and count the number of grapevine bunches,
achieving an accuracy of 48.90%. Li et al. [27] presented the YOLO-Grape, an improved
YOLOv4-tiny model to solve the problem of unrecognition accuracy caused by complex
background scenarios (i.e., shadows and overlaps). Compared to other state-of-the-art
models (Faster-RCNN, SSD300, YOLOv4, and YOLOv4-tiny), the YOLO-Grape model
achieved the best results, with an F1-score of 90.47%. Sozzi et al. [28] evaluated six versions
of the YOLO framework (YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv5x, and
YOLOv5s), specifically for the bunch detection of white grapevine varieties, which is an
even greater problem due to the higher color correlation between bunches and the back-
ground. YOLOv5x performed best, with a mAP of 79.60%. Zhang et al. [29] created the
grape-internet dataset and proposed a real-time detection method for grapevine bunches
based on the YOLOv5s model. The model achieved an impressive F1-score of 99.40%,
outperforming the YOLOv5x, ScaledYOLOv4-CSP and YOLOv3 models.

Regarding grapevine disease detection, the use of CNN is fairly widespread. However,
the vast majority of the studies focus on detecting diseases on leaves [7]. This can be
explained by adopting preventive strategies, and acting before the bunches appear to avoid
compromising production is preferable and ideal. Nevertheless, this does not exclude the
possibility of the disease appearing later. Therefore, it is crucial to monitor and detect
diseases throughout the entire cycle of the plant. Bömer et al. [8] trained a LeNet model
for detecting damaged areas of the grapevine bunches. The results were compared with a
ResNet50 model, achieving better performance with a 96.26% precision. Miranda et al. [30]
detected anomalous grapevine berries utilizing variational autoencoders (VAE) with a
feature perceptual loss (FPL) concerning different growing stages. The model performance
increased for the later growth stage, with an accuracy of 93.80%.

A truly valuable robotic agricultural CV system must possess real-time robustness
and accuracy. One-stage object detection frameworks, such as YOLO, have been the most
popular approach [31,32], as they can feature extraction and object detection in a single step,
consuming less time and therefore being used in real-time applications. However, there is
a long way to go, as the complex and unstructured environment of the agricultural sector
limits the performance of these solutions. Furthermore, the literature still presents some
weaknesses that need to be addressed, such as not being focused on detecting physical
damage, using scarce datasets or outdated methodologies and detection frameworks. Better
vision systems must be developed in parallel with faster and more accurate object detection
methods [33], demanding research in line with the objectives and the topic proposed by the
presented work.

This research aims to analyze the performance of three versions of the YOLO model to
identify and classify grape bunches as healthy or damaged. The implementation of these
models in any vineyard monitoring system can help vineyard managers improve the crop’s
efficiency and quality. Hence, this work presents the main contributions:

1. Produce publicly available datasets with labeled grape bunch images with different
grapes varieties.
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2. Analyze and compare the results of three DL models (YOLOv5x6, YOLOv7-E6E, and
YOLOR-CSP-X) for detection in different grape varieties and phenological stages.

Table 1. State-of-the-art DL for optimal and damaged grapevine bunch detection.

Application DL Models Results Author

Fruit Detection and Pose Estimation
for Grape Cluster–Harvesting Robot Mask R-CNN Average Precision

of 89.53%
Yin et al. [20]

In-Field Automatic Detection
of Grape Bunches Mask R-CNN Mean Average Precision

of 92.78%
Ghiani et al. [21]

Grape detection, segmentation,
and tracking

using deep neural networks
Mask R-CNN, YOLOv2

and YOLOv3
F1-Score of 84.00%

(Mask R-CNN)
Santos et al. [22]

TSGYE pipeline: precise detection
of grape clusters

and efficient counting of grape berries.
Mask R-CNN, YOLOv2,
YOLOv3 and YOLOv4

N/A Deng et al. [23]

Yield Prognosis for the
Agrarian Management of Vineyards R-FCN and Faster R-CNN N/A Heinrich et al. [24]

Grape Bunch Detection
at Different Growth Stages

SSD MobileNet v1 and
SSD Inception v2

Mean Average Precision
of 66.96%

(SSD MobileNet v1)
Aguiar et al. [25]

Grape yield spatial
variability assessment YOLOv4 Accuracy of 48.90% Sozzi et al. [26]

YOLO-Grape: real-time table grape
detection method

YOLO-Grape,
Faster-RCNN, SSD300,

YOLOv4, and YOLOv4-tiny

F1-Score of 90.47%
(YOLO-Grape) Li et al. [27]

Automatic Bunch Detection
in White Grape Varieties

YOLOv3, YOLOv3-tiny,
YOLOv4, YOLOv4-tiny,

YOLOv5x, and YOLOv5s

Mean Average Precision
of 79.60%

(YOLOv5x)
Sozzi et al. [28]

Grape Cluster Real-Time Detection
in Complex Natural Scenes

YOLOv5s, YOLOv5x,
ScaledYOLOv4-CSP

and YOLOv3

F1-Score of 99.40%
(YOLOv5s) Zhang et al. [29]

Automatic Differentiation of
Damaged and Unharmed Grapes LeNet and ResNet50 Precision of 96.26%

(LeNet)
Bömer et al. [8]

Detection of Anomalous
Grapevine Berries

Variational Autoencoders
(VAE)

Accuracy of 93.80% Miranda et al. [30]

2. Materials and Methods
2.1. Data Collection

This paper proposes a new dataset for grape bunch detection, classifying the bunches
as healthy or damaged. To build the dataset, photographs were taken using a Xiaomi Redmi
Note 7 smartphone (see https://www.gsmarena.com/xiaomi_redmi_note_7-9513.php,
accessed on 7 March 2023) with a dual camera with a resolution of 8000 × 6000 pixels.

The images were acquired in the vineyard of the Agrarian Campus of Vairão, of the
Faculty of Sciences of the University of Porto (41◦24′12.2′′ N 2◦10′26.5′′ W). Both red and
white grapevine varieties were considered to provide variability since the color is a feature
recurrently used to differentiate an object to be detected, with national and international
reputations. Thus, the dataset includes images of the following grapevine varieties and the
Vitis International Variety Catalogue (VIVC) code:

https://www.gsmarena.com/xiaomi_redmi_note_7-9513.php
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• Red varieties:

– Touriga Nacional (VIVC 12594);
– Barroca (VIVC 12462);
– Tinta Roriz (VIVC 12350);
– Cabernet Sauvignon (VIVC 1929);

• White varieties:

– Viosinho (VIVC-13109);
– Trajadura (VIVC-12629).

The images were taken throughout two grapevine phenological stages, according
to the extended Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie
(BBCH) scale [34]:

• BBCH Code 79—Majority of berries touching;
• BBCH Code 81—Beginning of ripening: berries begin to develop a variety of specific colors.

Images were collected in different lighting and perspective conditions to gather suf-
ficient visual information for a robust dataset. In addition, photographs were taken of
individual bunches and a section of the vine with several bunches, adding complexity that
allows the evaluation of the models’ performance when faced with scenarios of occlusion
and the overlap of bunches by different plant structures (i.e., leaves, stems, trunks or other
bunches). The collection generated 968 original images of grape bunches. Figure 1 shows
examples of original images from the collected dataset.

(a) (b)
Figure 1. Examples of images from dataset. (a) Optimal grape bunch. (b) Damaged grape bunch.

The goal is to identify grape bunches and classify the condition of the grape bunch
according to biophysical lesions; the collected dataset shows various types of grapes in
different conditions, i.e., from bunches in perfect condition to bunches with most of the
berries deteriorated in various ways.

2.2. Dataset Generation

After acquiring the images of the grape bunches, the annotation of each object was
performed manually using the Computer Vision Annotation Tool (CVAT) (see https://
www.cvat.ai/, accessed on 7 March 2023). Each annotation contains a bounding box around
each object representing its area, position, and class.

https://www.cvat.ai/
https://www.cvat.ai/
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Two datasets were created with the same set of images and annotations, and the
difference is in the classes of each dataset. This differentiation was performed to understand
the complexity of each task:

1. Grapevine bunch detection.
2. Classification of the grapevine bunch as healthy or damaged.

In the Grapevine Bunch Detection Dataset (see https://doi.org/10.5281/zenodo.77
17055, accessed on 7 March 2023), the “Bunch” class was used to annotate the grape
bunches in each image. In Grapevine Bunch Condition Detection Dataset (see https:
//doi.org/10.5281/zenodo.7717014, accessed on 7 March 2023), the condition of the grape
bunches was distinguished using the “OptimalBunch” and “DamagedBunch” classes.
In this case, since automatic detection by DL models would be challenging if all damage
variants were modeled, it was defined that a bunch is considered to be DamagedBunch
when it has 10% or more of any physical damage; otherwise, it is considered OptimalBunch.
The images were exported under the YOLO [35] format to train the YOLO models for each
dataset. Figure 2 shows the same image with the annotations for each dataset (orange
bounding boxes).

(a) (b)
Figure 2. Examples of annotations from each dataset. (a) Grapevine Bunch Detection Dataset.
(b) Grapevine Bunch Condition Detection Dataset.

After annotating all objects, it was necessary to resize the images. Images with a
resolution of 8000 × 6000 pixels introduce a large amount of data to be analyzed by
the neural network, which increases the complexity and, inevitably, the processing time.
Lowering the resolution to 720 × 540 pixels reduces the complexity while maintaining the
aspect ratio at the cost of losing some detail in the image.

Next, it was checked that all images had at least one annotation, and images with
no annotation were deleted. Thus, the size of each dataset decreased to 910 images since
58 images were removed.

Since DL training models require large amounts of data to perform well with new
information, the dataset was increased using augmentation. By artificially increasing the
size and variability of the dataset, the possibility of overfitting during training was reduced,
so not performing this step may compromise the precision of the models [36].

In this case, ten augmentation processes were chosen, so each original image resulted
in ten new versions. The augmentation operations were carefully selected, and only the

https://doi.org/10.5281/zenodo.7717055
https://doi.org/10.5281/zenodo.7717055
https://doi.org/10.5281/zenodo.7717014
https://doi.org/10.5281/zenodo.7717014
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ones generating realistic vineyard images were applied. Table 2 shows the description of
the specified operations.

Table 2. Description of the augmentation operations used to increase the original dataset.

Operation Value Description

Rotation +15◦ Rotates the image by +15◦.

Rotation −15◦ Rotates the image by −15◦.

Scale random Scales the image to a random value.

Translation random Translates the image by a random value.

Flip - Mirrors the image horizontally.

Multiply random Multiply all pixels in an image with a random value
(makes images lighter or darker).

Blur random Blurs the image.

Noise random Adds Gaussian noise.

Combination 1 random Random operation.

Combination 3 random Random combination of three operations.

Figure 3 shows the augmentation operations performed on an original image, utilized
in both datasets originating the same set of images. After augmentation, the size of each
augmented dataset was 10,010 images (910 + 10 × 910).

Each dataset was divided into three sets: training (60%), validation (20%), and test (20%).
Table 3 contains information about the number of annotated objects per class in the three sets.

Table 3. Number of annotated objects per class in each set.

Dataset Class Train Validation Test Total

Grapevine bunch detection Bunch 6912 2329 2431 11,672

Grapevine bunch
condition detection

OptimalBunch 4958 1637 1826 8421
DamagedBunch 1954 692 605 3251

Table 4 shows the number of images and annotated objects per class after and before
augmentation. The values shown after augmentation are not the original dataset multiplied
by the number of augmentations performed since the annotations were reanalyzed to check
their validity. Due to translations, two cases cause this change in values: (i) the translation
leads to the detection being eliminated from the image, (ii) the part of the grape cluster that
allows classifying as damaged is eliminated from the image.

Table 4. Number of images and annotated objects per class after and before augmentation.

Dataset Classes Images Annotations

Original
Bunch 910 1066

OptimalBunch 698 769
DamagedBunch 277 297

Grapevine bunch detection Bunch 10,010 11,672

Grapevine bunch
condition detection

OptimalBunch 7678 8421
DamagedBunch 3045 3251
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3. Augmentation operations applied to a dataset image. (a) Original. (b) Rotation +15◦.
(c) Rotation−15◦. (d) Scale. (e) Translation. (f) Flip. (g) Multiply. (h) Blur. (i) Noise. (j) Combination 1.
(k) Combination 3.

2.3. Model Training

The final step in performing the detection of grape cluster conditions was the formation
and deployment of models. To achieve the proposed goal, three of the latest YOLO models
with different features were selected and benchmarked. These are some of the most recent
models in the literature and present the best trade-off between accuracy and speed, which
is fundamental for real-time applications.

YOLOv5 is designed to be more efficient and faster than previous versions while
maintaining good performance in accuracy. The main advantage of YOLOv5 is Python-
based PyTorch, which allows faster training [37].

YOLOv7, when released, was the best model for object detection, having a new
architecture. This version is designed to be more accurate and robust than previous versions
while maintaining real-time performance. YOLOv7 utilizes cross-scale-transformer (CST)
to allow the model to handle objects at different scales [38].
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YOLOR is a model inspired by the way humans acquire knowledge. This network is
based on the YOLOv4 architecture and integrates implicit and explicit knowledge. When
tacit knowledge is introduced into the network, it improves the performance [39].

The YOLO models (YOLOv5, YOLOv7, and YOLOR) were trained using Pytorch.
For each model, the versions with the best results were chosen, regardless of the processing
time. Table 5 shows the characteristics of each selected version.

Table 5. YOLO versions pre-trained checkpoints performance on large-scale public object detec-
tion dataset.

Model Input Resolution
(Pixels)

mAP 50 (%)
Validation Set

AP 50 (%)
Test Set

Speed (ms)
Batch Size 32

YOLOv5x6 1 1280 × 1536 72.7 - 19.4
YOLOv7-E6E 2 1280 × 1280 - 74.4 18.7

YOLOR-CSP-X 3 1280 × 1280 - 73.1 5.5
1 https://github.com/ultralytics/yolov5, accessed on 7 March 2023, 2 https://github.com/WongKinYiu/yolov7,
accessed on 7 March 2023, 3 https://github.com/WongKinYiu/yolor, accessed on 7 March 2023.

Each model was pre-trained with Microsoft’s COCO dataset [40]. Through transfer
learning, fine-tuning was performed on the pre-trained models to detect grapevine bunches.
The models were then individually trained with the developed datasets for 50 epochs with
a batch size of 16 images and an input resolution of 640× 640 pixels. Each training used the
pre-trained weights and configuration the YOLO developers provided, all with an initial
learning rate of 0.01. The models were trained using a NVIDIA GeForce 3090 graphics
processing unit (GPU) with 24 gigabytes (GBs) of available memory.

The Fiftyone (see https://docs.voxel51.com/, accessed on 7 March 2023) platform was
used to analyze the training results. This way, it was possible to observe the detections that
the three networks could predict.

2.4. Model Evaluation

The neural network aims to identify objects, and the output consists of a list of
bounding boxes, confidence levels, and classes. The evaluation of the neural network is
carried out according to the predictions made by it.

Intersection over Union (IoU) is a metric that measures the area of overlap between
the predicted bounding box and an object’s ground truth bounding box.

For the classification of detection as valid or invalid by comparing IoU with a given
threshold t, to determine the type of detections, we use the concepts defined below:

• True Positive (TP): A valid detection of a ground truth bounding box, i.e., IoU ≥ t;
• False Positive (FP): An invalid detection (incorrect detection of a non-existent object or

incorrect detection of a ground truth bounding box), i.e., IoU < t;
• False Negative (FN): A missing detection of a ground truth bounding box;
• True Negative (TN): does not apply in object detection. There is no goal of finding the

infinite bounding boxes in each image during object detection.

The precision × recall curve is a graphical representation of the trade-off between
precision and recall. This metric plots a curve as confidence changes for each object class.
The precision × recall curve is a metric to evaluate the performance of an object detection
model, especially when the dataset is imbalanced and there are many more negative
examples than positive examples. A poor object detector to increase recall needs to increase
the number of detected objects, which implies an increase in the number of FP and a
decrease in precision. A good object detector remains with high precision as recall increases
when the confidence threshold varies. Therefore, an optimal object detector predicts only
relevant objects (FP = 0) while finding all ground truth (FN = 0).

https://github.com/ultralytics/yolov5
https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolor
https://docs.voxel51.com/
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The Average Precision (AP) evaluates the performance of an object detector by calcu-
lating the area under the precision × recall curve. AP is the average precision of all recall
values between 0 and 1. Therefore, a high area represents both high precision and recall.

The mean Average Precision (mAP) is a metric used for evaluating the overall perfor-
mance of an object detector across all classes. The mAP is calculated as the average AP
scores across multiple object classes in a dataset (or the area under the PR curve).

3. Results
3.1. Grapevine Bunch Detection Dataset

The Grapevine Bunch Detection Dataset’s results help to understand the complexity
of grapevine bunch detection. The validation set results were generated using the same
characteristics as the training input resolution 640 × 640 with batch size 16. Additionally,
an IoU threshold of 50% was considered. Table 6 shows the confidence threshold value that
maximizes the F1-score for each model in the validation set.

Table 6. Confidence threshold that optimizes the F1-score for each YOLO model with Grapevine
Bunch Detection Dataset.

Models Confidence Threshold (%) F1 Score (%)

YOLOv5 42 93
YOLOv7 75 94
YOLOR 85 94

The confidence threshold values presented lead to the best balance between precision
and recall, which maximizes the number of true positives and minimizes the value of FPs
and FNs. All three models found their best F1-score above 90%. YOLOR presents the most
promising values with higher confidence (94%).

Table 7 shows the results with the test set considering different confidence thresholds.
The inference was performed for the 0% confidence threshold and the confidence threshold value
that maximizes the F1-score in the validation set, also considering an IoU threshold of 50%.

Table 7. Detection results with the test set of Grapevine Bunch Detection Dataset considering different
confidence thresholds.

Models
Confidence
Threshold

(%)

Precision
(%) Recall (%) F1 Score (%) mAP (%)

YOLOv5 >0 9 97 16 78
42 97 91 94 75

YOLOv7 >0 5 99 9 81
75 98 90 94 77

YOLOR >0 21 97 34 81
85 98 86 92 75

Lower confidence rates cause FPs to increase and FNs to decrease. Therefore, a lower
confidence rate causes a decrease in precision caused by an increase in FPs and an increase
in recall caused by a decrease in FNs.

The results obtained for the confidence threshold greater than 0% show that this
approach has no applicability, resulting only in a good point of comparison for the mAP.
The high values of recall indicate that, practically, all grape bunches are detected. However,
the Precision reveals that there are quite a few incorrect grape bunch detections, and a
relatively low value of the F1-score is expected.
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By assuming the confidence threshold value that maximizes the F1-score, there is a
considerable increase in accuracy and F1-score at the cost of a slight decrease in recall and
mAP. The accuracy values are above 95%, i.e., the models rarely misidentify areas of the
image as grape bunches. However, a higher number of grape bunches failed to be detected.
The F1-score higher than 90% demonstrates that the balance between accuracy and recall is
much higher. The mAP value reveals that the variation in the confidence threshold causes
some impact on the recall and precision.

Overall, the results for the three models are promising and similar. YOLOv7 has the
best performance in most metrics. To better understand the outcome of some metrics, it
was necessary to observe the model detections on the test set images. Figure 4 presents
the results of the ability of each YOLO version to detect grape bunches in a test set image.
The models had a good response, despite the complexity of the image, i.e., three grape
bunches of different sizes with different light conditions along the bunch.

(a) (b) (c)

Figure 4. Detection of grape bunches in samples from the test set. Red bounding boxes present
the predictions from YOLOv5. Green bounding boxes present the predictions from YOLOv7. Blue
bounding boxes present the predictions from YOLOR. (a) YOLOv5. (b) YOLOv7. (c) YOLOR.

Despite the good results in the predictions of the grape bunch conditions, it is relevant
to analyze and understand why FPs and FNs occurred to implement solutions. The presence
of FPs influences the value of the metric precision; if FPs are mitigated, the value of the
precision increases. Figure 5 presents two images from the test set with FPs that occurred
in the three models.

These two examples resume the cases where the models generate FPs with the devel-
oped dataset:

1. Figure 5a–c present the results of the trained models to a case with two bounding boxes
very approximated. The models were not able to detect the two bunches. The result is a
bounding box around the two bunches, causing a false positive (IoU < 0.5).

2. Figure 5d–f show the results of the trained models to a case with a small grape bunch
blurred in the background. Due to the complexity of the detection was chosen not to
annotate this grape bunch. However, all three models have the ability to detect grape
bunches under these conditions.
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(a) (b) (c)

(d) (e) (f)

Figure 5. FPs in samples from the test set. Orange bounding boxes present ground truth. Red bound-
ing boxes present the predictions from YOLOv5. Green bounding boxes present the predictions from
YOLOv7. Blue bounding boxes present the predictions from YOLOR. (a) Example 1—YOLOv5. (b) Ex-
ample 1—YOLOv7. (c) Example 1—YOLOR. (d) Example 2—YOLOv5. (e) Example 2—YOLOv7.
(f) Example 2—YOLOR.

Furthermore, analyzing the FNs to understand the reason for the recall outcome is
relevant. If FNs are mitigated, the value of recall increases. Figure 6 shows the results in
two different images of the set of tests with FNs that occurred in the three models.

These two examples resume the cases where the models generate FNs with the devel-
oped dataset:

1. Figure 6a–c present the results of the trained models to a case with two bunches of
grapes annotated, one bunch in the center of the image and another near the top left
corner with a peculiar structure. The models did not predict the second bunch of
grapes, resulting in a false negative.

2. Figure 6d–f show the results of the trained models to a case with three bunches
overlapping. None of the models could detect the three different grape bunches.
However, the predicted detections are true positives.
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(a) (b) (c)

(d) (e) (f)

Figure 6. FNs in samples from the test set. Orange bounding boxes present ground truth. Red bound-
ing boxes present the predictions from YOLOv5. Green bounding boxes present the predictions from
YOLOv7. Blue bounding boxes present the predictions from YOLOR. (a) Example 1—YOLOv5. (b) Ex-
ample 1—YOLOv7. (c) Example 1—YOLOR. (d) Example 2—YOLOv5. (e) Example 2—YOLOv7.
(f) Example 2—YOLOR.

3.2. Grapevine Bunch Condition Detection Dataset

The evaluation of the results from the dataset Grapevine Bunch Condition Detection
helps to understand the complexity of detecting the grapevine bunch condition. The valida-
tion set results were generated using the same characteristics as the training input resolution
640× 640 with batch size 16. Additionally, an IoU threshold of 50% was considered. Table 8
shows the confidence threshold value that maximizes the F1-score for each model in the
validation set.

Table 8. Confidence threshold that optimizes the F1-score for each YOLO model with Grapevine
Bunch Condition Detection Dataset.

Models Confidence Threshold (%) F1 Score (%)

YOLOv5 52 89
YOLOv7 72 88
YOLOR 79 89
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The results show an F1-score above 85% for all three models and a superior confidence
threshold with YOLOv7 and YOLOR.

Table 9 shows the results with the test set considering different confidence thresholds.
The inference was performed for the 0% confidence threshold and the confidence threshold value
that maximizes the F1-scores in the validation set, also considering an IoU threshold of 50%.

Table 9. Detection results with the test set of Grapevine Bunch Condition Detection Dataset consider-
ing different confidence thresholds.

Models Confidence
Threshold (%) Classes Precision (%) Recall (%) F1 Score (%) mAP (%)

YOLOv5
>0 OptimalBunch 9 96 16 74DamagedBunch 6 91 10

52 OptimalBunch 94 90 92 72DamagedBunch 98 87 93

YOLOv7
>0 OptimalBunch 3 97 7 76DamagedBunch 3 94 6

75 OptimalBunch 95 85 90 72DamagedBunch 96 86 91

YOLOR
>0 OptimalBunch 21 95 34 76DamagedBunch 15 88 26

76 OptimalBunch 94 83 88 76DamagedBunch 97 85 91

As with the grape bunch detection dataset, the results obtained for the confidence
threshold greater than 0% show that this approach has no applicability, only for mAP
comparison. The recall higher than 85% shows that quite a few grape bunches are detected
and correctly classified according to the bunch conditions. However, a precision lower than
25% indicates that there are quite a few incorrect detections of grape bunches, which are
also expected to have a low F1-score value.

When assuming the confidence threshold value that maximizes the F1-score, there is a
considerable increase in the precision and F1-score at the cost of a slight decrease in recall
and mAP. The precision values are above 85%, which means that the models rarely make
wrong detections. However, a higher number of damaged and optimal grape bunches fail
to be detected. The F1-score above 85% demonstrates that the balance between precision
and recall is much higher, while the mAP value changes little with the threshold change.

Overall, the results for the three models are promising and similar. The results of
the metrics for YOLOv5 are approximated for both classes. The results for YOLOv7 and
YOLOR show a slight decrease in precision for the DamagedBunch class and a slight
decrease in recall for the OptimalBunch class, meaning that the DamagedBunch class
has a higher ratio of FPs and the OptimalBunch class has a higher percentage of FNs.
This may mean that OptimalBunch detections may be misidentified as DamagedBunch.
Figure 7 shows the confusion matrixes for each model to better understand the mismatch
between classes.

The confusion matrix presents the performance of a model by resuming the number of
correct and incorrect predictions. The three models have similar results, with the majority
of the predicted labels corresponding to the true labels. Analyzing the cases of mismatch
between classes, there are few incorrect predictions, i.e., a low percentage of mismatches
between classes identifying healthy or damaged bunches.
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(a) (b) (c)

Figure 7. Confusion matrix of each trained model. (a) YOLOv5. (b) YOLOv7. (c) YOLOR.

To better understand the results of some metrics, it was necessary to observe the
detections of the models on the test set images. Figure 8 presents the results of the ability
of each YOLO version to detect the state of each bunch of grapes in a test set image.
The models had a good response despite the complexity of the image, i.e., three grape
bunches of different conditions, dimensions, and light conditions along the bunch.

(a) (b) (c)

Figure 8. Detection of the condition of grape bunches in samples from the test set. Red bounding
boxes present the predictions from YOLOv5. Green bounding boxes present the predictions from
YOLOv7. Blue bounding boxes present the predictions from YOLOR. (a) YOLOv5. (b) YOLOv7.
(c) YOLOR.

Despite the good results in the predictions of the grape bunch conditions, it is relevant
to analyze and understand why FPs and FNs occurred to implement solutions. The presence
of FPs influences the value of the metric precision; if FPs are mitigated, the value of the
precision increases. Figure 9 presents two images of the test set with common FPs to the
three models.

These two cases illustrate errors related to the detection of the bunches, which coincide
with the results from the Grapevine Bunch Detection Dataset (compare with Figure 5):

1. Figure 9a presents that the models detect only one bunch when two bunches are
approximated (the bounding box includes the two grape bunches).

2. Figure 9b presents a small and blurred grape bunch, which all models could predict.
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(a) (b)
Figure 9. FPs in samples from the test set coincide across datasets. Orange bounding boxes present
ground truth. Red bounding boxes present the predictions from YOLOv5. Green bounding boxes
present the predictions from YOLOv7. Blue bounding boxes present the predictions from YOLOR.
(a) Example 1. (b) Example 2.

Apart from FPs to detect the bunches, Figure 10 shows two other cases with FPs that
occurred in the three models when they failed to classify the condition of the grape bunches.

(a) (b) (c)

Figure 10. FPs in samples in the test set. Orange bounding boxes present ground truth. Red bounding
boxes present the predictions from YOLOv5. Green bounding boxes present the predictions from
YOLOv7. Blue bounding boxes present the predictions from YOLOR. (a) YOLOv5. (b) YOLOv7.
(c) YOLOR.

This example resumes the cases of FPs generated by the models when they failed
to classify the condition of the bunch with the developed dataset. Figure 10a–c show
a complex case of detection because of the overlapping of grape bunches. The models
predicted the optimal bunch, which was not annotated; however, the models could not
detect the damaged bunch, which is more visible.
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Furthermore, analyzing the FNs to understand the reason for the recall outcome is
relevant. If FNs are mitigated, the value of recall increases. Figure 11 shows two FN cases
in the three models.

(a) (b)
Figure 11. FNs on samples in the test set coincide across datasets. Orange bounding boxes present
ground truth. Red bounding boxes present the predictions from YOLOv5. Green bounding boxes
present the predictions from YOLOv7. Blue bounding boxes present the predictions from YOLOR.
(a) Example 1. (b) Example 2.

These two cases illustrate errors related to the detection of the bunches, which coincide
with the results from the dataset Grapevine Bunch Detection (compared with Figure 6):

1. Figure 11a shows that none of the trained models could detect the two bunches
possible because of the location and structure of the grape bunch.

2. Figure 11b shows three bunches with different conditions overlapping, where the
more overlapped bunch was not detected.

Apart from FNs to detect bunches, Figure 12 presents two other cases with FNs that
occurred in the three models when they failed to classify the condition of the grape bunches.
These two examples resume the cases of FNs generated by the models when they failed to
classify the condition of the bunch with the developed dataset:

1. Figure 12a–c present the results of the trained models to a case with two bunches of
grapes in different conditions. The models could not predict and/or classify bunches in
the image. YOLOv5 can localize the two bunches but fails at classifying the damaged
bunch. YOLOv7 only predicted and correctly typed one of the bunches (OptimalBunch).
YOLOR only predicted one of the bunches and failed to classify it (DamagedBunch).
The three models failed to predict the DamagedBunch, resulting in FNs.

2. Figure 12d–f present the results of the trained models to a case with a bunch with a
small percentage of damaged grapes. None of the models could classify the bunch as
damaged, resulting in FNs.
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(a) (b) (c)

(d) (e) (f)

Figure 12. FNs on samples in the test set. Orange bounding boxes present ground truth. Red bounding boxes
present the predictions from YOLOv5. Green bounding boxes present the predictions from YOLOv7. Blue
bounding boxes present the predictions from YOLOR. (a) Example 1—YOLOv5. (b) Example 1—YOLOv7.
(c) Example 1—YOLOR. (d) Example 2—YOLOv5. (e) Example 2—YOLOv7. (f) Example 2—YOLOR.

4. Discussion

The Grapevine Bunch Detection Dataset’s results on the test set were satisfactory in
grape bunch detection when using the confidence threshold that maximizes the F1-score
on the validation set. Using the confidence threshold that maximizes the F1-score became
an essential step that harmonized the metric results, leading to a significant decrease in FP.
The three models tested show similar results, with YOLOv7 achieving the best performance
in grape cluster detection. The models can detect grape bunches in several complex
scenarios, even in complex scenarios considering occlusions, overlaps and variations in
lighting conditions. FP happens when bunches are extraordinarily close or overlapping (the
models detect a bunch that includes both) and with small unannotated bunches. On the
other hand, FNs occur when bunches are close to the edges, have a different structure than
expected, or are overlapping. The YOLOv7-based grape cluster detector achieved precision
of 98%, recall of 90%, F1-score of 94% and mAP of 77%.

The Grapevine Bunch Condition Detection Dataset’s results in the test set were sat-
isfactory in detecting grape bunches condition when using the confidence threshold that
maximizes the F1-score in the validation set, and the results between the two classes, with
the DamagedBunch class obtaining the best values. The three models present similar results
and could detect grape bunches conditions in different scenarios, even with bunches with
a low percentage of damaged grapes (and the variations mentioned in the other dataset).
Regarding errors about the condition of the bunches, the presence of FPs happens when
damaged bunches overlap optimal bunches. On the other hand, FNs occur in complex
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cases with low visibility of the bunch conditions or bunches, which is difficult to define if
they are damaged.

The results from the developed datasets are similar, with slightly decreasing metrics
in the second dataset. These analyses reveal that the most complex task is to detect grape
bunches, which lead to a mAP under 85%. The other metrics (precision, recall, and F1-score)
present results over 85%.

Comparing these results with those of different authors is essential to understand
the results’ relevance and the potential aspects that could be improved. Firstly, the results
from Grapevine Bunch Detection Dataset were compared with articles that only detect the
bunches (most articles only realize this task without analyzing the condition of the grapes).
The Grapevine Bunch Condition Detection Dataset was compared with articles that detect
and classify the bunches by the state of the berries (Table 10).

The YOLOv7 and YOLOR models trained with the Grapevine Bunch Detection Dataset
outperformed those presented by Santos et al. [22], Aguiar et al. [25] and Sozzi et al. [28],
comparing the results from the common metrics between the researches. Concerning the
results presented by Li et al. [27], these are inferior in all metrics except mAP. Despite the
satisfactory results, the dataset used by Yin et al. [20] was not robust, and the results can be
inferior in other scenarios. Ghiani et al. [21] present only mAP to evaluate the performance
of the formed model, making it problematic to analyze the model’s advantages because it
only uses one metric for performance evaluation.

The three models trained in the Grapevine Bunch Detection Condition Dataset achieved
similar results to those presented by Bömer et al. [8].

Sozzi et al. [26] and Miranda et al. [30] only utilized the accuracy metric, which is not
usually used for object detection. There are no common metrics between this study and the
referenced articles.

Table 10 compiles all the results found in the state of the art as well as the results
obtained in this paper, for comparison of the models used. This paper can detect biophysical
lesions in the grape bunches (with a minimum of 10% lesion area), utilizing two of the
most recent YOLO models, which enables a comparison between more models, enriching
the state of the art. The algorithms work for both varieties, with no change in the model
performance between white and red varieties. The other articles in the state of the art detect
the grape bunch without detecting the biophysical lesions.

Table 10. Comparison between the proposed models and the state-of-the-art DL for grapevine bunch
detection and classification based on the health state.

Application State-of-the-Art Results

Grape Bunch detection Deng et al. [23] N/A
Grape Bunch detection Heinrich et al. [24] N/A
Grape Bunch detection Sozzi et al. [26] 48.90% (Accuracy)
Grape Bunch detection Aguiar et al.[25] 66.96% (mAP)
Grape Bunch detection Sozzi et al. [28] 79.60% (mAP)
Grape Bunch detection Santos et al. [22] 84.00% (F1-Score)
Grape Bunch detection Yin et al. [20] 89.53% (AP)
Grape Bunch detection Li et al. [27] 90.47% (F1-Score)
Grape Bunch detection Ghiani et al. [21] 92.78% (mAP)
Grape Bunch detection Proposed 94.00% (F1-Score)

Grape Bunch detection and classification Miranda et al. [30] 93.80% (Accuracy)
Grape Bunch detection and classification Proposed 96.00% (Precision)
Grape Bunch detection and classification Bömer et al. [8] 96.26% (Precision)
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5. Conclusions

This work focuses on detecting lesions on grape clusters, unlike most works that
only predict lesions on leaves. However, the most pernicious lesions occur at the fruit
level, which makes this work innovative and pertinent. The work developed can be
implemented in any vineyard monitoring system, helping vineyard managers to improve
harvest efficiency and quality.

In this way, this paper presents three pre-trained YOLO models for identifying the
grape bunches and classifying the conditions (optimal or damaged). For this purpose, two
similar datasets were created with 10,010 images of grape bunches with annotations with
different classes and then augmented, as DL training models require large data.

The results obtained for identifying bunches were similar between models and promis-
ing, with the YOLOv7 model presenting the best performance, achieving 98% of precision,
90% of recall, 94% of F1-score and 77% mAP when selecting the confidence threshold that
maximizes the F1-score in the validation set. For the classification task, the results were
similar between the three models, with YOLOv5 being the best one, achieving 72% of mAP.
The analysis of the FPs and FNs revealed the three models’ common difficulties:

• Identifying individual bunches when they are significantly closer;
• Detecting bunches with peculiar structures;
• Predicting overlapped bunches;
• Classifying damaged bunches in difficult conditions of visibility.

In both situations, the models worked independently of the variety. Furthermore, the
phenological state in which the images were captured does not allow us to verify changes
in the performance of the models between white and red varieties.

Regarding the detection of diseases of grapevines, most studies focus on detecting
leaf diseases since it is preferable and ideal to adopt preventive strategies and act before
the bunches appear to avoid compromising production. However, this approach does not
exclude the possibility of the disease appearing later. Therefore, monitoring and detecting
diseases are crucial throughout the entire plant cycle.

The detection and assessment of biophysical lesions of grapevine bunches is still a
relatively under-studied area, so it is crucial to define the future work that can be divided
into three main steps. The first step is to enlarge the dataset with images of grape bunches
in more advanced phenological stages, which allows the comparison between white and
red varieties. The use of public datasets may be relevant to increase variability and reduce
some possible overfitting of the models. The following steps are to analyze, test and
compare other DL models to see which one has the best performance is obtained and
possibly complement these algorithms with spectral information for the recognition relevant
parameters, such as, for example, disease detection. In addition, segmenting and counting
the berries in each bunch of grapes according to their lesions allows the accurate prediction
of vine production.
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The following abbreviations are used in this manuscript:

AP Average Precision
BBCH Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie
CNN Convolutional Neural Network
CST Cross-Scale Transformer
CV Computer Vision
CVAT Computer Vision Annotation Tool
DL Deep Learning
Faster R-CNN Faster Region-based Convolutional Neural Network
FN False Negative
FP False Positive
FPL Feature Perceptual Loss
GPU Graphics Processing Unit
GB Gigabyte
IoU Intersection over Union
mAP Mean Average Precision
Mask R-CNN Mask Region Convolutional Neural Network
PV Precision Viticulture
R-CNN Region-based Convolutional Neural Network
R-FCN Region-based Fully Convolutional Networks
RoI Region of Interest
SSD Single Shot Multi-box Detector
TP True Positives
TN True Negative
TSGYE Two-Stage Grape Yield Estimation
VAE Variational Autoencoders
VIVC Vitis International Variety Catalogue
WGISD Wine Grape Instance Segmentation Dataset
YOLO You Only Look Once
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