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Abstract: The smallholder farming systems in Sub-Saharan Africa (SSA) are highly diverse and het-
erogeneous in terms of biophysical and socio-economic characteristics. This study was conducted
in upper Eastern Kenya (UEK) to categorize farm households and determine the influence of
socio-economic characteristics (SeC) and soil fertility management practices (SFMP) on soil fertility
across farms. Conditioned Latin hypercube sampling (cLHS) was performed to determine 69 soil
sampling sites within Meru and Tharaka Nithi counties. From each household (whose field soil
sample was obtained), data relating to resource endowment and soil fertility management were
collected through a household questionnaire survey. Standard laboratory procedures were used
to analyse soil samples. Data reduction was performed using categorical principal component
analysis (CATPCA) (for SeC and SFMP) and standard principal component analysis (PCA) (for
soil properties). Two-step cluster analysis identified three distinct farm categories or farm types
(FT), namely, low fertility farms (FT1), moderately fertile farms (FT2), and fertile farms (FT3).
The correlation of clusters against soil properties was significant across pH, soil organic carbon
(SOC), cation exchange capacity (CEC), available P, plant available K, and exchangeable bases. FT1
had low SOC, pH, CEC and available P (soil characteristics), low usage of fertilizer and manure
(soil fertility management), and smaller household size, lower income, and smaller farm size
(socio-economic). FT2 had lower SOC (compared to FT3) and available P. In terms of soil fertility
management, FT2 had higher cases of fallowing and composting with moderate fertilizer usage.
Households in this category had moderate income, family size, and land size (socio-economic).
FT3 had relatively high SOC, pH, CEC, and mineral nutrients. This farm type was characterized by
high fertilizer use (soil fertility management) as well as larger household size, higher income, and
larger farm size (socio-economic). The results indicate the importance of nutrient management in
enhancing soil quality. Delineation and characterization of farms based on the various parameters
including resource endowment reveal imbalanced farm resource flows, suggesting a need for
locally tailored interventions suited for location-specific conditions to facilitate improved targeting
of soil fertility-enhancing technologies and sustainable crop production regimes. While fertilizer
is one of the most critical inputs for enhancing agricultural production, it is a major contribu-
tor to nitrous oxide emissions from agriculture and can have negative environmental effects on
soil biota and water sources. Farmers’ knowledge on the use of fertilizer is thus necessary in
developing strategies (such as integrated approach) to promote its efficient use and minimize its
detrimental impacts.
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1. Introduction

The smallholder farming systems in much of Sub-Saharan Africa (SSA) is characterized
by a wide diversity of farming households and heterogeneity for both biophysical and socio-
economic conditions [1,2]. Over time, these differences in drivers and in farm features lead
to temporal and spatial variability between and within farming systems. The widespread
variability in soil fertility that characterizes most of the African smallholder farming systems
is a product of both short and long-term processes linked with land use (including soil
fertility management practices), operating over soils with inherently diverse quality [3].
Soil quality can be defined as “fitness for use” or the capacity of a soil to function for a
given land use. A high soil quality, in an agricultural context, implies a highly productive
soil with minimal levels of degradation [4].

The heterogeneity of farm systems is created by a host of biophysical (including
climate, soil fertility, slope etc.) and socio-economic (including farm preferences, prices,
production objectives etc.) factors [5]. Several researchers have examined factors such as
farm resources, cash, labor, infrastructure, markets, soil fertility management practices [3],
and technological level [6]. The selection of factors that define farm differences varies
greatly from study to study and is governed by the objectives of research.

Moreover, land degradation is a common phenomenon in many parts of the world,
particularly in the developing countries, including Kenya. Consequently, there has been
consistent decline in farm productivity due to deteriorating soil fertility [7]. Decline in
soil quality and its manifestation (including increased erosion, reduced SOC) translates
to decline in environmental quality, thus jeopardizing the livelihoods of a significant
proportion of the world population [8]. Sustainable soil fertility and land management are
therefore of global urgency [9].

Soil fertility management practices, resource availability, and the pattern of resource
allocation to different activities are highly influenced by household endowment, priorities,
and household production objectives. Thus, the intensity of nutrient use varies between
farms with different resource capabilities and production orientation, which can lead
to variation in soil fertility and crop productivity at the farm level [10]. The status and
variability of soil fertility within smallholder farms are likely to vary between households
of different socio-economic status, or between those pursuing different farm objectives
(for example market orientation against subsistence orientation). Within individual farms,
resource limitation forces farmers to preferentially allocate available labor and nutrient
resources to certain fields, which contributes to the creation of spatial soil variability [1].

Meru and Tharaka Nithi Counties in Kenya are characterized by intensely managed
fields and wide variability in the agricultural drivers, which have resulted into different
land uses that range from strongly market-oriented small-holder coffee, tea and dairy
systems, through semi-commercial cereal/legume-based systems, to subsistence-oriented
systems based on staple food crops [11]. In general, continuous-intensive cropping with
few or no nutrient inputs coupled with removal of crop residues from the fields has led
to a variable fertility status of the soils [12], and the impact of household resource en-
dowment on soil fertility management practices has been documented [13]. Important
knowledge gaps need to be explored on the relationship between household characteris-
tics, soil-crop management practices, and soil fertility in increasingly changing farming
systems. This paper aims to explore the hypothesis that soil quality is influenced by farm-
ers’ soil fertility management practices and socio-economic characteristics. First, farm
households are typified based on soil quality, followed by characterization of the identified
typologies based on the socio-economic characteristics (SeC) and soil fertility management
practices (SFMP).
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2. Materials and Methods
2.1. Study Area Description

The study was conducted in two counties in the upper Eastern Kenya region, namely
Meru and Tharaka Nithi (Figure 1). Tharaka Nithi County is found in the semi-arid area
of Eastern Kenya, approximately 175 km northeast of Nairobi. It lies on the foothills of
Mount Kenya, covering approximately 2638.8 km2. The county borders Meru County to the
North, Kitui County to the east and southeast and Embu County to the south. According
to data from the Kenya National Bureau of Statistics, the county has a total population of
393,177 inhabitants [14] and a density of 153 persons/km2. Tharaka Nithi County is located
in the upper midland zone two (UM2) and upper midland zone three (UM3) agro-ecological
zones (AEZ) on the eastern slopes of Mt. Kenya. Upper midland zone 2 is the main coffee
zone while the UM3 is the marginal coffee zone. The area lies at an altitude of 1500 m and
has an annual mean temperature of 20 ◦C and a bimodal rainfall pattern totaling 1200 to
1400 mm [15]. The area is a predominantly maize (Zea mays L.) growing zone, as an annual
crop, with small land holdings averaging two acres.
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Figure 1. Map of Kenya showing the location of the study area (a), distribution of sampling sites
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Meru County shares borders with Laikipia County to the west, Nyeri County to the
southwest, Tharaka Nithi County to the east and Isiolo County to the north. It lies within
latitudes 003′45′ ′ N and 002′30′ ′, and longitudes 370 and 380 E on the eastern slopes of
Mount Kenya. Meru County covers a range of altitudes between 500 m and 5199 m above
sea level. The county has a total area of 6936.2 km2 while forest cover is 1776.1 km2 and
comprises about twenty different sub-agro-ecozones. The population is approximately
1545,714 [14], while its population density is 221 persons/km2. The predominant soil types
in both counties are Nitisols, Ferralsols, Leptosols, Vertisols, Acrisols and Phaeozems [15,16].

The justification for the selection of the study sites was due to the wide range of
socio-economic and biophysical conditions, which are typical of highlands, midlands, and
lowlands where both mixed farming and agro-pastoralism are practiced by farmers. About
60% of this area has high-to-medium agricultural potential with cash crop and livestock
farming as the main sources of livelihood.
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2.2. Data Collection Procedures
2.2.1. Soil Sampling

Sampling sites were determined based on conditioned Latin Hypercube Sampling
(cLHS). This sampling procedure makes use of the available information on topography,
land cover, vegetation, soil types, and land cover/land use to produce optimized sam-
pling stratification, and thus is the most preferred soil sampling design [17]. In addition,
cLHS ensures that sampling is implemented in a cost-effective manner by incorporating
operational constraints in the model (e.g., by avoiding the selection of hardly accessible,
protected, even dangerous areas) [18]. Samples were obtained from 69 fields at surface
depth (0–20 cm). The samples were taken within a 3-week sampling campaign period in
January 2019. One field per farm household was sampled. The sampling sites represent
rainfed agricultural areas with farming that is dominated by smallholder farmers and
very diverse agricultural production. The collected samples were delivered to the Hungar-
ian University of Agriculture and Life Sciences (MATE) laboratory for further processing
and analysis.

2.2.2. Laboratory Soil Analysis

In the laboratory, the soil samples were air-dried by spreading each sample on a paper
at room temperature [19]. The samples were then carefully pounded using a pestle and
mortar and passed through a 2 mm mesh sieve.

Soil organic carbon (SOC) was determined following the Walkley–Black method [20].
Cation exchange capacity (CEC) and base saturation were determined following the BaCl2
Compulsive Exchange Method [21,22]. Exchangeable K, Ca, Mg, and Na were determined
following the Mehlich-3 extraction method [23]. Soil pH in distilled water was potentiomet-
rically measured in the supernatant suspension of a 1:2.5 soil:extractant mixture [24]. Soil N
was determined using the Parnas–Wagner apparatus, with NaOH as the extraction reagent
and Boric acid as indicator solution using the micro Kjeldhal method [25]. Available K and
P were determined using ammonium lactate acetate solution method [26]. Clay, silt, and
sand content were determined by the pipette method [27].

2.2.3. Sampling for Social Data

A sample of 69 households (of the same farms identified for soil sampling using the
cHLS design) drawn from Meru (51) and Tharaka Nithi (18) Counties was surveyed.

From each sampled household, socio-economic data relating to farmer’s demographic
characteristics, resource endowment (such as land size, income, quantity of livestock), soil
fertility management (including strategies, data concerning fertilizer, and manure use) were
collected through household survey. The survey was administered by way of face-to-face
questionnaire survey conducted between 9 January and 1 March 2019.

All data collection was approved by the Ethical Committee of the Doctoral School of
Environmental Sciences, MATE, in accordance with the Code on Research Ethics of the
Hungarian Academy of Sciences and the European Code of Conduct for Scientific integrity.
Consent was first sought from the participant before questionnaire administration.

2.3. Methods of Data Analysis

Multivariate analysis procedures including categorical principal analysis (CATPCA)
for categorical variables and standard principal component analysis (PCA) for continuous
variables were used to determine discriminant variables for cluster analysis (CA) [28].
These kinds of methods are also referred to as “dimension reduction” or “data-reduction”
techniques [29] because they have the advantage of capturing the complexity of farming
systems through taking into account numerous farm dimensions and highlighting a few
dimensions that are more explanatory of farm diversity [30].

An analysis for the principal components was performed separately for the three
groups of variables: socio-economic (CATPCA), farm characteristics (CATPCA), and soil
properties (PCA). PCA procedures were followed by cluster analysis based on soil proper-
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ties. PCA and CA have widely been used to classify farms [31]. PCA techniques are useful
in predicting a priori the number of homogenous groups in the datasets [31,32].

2.3.1. Principal Component Analysis (PCA)

Factors for soil characteristics (Table 1) were extracted using PCA and Varimax rotation
with Kaiser Normalization. The eigenvalue threshold (>1), the Kaiser–Meyer–Olkin (KMO)
measure of sampling adequacy (>0.5), and Bartlett’s test of sphericity significance (<0.00001)
were applied [33]. The data were automatically standardized prior to analysis, while
outliers were examined and revised accordingly. Loadings that were greater or equal to 0.4
were considered for interpretation purposes [34].

Table 1. The selected soil properties variables for Factor analysis and clustering.

Variables Definition Measurement/Unit

Ca Exchangeable Calcium cmol/kg
Mg Exchangeable Magnesium cmol/kg
Na Exchangeable Sodium cmol/kg
K Exchangeable Potassium cmol/kg

pH pH water
SOC Total organic carbon %
CEC Soil CEC %
P2O5 Plant available P mg/kg

N Plant available N mg/kg
Clay Clay content %
Sand Sand content %
Silt Silt content %
BS Base saturation %

K2O Plant available K mg/kg

2.3.2. Categorical Principal Analysis (CATPCA)

CATPCA was used in the analysis of socio-economic variables and soil fertility man-
agement characteristics (Table 2), which were largely categorical. The use of CATPCA
technique was preferred over the standard PCA, since it can handle variables of mul-
tiple measurement levels (nominal, ordinal, and numerical) and can handle nonlinear
relationships between variables [35,36].

Table 2. The selected socio-economic characteristics and soil fertility management practices used for
farm characterization.

Variables Definition Measurement/Unit

Household Socio-Economic Characteristics

Gender Gender of the household
head 0 = female, 1 = male

Age Age of household head Years

Education Household head education
level

1 = below high school, 2 = above
high school

Farming occupation Farming as primary
occupation 0 = no, 1 = yes

Experience Years in farming 1 = below 20, 2 = above 20

Extension contact Contact with extension in
the last 5 years 0 = no, 1 = yes

Soil info Access to training on soil
management 0 = no, 1 = yes

Soil testing soil analysis has even been
undertaken on farm 0 = no, 1 = yes

Credit info Farmer has ever received
training on credit 0 = no, 1 = yes



Agronomy 2023, 13, 1101 6 of 22

Table 2. Cont.

Variables Definition Measurement/Unit

Crop information
Farmer has ever received

training on crop
husbandry

0 = no, 1 = yes

Agribusiness info Farmer has ever received
training on agribusiness 0 = no, 1 = yes

Livestock Livestock ownership 0 = no, 1 = yes

Family size Number of people in the
family Count

Farm size
Total size of landholding

cultivated by
household

Acres

Household income
Annual household income

(on-farm and
off-farm)

Ksh

Work force
Number of household

members actively
involved in farming

Count

TLU Aggregated livestock assets standardized value

Cropping practices and soil fertility management

PCrop Pure crop stands practiced 0 = no, 1 = yes
Mixed Mixed cropping practiced 0 = no, 1 = yes
Agrof Agroforestry practiced 0 = no, 1 = yes

IntCrop Intercropping practiced 0 = no, 1 = yes
Residue Farm residues applied 0 = no, 1 = yes
Manure Manure applied 0 = no, 1 = yes
Mintill Minimum tillage practiced 0 = no, 1 = yes
Fallow Fallowing practiced 0 = no, 1 = yes

Residue incorp Incorporation practiced 0 = no, 1 = yes
Burn Burning residues practiced 0 = no, 1 = yes

Compost Compost manure applied 0 = no, 1 = yes

Fodder Farm organic materials used
as fodder 0 = no, 1 = yes

Fuel Farm organic materials used
as fuel 0 = no, 1 = yes

Fert. Plant rate Amount of fertilizer used
during planting kg/ha

Fert.Topdress rate
Amount of fertilizer used

during for top
dressing

kg/ha

Both the eigenvalue rule (>1) and Cronbach’s alpha threshold were applied in deter-
mining the optimal number of components.

2.3.3. Clustering, Farm Classification, and Characterization

Several variables hypothesized to influence soil quality (represented by soil properties
in Table 1) were selected. The objective of cluster analysis was to classify farms based on
soil quality, followed by characterization of the farms based on socio-economic and soil
fertility management practices. We hypothesize that soil fertility is influenced by household
socio-economic variables and farm practices.

Soil variables with the highest discriminating power, and which did not show a signif-
icant correlation with each other within each component of PCA solution, were selected as
minimum dataset (MDS) indicators and submitted to two-step CA. This technique is for
datasets consisting of either continuous or categorical variables or both [31]. Numeric vari-
ables are standardized by default. The log-likelihood distance method of distance measure
was applied [31]. Generally, the number of clusters is automatically determined based on
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Bayesian Information Criterion (BIC). However, where the resulting clusters fail to present a
true picture of the field observations, the analysis is repeated with pre-determined number
of clusters until a meaningful classification is achieved [37]. Often 3–5 clusters (typologies)
are considered adequate to represent farm household heterogeneity across smallholder
farming systems [10]. The silhouette measure of cluster cohesion and separation value was
used to validate the cluster solution. A silhouette is a graphical aid to the interpretation
and validation of CA that indicates a measure of how well a subject is classified in relation
to membership allocation [38].

After the clustering procedure, the non-hierarchical algorithm re-assigned farms to the
generated clusters. The differences in characteristics between the clusters were explored
using Fisher’s Exact Test (FET) and one-way ANOVA for categorical and continuous
variables, respectively. FET is highly recommended as it gives an exact accurate and
unbiased p-value for small sample sizes or when the expected numbers are small [39].
More detailed information on the soil sampling, questionnaire survey, laboratory, and data
analysis can be found in [40].

3. Results
3.1. Farm Socio-Economic Characteristics

Most of the surveyed household representatives were male, with the majority of
them having been schooled only until secondary level and only 9% had attained higher
education (beyond high school) (Table 3). The average age of the household head was
47 years, with the majority aged between 31 and 40 and the older farmers (above 60 years)
also making up a substantive proportion (23%). Family size averaged 5 members, with a
high of 11 persons, of which an approximately 3 household members provided farm labor.
Farm size ranged between 0.25 and 10 acres, with a mean of 3.5. Total family earnings
(from all enterprises including the sale of crops and livestock as well off-farm activities)
ranged between Ksh 7000 and 360,000. Almost all the households (93%) practiced both crop
and livestock farming. The results indicate minimal contact with agricultural extension
providers and access to related messages including soil fertility management, agricultural
credit opportunities, crop and animal husbandry, and training in agribusiness.

Table 3. Farm household demographic and socio-economic characteristics in upper Eastern Kenya.

Parameter Category
Number of Farmers

n = 69 % Mean

Gender
Male 41 59.4

N/AFemale 28 40.6

Education
Below High school 38 55.1

N/AHigh school and above 31 44.9

Farming type Crop 5 7.2
N/ACrop and livestock 64 92.8

Farming as primary
occupation

Yes 64 92.8
N/ANo 5 7.2

Farming experience
(years)

<10 18 26.1

N/A
11–20 13 18.8
21–30 24 34.8
>30 14 20.3

Extension Contact
No 43 62.3

N/AYes 26 37.7
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Table 3. Cont.

Parameter Category
Number of Farmers

n = 69 % Mean

Soil info
No 62 89.9

N/AYes 7 10.1

Soil testing No 57 82.6
N/AYes 12 17.4

Credit info
No 64 92.8

N/AYes 5 7.2

Crop husbandry
advice

No 57 82.6
N/AYes 12 17.4

Animal husbandry
advice

No 60 87
N/AYes 9 13

Agribusiness No 68 98.6
N/AYes 1 1.4

Age N/A N/A N/A 46.7
Family size N/A N/A N/A 5.2

Members active in
farming N/A N/A N/A 3.0

Farm size (Ha) N/A N/A N/A 3.5
Total income (Ksh *) N/A N/A N/A 112,512.2

** TLU (Tropical
livestock unit) N/A N/A N/A 1.8

* 1 Kenya shilling (KES) = 0.0101 USD based on the average exchange rate at the time of data collection (March
2019). ** TLU is an aggregation of the different types of livestock. Conversion factors used are as follows:
ox = 1.10, cow =1.0, heifer = 0.50, bull = 0.6, calves = 0.2, sheep and goats = 0.10, pigs = 0.20, and poultry = 0.01 [41].

3.2. Farm Classification
3.2.1. Correlation among Soil Properties

Variables of soil characteristics were distributed into three components through PCA
(Table 4). Factors were extracted using PCA and Varimax rotation with Kaiser Normaliza-
tion. Based on the eigenvalue’s threshold of >1, five components met the criteria. However,
some components had either low loadings (<0.4) for all the variables or had significantly
high loadings for the same variable across multiple components (multicollinearity). A
three-component solution accounting for 70% variance was the best compromise. Similarly,
the resulting Kaiser–Meyer–Olkin (KMO) value of 0.5 justifies the sampling adequacy of
the sample. Bartlett’s test of sphericity was significant (<0.00001) suggesting correlation
between the variables albeit with multicollinearity possibility [42].

F1 was associated with exchangeable K (negative), Na (positive), CEC (positive), plant
available P (negative), plant available K (positive), and pH (negative). F2 was described by
exchangeable cations (Mg and Ca) and base saturation. F3 dimension was defined by sand
and available N (positive) and SOC (negative). Two-dimensional component loading plots,
visualizing the relationships among the soil attributes, are presented in Figure 2.

As shown by the length of the vectors, plant available P, base saturation, exchangeable
Mg and Na were highly influential in the variation of soil properties. Available P correlated
negatively with plant available K. Mg, Ca, and BS were strongly positively correlated.

Small angles between the vectors represent a strong positive correlation. An angle of
about 90 degrees indicates absence of correlation, while large angles of close to 180 degrees
suggest a negative correlation. The length of the vectors is directly proportional to the
influence of the variable (communality).
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Table 4. Principal component loadings of soil variables derived by principal components analysis
using variable principal normalization.

Variable
Factor

Communalities
1 2 3

K −0.812 0.786
Na 0.877 0.855

CEC 0.673 0.697
P2O5 −0.770 0.821
K2O 0.965 0.937
pH −0.443 0.239
Mg 0.921 0.890
Ca 0.736 0.623
BS 0.927 0.899

Sand 0.857 0.848
SOC −0.455 0.222

N 0.643 0.624
Eigenvalues 3.799 2.962 1.681

% of Variance 31.657 24.685 14.006
Cumulative% 31.657 56.342 70.348
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Consequently, five variables were selected for cluster analysis based on discriminating
effect and correlation. From factor 1, plant available K (highly discriminating) and available
P (negative correlation with K) were selected. BS (highly discriminating) was selected from
factor 2, while sand (highly discriminating) and OC (negative correlation with SOC) were
selected from factor 3.
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3.2.2. Principal Component Analysis of Socio-Economic Variables

All the 17 socio-economic variables (see Table 2) were submitted to the model with
the number of dimensions retained at default (2). However, the two-dimensional solution
accounted for only 39.3% of the variance (not plausible), implying that more information
could be provided with additional dimensions. While six components were desirable
(eigenvalues greater than one and accounting for more than 60% variance), the fourth
and fifth components had low Cronbach’s alpha scores (low reliability). Dimension was
then set at four and CATPCA performed again. This time, the fourth component had
only one variable with a loading score of >0.4. The general rule is to retain components
with at least four variables with a loading score >0.6 [43]. We therefore explored the data
with a three-component solution while setting the threshold score loading at 0.4, which
is considered a fair cut-off [44,45]. The results for the final analysis, which was run based
on 13 variables and with 3 dimensions, are displayed (Table 5). Some variables that were
initially included in the model were omitted from the repeat analyses due to high loading
scores in more than one principal components [32]. These variables include gender, farming
experience, family size, and access to agribusiness training.

Table 5. Principal component loadings of household socio-economic variables based on CATPCA
analysis using variable principal normalization.

Variable
Dimension

Total
1 2 3

Extension contact 0.856 0.548
Soil info 0.537 0.662

Soil testing 0.767 0.454
Credit INFO 0.539 0.208

Crop husbandry advice 0.733 0.628
Animal husbandry

advice 0.620 0.255

Education 0.690 0.389
Tot income 0.444 0.773

age −0.477 0.302
Farm occupation 0.579 0.598

Farm size 0.741 0.309
TLU 0.593 0.577

Workforce 0.710 0.529
Cronbach’s alpha 0.708 0.455 0.413 0.909 a

Total (eigenvalue) 2.889 1.724 1.617 6.231
% of variance 22. 747 14.089 13.891 50.727

a Total Cronbach’s alpha is based on the total eigenvalue.

Roughly 50% of the household variability was explained by the first 3 PCs. The first
PC was associated with variables related to access to agricultural information. Education
level of household head and total family income registered high positive loadings with
PC2. Question on whether farming was the primary occupation for the household head,
had high positive loading too, for this component. On the other hand, the age variable
loaded negatively high. The third component was associated with farm size, number
of livestock, and family workforce, all of which loaded positively high. Considering
their independence, these dimensions constitute a good starting point for a consistent
categorization of households. Two-dimensional component loading plots (Figure 3) were
generated to provide a visualization of the relationships among the socio-economic factors.
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There was a strong correlation among the information-related variables, namely
contact with agricultural extension, access to information on soil, crops, livestock, and
credit. Figure 3 suggests that a priori three classes of household characteristics can be
identified in the study area following the associations between the determinant variables.

3.2.3. Principal Component Analysis of Soil Fertility Management Practices

Soil fertility management practices were distributed into three principal components
through CATPCA using principal normalization. CATPCA was first performed with all the
15 soil fertility management-related variables, with 2 default dimensions. The resulting
solution accounted for only 40% of the variance, which is considered too low, and thus a
need for more dimensions. The analysis was repeated with dimensions number set at 10.
The first four components had eigenvalue greater than one and accounted for 63% of the
variance. However, the fourth PC had a low Cronbach’s alpha of 0.214 (low reliability).
The results of the final analysis were performed with 11 variables. Attributes with loadings
below 0.4 were omitted, including residue application, burning of crop residue, manure
application, and intercropping. A3-dimension solution is displayed (Table 6).

About 53% of variability in soil fertility management was explained by the first three
PCs. PC1 was correlated positively with pure stand cropping and fallowing, and negatively
with mixed cropping, agroforestry, and minimum tillage. PC2 was associated with fertilizer
usage rates both at planting and top dressing. The third component was related to residue
compositing (positive) and residue use for fodder and fuel (both negative).
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Table 6. Principal component loadings of soil fertility management practices based on CATPCA
analysis using variable principal normalization.

Variable
Dimension

Total
1 2 3

Pure stand cropping 0.724 0.538
Mixed cropping −0.635 0.435

Agroforestry −0.633 0.529
Minimum tillage −0.435 0.373

Fallowing 0.478 0.408
Residue incorporation −0.646 0.538
Quantity of fertilizer

(planting) 0.740 0.713

Fertilizer quantity (top dress) 0.732 0.717
Residue composted 0.623 0.528

Residue used as fodder −0.696 0.657
Residue used as fuel −0.464 0.387

% of variance 23.951 15.765 13.219 52.936
Cronbach’s alpha 0.682 0.466 0.344 0.911 a

a Total Cronbach’s alpha is based on the total eigenvalue.

Visualization of the relationships among the soil fertility management practices is
presented (Figure 4).
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The relationships between soil fertility management practices, which are represented
by their correlations with their PCs, are shown by vectors pointing toward the category
with the highest score. The length of the vectors reflects the influence of the variables in
relation to variation in soil fertility management practices. Fertilizer application rate and
pure stand cropping were highly influential in PC1 and PC2, respectively. The small angle
between fertilizer application rate during planting and growth reflects a strong positive
correlation between the two variables. On the other hand, a large angle (approximately
180 degrees) between pure stand and mixed cropping shows a strong negative correlation.
Figure 4 suggests that a priori four classes of field characteristics can be identified across
the studied farming households.

3.3. Clustering and Characterization of Farm Types Based on Soil Characteristics

Soil variables with the highest loading as revealed by PCA were selected for inclusion
in the cluster analysis. A non-hierarchical two-step clustering approach was used. Two
clusters were automatically determined based on Bayesian Information Criterion (BIC).
However, upon close examination of the retained clusters with respect to the field obser-
vations [37], the classification was not very meaningful. The solution was repeated with
three clusters that seemed representative of the farm households in the study sites. Cluster
membership was 14 (20.6%), 24 (35.3%) and 30 (44.1%) households for clusters 1, 2, and
3, respectively. The size ratio between the smallest and largest cluster was 2.14 (a fairly
commendable ratio). The overall silhouette measure of cluster cohesion and separation
value was 0.5, indicating a fair assignment of data points to cluster centers [38]. The final
clusters obtained were profiled and assigned names: Farm type (FT) 1, 2, and 3.

3.3.1. Tendencies of Soil Properties across Farm Types

Differences in soil properties between clusters were examined based on cluster mem-
bership variable, using one-way ANOVA, and results presented in Table 7.

Table 7. Characterization of identified farm types based on p-value of one-way analysis of variance
(equality of mean) of soil properties.

Cluster (Farm Types)
Total F Sig.

Variable 1 (n = 14) 2 (n = 24) 3 (n = 30)

Exch. K 0.388b 1.000a 1.000a 0.874 168.183 0.000
Exch. Mg 0.512b 0.958a 0.733ab 0.767 4.995 0.010
Exch. Na 0.059a 0.000b 0.000b 0.013 26.188 0.000

CEC 16.448a 8.167b 8.033b 9.813 65.407 0.000
BS% 18.730 19.083 15.633 17.488 2.074 0.132
Sand 27.857 27.958 23.333 25.897 2.159 0.124

AL-P2O5 5.286c 828.717a 740.510b 620.272 348.851 0.000
AL-K2O 195.357a 13.125b 9.233b 48.926 42.199 0.000
pH.H2O 4.879b 5.083b 6.103a 5.491 38.743 0.000

SOC 0.543bc 1.398a 0.835b 0.974 22.797 0.000
SQI 4.286b 5.291a 5.233a 5.059 3.468 0.037

Each letter denotes a subset of cluster number means whose column proportions do not differ significantly
(p < 0.05). SQI = soil quality index, calculated by summing up assigned threshold values for key selected soil
variables for each field (see [46]).

The distribution of clusters was strongly significant (p < 0.05) across all the selected soil
parameters except for base saturation and sand particle composition, which were weakly
significant (p < 0.1).

Cluster 1 farms have low exchangeable bases (K and Mg), available P, pH, and SOC.
These farms have higher values for CEC, plant available K, and Na+ concentration. Cluster
2 farms are characterized by higher exch. Mg, available P, and SOC. Farms in cluster 3 have
higher concentration of exch. K and pH values. Overall, fields within farm type 2 and 3
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were more fertile than those in farm type 1, as indicated by the SQI. Farms in FT2 exhibited
higher base saturation and exchangeable Ca concentration and SOC compared to FT3.

3.3.2. Socio-Economic Characteristics across the Farm Types

Households’ socio-economic variables were correlated with the identified farm types
and results presented in Tables 8 and 9. The distribution of farm types in relation to house-
hold socio-economic characteristics differed significantly across PC2 (personal attributes)
and PC3 (farm size and other wealth indicators). Specifically, farm size, household income,
family size, and livestock volume were important in delineating farm types. Cluster 3 has
averagely larger farms compared to clusters 1 and 2. There is a slight farm type differentia-
tion across household income (p < 0.1). Farms in cluster 1 had lower average income, while
cluster 3 had highest income.

Table 8. Characterization of identified farm types based on p-value of one-way analysis of variance
(equality of mean) of socio-economic characteristics.

Variable Cluster N Mean Std.
Dev Min Max F Sig.

Family size

1 14 4.714 1.326 3 7 0.958 0.389
2 24 5.125 1.676 1 8
3 30 5.433 1.695 2 11

Total 68 5.176 1.620 1 11

Farm size

1 14 2.482 2.202 0.25 6.00 3.692 0.030
2 24 2.813 2.329 0.25 10.00
3 30 4.598 3.512 0.50 10.00

Total 68 3.532 3.011 0.25 10.00

TLU

1 14 1.565 1.083 0.6200 4.8500 1.497 0.232
2 24 1.455 1.259 0.0000 5.2000
3 30 2.133 1.845 0.0000 7.0700

Total 68 1.777 1.532 0.0000 7.0700

Workforce

1 14 3.071 1.385 1 5 0.862 0.427
2 24 2.667 1.494 1 6
3 30 3.167 1.392 1 6

Total 68 2.971 1.424 1 6

Age

1 14 41.071 17.022 20 73 1.617 0.206
2 24 49.125 12.081 26 75
3 30 47.867 13.627 30 74

Total 68 46.912 14.000 20 75

Table 9. Comparison of households’ socio-economic characteristics across the identified farm types
in upper Eastern Kenya.

Variable Category

Farm Type (Cluster)

Total % Coeff Sig1 (n = 14) 2 (n = 24) 3 (n = 30)

Freq % Freq % Freq %

Gender
Female 5 35.7 11 45.8 12 40.0 28 41 0.077 0.855
Male 9 64.3 13 54.2 18 60.0 40 59

Income (Ksh) <75 7 53.8 10 52.6 11 42.3 28 48.3 0.130
75–150 1 7.7 4 21.1 6 23.1 11 19.0

150–225 5 38.5 4 21.1 3 11.5 12 20.7
>225 0 0 1 5.3 6 23.1 7 12.1
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Table 9. Cont.

Variable Category

Farm Type (Cluster)

Total % Coeff Sig1 (n = 14) 2 (n = 24) 3 (n = 30)

Freq % Freq % Freq %

Education

Primary and
below 5 35.7 14 58.3 19 63.3 38 56 0.207 0.218

High school
and above 9 64.3 10 41.7 11 36.7 30 44

Farm occupation No 1 7.1 2 8.3 2 6.7 5 7 0.029 0.973
Yes 13 92.9 22 91.7 28 93.3 63 93

Farming
experience

<20 7 50.0 8 33.3 16 53.3 31 46 0.180 0.318
>20 7 50.0 16 66.7 14 46.7 37 54

Ext contact
No 10 71.4 13 54.2 19 63.3 42 62 0.13 0.557
Yes 4 28.6 11 45.8 11 36.7 26 38

Soil info
No 13 92.9 22 91.7 26 86.7 61 90 0.090 0.759
Yes 1 7.1 2 8.3 4 13.3 7 10

Siol TEST
No 12 85.7 8 33.3 26 86.7 46 68 0.141 0.500
Yes 2 14.3 6 25.0 4 13.3 12 18

Credit INFO
No 14 100.0 21 87.5 28 93.3 63 93 0.172 0.356
Yes 0 0.0 3 12.5 2 6.7 5 7

Crop husbandry
advice

No 12 85.7 20 83.3 24 80.0 56 82 0.059 0.887
Yes 2 14.3 4 16.7 6 20.0 12 18

Animal husbandry
advice

No 14 100.0 21 87.5 24 80.0 59 87 0.216 0.188
Yes 0 0.0 3 12.5 6 20.0 9 13

Agribiz No 14 100.0 24 100.0 29 96.7 67 99 0.136 0.526
Yes 0 0.0 0 0.0 1 3.3 1 1

Proportionally, the majority of households within farm type 1 were male-headed,
younger, educated beyond secondary school level, and with smaller family size. Farm type
3 farms were characterized by larger family size, higher workforce, and larger livestock
units. Farm type 2 farms consisted of mainly older female household heads with medium
family size, farm size, and income.

Farming was the primary occupation for household heads in farm type 1, who had a
higher education level and income compared to their counterparts in farm type 2. Com-
paratively, farms in cluster 1 had higher access to soil testing services and financial (credit)
information. Members of farm type 2 had a higher access to animal husbandry information,
larger farm size, livestock, and more family members working on the farm.

3.3.3. Patterns of Soil Fertility Management Practices across Farm Types

Farm characterization based on soil fertility management characteristics differed sig-
nificantly across the three principal components (Table 10): PC1 (mode of cropping), PC2
(intensity of fertilizer application), and PC3 (utilization of organic resources). Specifically,
farm types were significantly different across fallowing practices (p < 0.05), the intensity
of fertilizer application (p < 0.05), and utilization of crop residue for fuel (p < 0.1). Pro-
portionally, more farmers in the farm type 2 category practiced fallowing. Farm type 3
farms exhibited higher fertilizer application rates for both planting and top dressing, while
farm type 2 consists of farms with modest fertilizer consumption. A higher proportion of
farmers in farm type 3 used crop residues as fuel.

Noticeably, cluster 1 farms are associated with mixed cropping, intercropping, and
residue incorporation. Fertilizer application intensity is low, and farmers were very unlikely
to compost crop residues. Farms in cluster 2 have proportionally high cases of fallowing
and pure stand cropping, with modest fertilizer application rates, and composting of crop
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residues. Cluster 3 farms are characterized with high fertilizer application, high propensity
to agroforestry and compositing of crop residues, and higher use of residue for fodder
and fuel.

Table 10. Frequency distribution of soil fertility management characteristics across clusters (farm
types) in Upper Eastern Kenya.

Variable
Cluster (Farm Types)

Total p-Value
1 (n = 14) 2 (n = 24) 3 (n= 30)

freq % freq % freq %

Pure stand
No 9a 64.3 14a 58.3 21a 70.0 44

0.606Yes 5a 35.7 10a 41.7 9a 30.0 24

Mixed cropping No 3a 21.4 11a 45.8 10a 33.3 24
0.308Yes 11a 78.6 13a 54.2 20a 66.7 44

Agroforestry No 10a 71.4 18a 75.0 16a 53.3 44
0.255Yes 4a 28.6 6a 25.0 14a 46.7 24

Intercropping No 12a 85.7 21a 87.5 28a 93.3 61
0.667Yes 2a 14.3 3a 12.5 2a 6.7 7

Fallowing No 8ab 57.1 13b 54.2 24a 80.0 45
0.05Yes 6ab 42.9 11b 45.8 6a 20.0 23

Residue
incorporation

No 6a 42.9 15a 62.5 17a 56.7 38
0.538Yes 8a 57.1 9a 37.5 13a 43.3 30

Fertilizer
planting rate

Low 7a 50.0 6a 25.0 7a 23.3 20
0.043Moderate 1ab 7.1 4b 16.7 0a 0.0 5

High 6a 42.9 14ab 58.3 23b 76.7 43

Fertilizer top
dressing rate

Low 7a 50.0 6a 25.0 7a 23.3 20
0.043Moderate 1ab 7.1 4b 16.7 0a 0.0 5

High 6a 42.9 14ab 58.3 23b 76.7 43

Residue
composting

No 13a 92.9 19a 79.2 23a 76.7 55
0.526Yes 1a 7.1 5a 20.8 7a 23.3 13

Residue for
fodder

No 2a 14.3 5a 20.8 5a 16.7 12
0.921Yes 12a 85.7 19a 79.2 25a 83.3 56

Residue for fuel
No 9ab 64.3 18b 75.0 14a 46.7 41

0.11Yes 5ab 35.7 6b 25.0 16a 53.3 27

Each letter denotes a subset of two-step cluster number categories whose column proportions do not differ
significantly (p < 0.05). Fertilizer application rates: low = less than 25 kg, moderate = 25–50 kg, High ≥ 50 kg/acre.

4. Discussion

The classification of farms segmented farm households into three clusters based on the
influential soil properties determined by PCA. The conducted field quality classification
yielded reasonable discrimination of soil fertility conditions across household farms. There
was significant variation in soil fertility status between the three identified farm types as
indicated by differences in the averages of key soil attributes, including pH, SOC, CEC, plant
available plant K2O, available P, Base saturation, sand proportions, and exchangeable bases.
The significant differences in SQI averages suggest a consistent variation in soil fertility
across the three farm types, delineating the farms as low fertility (cluster 1), moderate
fertility (2), and high fertility (3). It is, however, important to note that values of soil
fertility indicators for most samples were above average levels based on published SQI
thresholds [46]. This could be due to the generally fertile soils in the region, which is in fact
considered a high agricultural potential area [47]. The variability in soil properties could
be attributed to differential soil fertility management practices dictated by households’
socio-economic characteristics.
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Farm type 1 farms were characterized by low values for available P, pH, SOC, and
exchangeable bases (K and Mg). The values for P and SOC were very low, and the soils
were moderately acidic [46]. Nevertheless, the average sand levels are generally within
the acceptable range (<50%) [46]. Higher distribution of sand (course particles) could be
ascribed to the loss of finer particles due to erosion [48].

Studies on African farming systems (e.g., [49,50]) have shown that the magnitude of
SOC tended to vary between farm types. Increase in SOC and total N has been positively
correlated with soil structure improvement [9]. The low fertility of farms in this cluster
could be attributed to low use of organic and inorganic fertilizer and composted crop
residues. The availability of high organic matter influences soil microbial functional diver-
sity [51], but the use of inorganic fertilizer can have a negative impact on soil biota [52].
Socio-economically, households in cluster 1 had smaller family sizes and smaller farm sizes
with low income. These variables constitute the key household characteristics that have
been used to explore farming system diversity [53]. The low consumption of fertilizer in
this farm type could be attributed to low on-farm income, limiting farmer’s access to soil
fertility resources [32]. There is strong evidence worldwide supporting the link between
poverty and land degradation [51]. Ref. [54] argues that “Poor soils make people poorer”
and “poor people make soils worse.” Alternatively, this cluster consists of households with
young families with the household head most likely to be in formal employment consid-
ering a high proportion have attained above high school education. This would imply
that their participation in farming is largely on a part-time basis. Smaller land sizes are
expected in this cluster, since land is inherited by the household head, thus fragmentation
into smaller parcels [53].

Cluster 2 farms have moderate average values for plant available K, clay, pH, CEC,
and exchangeable Ca. The fields have high SOC content, BS, and sand content. Moderate
fertility status in these fields could be explained by the modest fertilizer application
rates, less agroforestry, less residue incorporation (Table 8). The proportionally higher
cases of fallowing contribute to the restoration of soil nutrients. Land use studies have
shown that converting non-agricultural land into cultivated fields leads to decline in
nutrients [55,56]. The households within this cluster are largely headed by older females
with high farming experience and access to extension. Family sizes are moderate (larger
than cluster 1) with above-average resource endowments in regard to farm size, income,
and livestock units. These results are consistent with the findings of [53] in Ghana, which
reported a positive correlation between family size, livestock size, and the age of the
household head. In their typology of rural farm households, Refs. [32,57] found that
age was a significant discriminant of cluster membership in Kenya. However, in other
findings, none of the family’s head attributes nor socio-economic variables predicted
cluster membership (cf. [31]). In our study, age was less discriminant, perhaps due to
the diverse characteristics of the farming households in the study area.

Farms in cluster 3 were the most fertile as shown by high values for clay content,
pH and exchangeable K, and moderate SOC. The difference in SOC between farm type 2
and 3 could be due to the effect of fallowing in the former, which allows for the build-up
of organic matter from the accumulation of litter [56]. Fertilizer application, agroforestry.
and composting of crop residues observed among the farms in this category are impor-
tant contributors to soil fertility. Agroforestry practices have been shown to increase
agricultural land’s capacity to sequester C and N [58]. The soil aggregate stability can
also be enhanced by agroforestry through abundant fine roots (root exudates), thick
litter layer, and rich soil binding agents [9]. Soil fertility management practices such as
incorporation of crop residues increases soil carbon stocks [59]. It needs to be mentioned
again that besides of its positive impacts on soil fertility, the use of inorganic fertilizers
can also have a negative effect on soil biota as well as on the quality of surface and
ground water, especially in the long term [52,60]. Similarly, the households in farm
type 3 are characterized by high income, larger farms, high livestock volume, and larger
families and workforce, which constitute key indicators of wealth [32,61]. This clustering
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is consistent with [32], which conducted a study in East Africa in which farms that belong
to a wealthier farm type were characterized by larger livestock volume, large farms with
cash crops, and high income mostly generated from farming activities. The influence
of income (especially off-farm) in technology adoption is widely acknowledged [37].
Resource-endowed households have ready access to large volumes of inorganic fertiliz-
ers and manure [10]. In addition to contributing to household income, livestock provides
manure, which is used to enhance soil fertility. Manure and other organic resources are
critical in enhancing soil organic matter, nitrogen, phosphorus and other plant nutrients.
Soil organic matter is critical for soil’s overall health, namely the soil’s capacity and
sustainability to function as a living ecosystem. However, like many parts in SSA, the use
of manure in Kenya is constrained by limited availability and poor quality [62,63]. In this
study, the intensity of household’s consumption of animal manure is implicitly implied
from the livestock volume (TLU). However, we note that the actual determination of the
amount of manure used per unit area would have been more interesting. Farm labor,
which is often dictated by the household size (positively correlated), is a key driver of
technology adoption and a major indicator of household diversity [32,64]. Farming is
the main occupation of the household heads, with the majority of them having attained
lower than high school level education. A high degree of dedication to farming is thus
expected and commitment to improve agricultural productivity (evident from higher
fertilizer application rate) [32]. Operational management and labor allocation have
been shown to influence farm productivity and the efficiency of resource utilization [3].
Households in this farm type have a high propensity of access to agricultural advice,
including information on soil, crop, and livestock husbandry, which may also have
contributed to sound soil fertility management [65].

5. Conclusions

The smallholder farming systems in most parts of SSA are highly heterogenous in
terms of both biophysical and socio-economic characteristics. The extensive variability in
soil fertility is a function of both short and long-term conditions associated with soil fertility
management activities implemented over soils with inherently diverse properties. A host
of socio-economic factors, including farm preferences, prices, and production objectives,
further magnify farm household’s heterogeneity.

Farming systems in the upper Eastern Kenya were typified into three farm types,
representing infertile farms (FT1), moderately fertile farms (FT2) and fertile farms (FT3).

FT1 are characterized by low values for important soil fertility indicators, including
SOC, pH, CEC, available P, and exchangeable bases (K and Mg). On the account of soil
fertility management practices, the low fertility could be explained by low application of
fertilizer and organic resources. In turn, the observed management practices are influenced
by smaller household size, lower income, and smaller farm size.

FT2 have higher levels of SOC, available P, exchangeable Mg, and moderate measure-
ments for CEC, plant available K, and pH. The possible determinants of the observed fertil-
ity status include fallowing, the use of composted residues (manure), and above-average
fertilizer application rates. The correlated household characteristics include moderate
income, family size, and farm size. FT3 farms exhibit relatively desirable values for key soil
fertility indicators, including SOC, pH, CEC, plant available plant available K, available
P, and exchangeable bases (K and Mg). In relation to soil fertility management practices,
the high fertility could be attributed to the high application rate of fertilizer and organic
resources. Similarly, the observed management practices are influenced by favorable house-
hold socio-economic conditions, including larger household size, higher income, and larger
farm size.

Characterization of farms based on the various parameters including resource endow-
ment reveals imbalanced farm resource flows, suggesting a need to address the inequality
in farm resource availability to reduce high soil quality variability and enhance the pro-
ductivity and sustainability among smallholder farming systems. Results suggest that
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resource-inadequacy poses a threat to soil health and the environment at large. The knowl-
edge of both biophysical and socio-economic variability is critical in appreciating the
potential of individual farm households and to spearhead location-specific interventions
to facilitate improved targeting of soil fertility-enhancing technologies, sustainable crop
agricultural practices, and informed policy support. The findings of this study are a good
starting point for efficient soil fertility management through a tailored innovative and
integrated approach.
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