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Abstract: Future trends in climate change, water scarcity, and energy costs will motivate agriculturists
to develop innovative agricultural systems. In order to achieve sustainable farming in arid regions,
there is an urgent need to use artificial intelligence (AI) to predict and estimate the optimum water
and energy requirements for the irrigation of date palms. Therefore, this study aimed to predict the
optimum water and energy requirements for date palm irrigation depending on the optimum water
use efficiency (WUE) and yield in arid conditions. To achieve this aim, four solar-powered micro
irrigation systems were developed and evaluated under six irrigation levels for date palm irrigation.
Soil moisture sensor-based controllers were used to automate irrigation scheduling for the micro
irrigation systems. The water pumping in these systems was powered using a solar photovoltaic
(PV) system. In addition, four machine-learning (ML) algorithms, including linear regression (LR),
support vector regression (SVR), long short-term memory (LSTM) neural network, and extreme
gradient boosting (XGBoost), were developed and validated for prediction purposes. These models
were developed in Python programing language using the Keras library. The results indicated that
the optimum WUS was achieved when the maximum setpoints of irrigation control were adjusted
at the field capacity and by adjusting the minimum setpoints at 40, 50, 70, and 80% of the available
water (AW). The optimum yield was achieved by adjusting the minimum setpoints at 60, 70, 80,
and 90% of AW for subsurface irrigation, subsurface drip irrigation, drip irrigation, and bubbler
irrigation, respectively. Therefore, the dataset was prepared at these levels for four years to train
and test the models, and a fifth year was used to validate the performance of the best model. The
evaluation of the models showed that the LSTM followed by XGBoost models were more accurate
than the SVR and LR models for predicting the optimum irrigation water and energy requirements.
The validation result showed that the LSTM was able to predict the water and energy requirements
for all irrigation systems with R2 ranging from 0.90 to 0.92 based on limited meteorological variables
and date palm age. The findings of the current study demonstrated that the developed LSTM model
can be a powerful tool in irrigation water and energy management as a fast and easy-to-use approach.

Keywords: arid regions; date palm; PV pumping systems; smart farming; water scarcity; water use
efficiency; time series prediction; LSTM; AI; machine learning

1. Introduction

Agricultural sustainability and development mainly rely on irrigation water. Global
agricultural production consumes more than 70% of the available freshwater worldwide for
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irrigation use [1,2]. However, less than 60% of the water applied can be efficiently utilized
for crop irrigation based on actual water requirements [3]. Furthermore, irrigation water
scarcity characterizes arid regions, which causes the limitation of sustainable agriculture
and development in these regions [4,5]. Therefore, enhancing irrigation water productivity
in these regions is the main target for sustainable agriculture and economic development [6].

Precision agriculture is indispensable for enhancing agricultural production and sav-
ing water through efficient irrigation management. Precision irrigation management
ensures efficient plant water usage with the proper amounts that compensate for water
loss through erosion or evapotranspiration [7]. Moreover, natural phenomena, such as
global warming and climate change, influence the availability of precipitation needed
to provide water for trees and plants. Even if these climatic factors are controlled using
greenhouses [8], these factors are not easy to manage or control in the open field, such as
date palm fields. The problem is becoming worse in countries with harsh climates and arid
lands [9].

Date palm trees (Phoenix dactylifera L.) are the essential crops in arid and semi-arid
regions characterized by water scarcity throughout the year. Consequently, date palm
irrigation in these regions often relies on groundwater. However, despite water scarcity,
inefficient irrigation water use still prevails in date palm farms, which may soon lead
to groundwater depletion [9]. Therefore, water management for sustainable date palm
cultivation is essential for stakeholders. Many irrigation methods, such as drip, bubble, and
flood, are usually used to supply water to the date palms without control systems. Although
these irrigation methods lead to the maximum date palm tree yield, modern automated
micro irrigation systems can produce a similar yield using less irrigation water [10,11].
Therefore, the use of micro irrigation systems with proper irrigation scheduling contributes
to higher water use efficiency (WUE) and crop yield [12].

Date palm fields are often far from the energy sources needed for powering water
pumps and irrigation water scheduling control systems. Consequently, solar photovoltaic
(PV) systems are required to supply irrigation systems with the energy needed [13]. In
addition, the solar PV system helps decrease carbon emissions into the atmosphere. Using
solar PV systems for water pumping can prevent about 24,000 tons of greenhouse gases
annually from being released into the atmosphere in Saudi Arabia [14]. Optimizing solar
PV water pumping systems is a significant trend, which leads to demand satisfaction
with irrigation water requirements with low PV energy consumption. Therefore, many
previous efforts have been conducted to save and optimize PV water pumping systems’
energy consumption and costs. For example, low-cost solar PV systems were developed,
which depend on variable voltage, variable frequency, and maximum power point tracker
for water pumping in irrigation systems [13]. This control system will give an optimum
solution for solar PV energy conservation. Generally, solar PV energy is becoming very
influential globally due to the benefits of its use. However, climate change results in
frequent variations, which directly affect the energy production in PV system installations;
therefore, efficient AI management is essential [15].

Artificial intelligence (AI) can play a vital role in the efficient management of irrigation
water scheduling by managing sensed data and understanding the changing dynamics of
weather, soil, and plant conditions during the cultivation periods [2]. Furthermore, due to
the development of sensing devices, the enormous internet of things (IoT) revolution, and
machine-learning (ML) applications for intelligent agriculture, its use substantially impacts
irrigation water conservation, plant growth, and crop production [16–19]. As a result, these
technologies will enable water irrigation management, optimization of electricity use for
water pumping, and a reduction in overall costs [20]. Monitoring the plant conditions, the
weather variables, and the water status in the soil are essential factors in reducing irrigation
water consumption without affecting crop production. In order to achieve these targets,
several tools and devices are developed to ensure precision irrigation, such as automated
weather stations and IoT-based control systems [21]. However, these methods are not
usually available due to their expensive cost and complicated use. In addition, digital
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aerial photography applications need temporal and spatial plant water status information
with sufficient accuracy [22]. Therefore, alternative and cheaper methods are necessary
to provide the plants with their actual water requirements based on ML prediction and
prediction models.

The most common regression methods in the ML domain include linear regression,
support vector regression, conventional neural networks, long short-term memory neural
networks, and extreme gradient boosting. Linear regression is the most standard regression
approach, which is widely used in prediction and decision-making applications [23]. It
examines the relationship between two quantitative variables, namely dependent (goal
or output) variables and independent (predictor or input) variables. Therefore, linear
regression approaches help in establishing causal relationships between variables, which
are useful in modeling the prediction of some agricultural problems [17]. Support vector
regression is a well-known ML algorithm widely used in classification applications. It is
based on two elements of the statistical learning theory, namely the decision boundary and
the decision plane [24].

The most conventional neural networks assume that all the input samples are inde-
pendent of each other. This is not the case in applications that include sequential or time
series data, such as the data gathered in the agriculture domain, where each data sample
is supposed to be dependent on the previous one [25]. It is demonstrated that recurrent
neural network approaches are used to treat time series data. Specifically, given sequential
data, the standard recurrent neural network aims to learn representations of patterns that
repeatedly occurred through the past data sample by sharing parameters across all time
steps [26]. However, as time goes on, the memory of recurrent neural networks of past
learned patterns fades.

The long short-term memory (LSTM) allows the memory cell to memorize the data
stream for a longer period of time by setting propagation tracks to keep the flow of
gradients of the earlier states [27]. The LSTM is trained to map an input sequence into an
output sequence, where the network’s delay recursion enables it to represent efficiently the
dynamic performance of any sequential system [28,29]. The impact of extreme gradient
boosting (XGBoost) has been widely recognized in a variety of ML and data mining
applications and challenges. Moreover, it is widely used for feature selection due to its high
scalability, efficiency, parallelization, and speed [30].

To our knowledge, no previous study has been conducted to predict the irrigation
water and PV energy requirements using ML models for date palms in arid regions,
especially in micro irrigation systems. Therefore, in this study, we addressed the problem
of predicting the water and energy requirements for date palm orchards using essential
solar-powered micro irrigation systems in an arid region.

The main objective of the current study was to predict the optimum irrigation water
and solar photovoltaic (PV) energy requirements for date palm irrigation using micro
irrigation systems. Therefore, the influence of four solar-powered surface and subsurface
micro irrigation systems on water use efficiency (WUE) and date palm tree yield under six
irrigation levels was investigated to determine the optimum irrigation water and energy
required for optimal WUE and productivity of date palm trees. In addition, four ML models,
namely linear regression (LR), support vector regression (SVR), long short-term memory
(LSTM) neural network, and extreme gradient boosting (XGBoost), were developed to
predict the optimum water and energy requirements based on limited meteorological data
and date palm age in a time series forecasting paradigm. We selected LR as an example
of the parametric method and SVR as an example of the non-parametric method, both of
them being decision boundary-based methods [31]. Additionally, we selected the LSTM
as an example of a neuron-based method, whereas XGBoost is an example of a tree-based
method [30].

Moreover, since irrigation water management is a complex environmental problem
that includes several parameters, we represent the problem as a multivariate time series
problem. This multivariate problem can be treated easily using the aforementioned ML
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approaches [32]. Accordingly, our contributions to achieving the objectives of the current
study can be summarized as follows:

• Investigating the influence of four solar-powered micro irrigation systems on date
palm yield and water use efficiency.

• Collecting data on meteorological variables of the study area during the date palm
irrigation experiment, including actual water applied and actual PV energy consumed.

• Determining the optimum water applied and PV energy consumed for obtaining
optimum WUE and for optimum date palm yield under each micro irrigation system.

• Developing and evaluating four ML models for predicting water and energy require-
ments based on limited meteorological variables and date palm age, where the target
is to achieve the optimum WUE, or where the target is to achieve the optimum date
palm yield.

• Validating the best ML model under each solar-powered irrigation system according
to the above two options.

2. Materials and Methods
2.1. Experimental Area

This study was implemented in an arid region at the experimental orchards of Date
Palm Research Center of Excellence (25◦16′03.8” N, 49◦42′29.2” E) at the Agricultural
Training and Research Station, King Faisal University (KFU), Saudi Arabia. The experiment
was conducted for five successive years (1 January 2018 to 31 December 2022).

The palm trees chosen (Khalas cultivar) had uniform growth and were of the same
age (14 years in the first season) with a density of 200 palms/ha. In addition, all date palm
trees chosen were treated with the same farming practices.

The groundwater well at the DPRC fields was used to supply the irrigation water
applied in this study for all irrigation systems. The irrigation water’s electrical conductivity
(EC) was 0.96 ± 0.58 dS/m; the pH was 8.95 ± 1.31; and total dissolved solids (TDS) were
778 ± 58.22 mg/L.

The soil in the experimental site was sandy loam with an average particle size distribu-
tion of 67.61± 2.22, 17.93± 0.67, and 14.46± 2.21% for sand, silt, and clay, respectively. The
soil’s bulk density (BD) was 1.58 ± 0.12 g/cm3; the field capacity (FC) was 19.98 ± 0.62%;
the permanent wilting point (PWP) was 9.27± 0.38%; the pH was 8.11 ± 0.21; the electrical
conductivity (ECs) was 3.32 ± 1.63; and the hydraulic conductivity (HC) was 4.91 ± 0.21.
The soil’s average physical, chemical, and hydraulic characteristics are within 100 cm depth
in the experimental site.

2.2. Description of the Solar-Powered Micro Irrigation Systems

In this study, four solar-powered micro irrigation systems were used for date palm
irrigation, which were subsurface irrigation system (SIS), subsurface drip irrigation system
(SDIS), drip irrigation system (DIS), and bubbler irrigation system (BIS). All irrigation
systems used in the study were supplied with fresh water sourced from groundwater wells.
A solar photovoltaic (PV) system with solar pumping inverter (SPI) was used to power and
control the AC induction motor of the irrigation pump based on pulse-width modulation
(PWM), current, and voltage source inverter. The average daily solar radiation was used to
calculate the size of the PV system. Figure 1 shows a schematic diagram of the components
of each irrigation system, the distribution of the irrigation units around the palm for each
system, the solar PV system of energy supply for water pumping and control mechanism,
and the method of connecting the solar panel and irrigation networks. Figure 2 shows
some photos of the solar PV and irrigation systems used in the current study. The following
subsection shows the description of the solar PV and irrigation systems.
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and (D) bubbler irrigation (BIS) connected with the solar PV system.
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Figure 2. Experimental setup of the solar PV and irrigation systems: (a) PV array toward south with
a tilt angle of 30◦, (b) irrigation control unit with small PV system, (c) irrigation network, (d) solenoid
valves and pressure regulators, (e) irrigation water pump with an automatic regulator, (f) subsurface
irrigation system (SIS), (g) subsurface drip irrigation system (SDIS), (h) drip irrigation system (DIS),
(i) bubbler irrigation system (BIS).

2.2.1. Solar PV System

The solar PV system was designed according to the energy required for the water
pumping system. This experiment used ten solar PV panels 305 W (CSUN305-72P, Matrix—
Australian Solar Co., Prestons, NSW, Australia) to power the water pumping system. Nine
solar PV panels are connected in series to operate the water pumps, and one is used to
operate the control units. The ten solar PV modules were tilted on a metal frame at 30◦

toward the south, as shown in Figures 1 and 2a.
Each solar PV panel had a maximum power (Pmax) of 305 Wp, a voltage at the

maximum power (Vmp) of 36.7 V, a current at maximum power (Imp) of 8.31 A, a voltage
at open circuit (Voc) of 45.2 V, and a current at short circuit (Isc) of 8.87 A. The PV panel
efficiency was 15.75%. The maximum power of the solar PV system was 325 V, and the
peak power was 2.8 kW.

The solar PV system output power was used to power the water pump through
a 2.2 kW variable-frequency (VFD) solar Inverter (GD100-2R2G-S2-PV, Goosun Energy
Construction Group Co., Ltd., Fuyang, China).

2.2.2. Irrigation Systems

One solar-powered water pumping system was used for these irrigation systems. The
water pumping system consisted of a solar-powered irrigation control unit, a water source,
two water pumps, pressure regulators, water solenoid valves, manual valves, a pressure
gauge, and water flow meters.
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The solar-powered irrigation control unit included four digital programable timers,
electronic circuits, and power sources for the valves and timers (Figure 2b). Four digital
programable timers were used to regulate the water pumping in the irrigation network for
each irrigation system separately. The PV system of the irrigation control unit consisted of
a 20 W solar panel, battery (12 V, 30 Ah), and solar charging controller.

Figure 1 compares the distribution of irrigation units around the palm tree for SIS
(Figure 1A), SDIS (Figure 1B), DIS (Figure 1C), and BIS (Figure 1D). The following is a brief
description of the micro irrigation systems used:

• SIS: Six subsurface irrigation units were used for each date palm tree in this system
(Figure 2f). The subsurface irrigation units were connected to the distribution ring,
and the ring was connected to the subline. The subsurface irrigation unit consisted of
two perforated pipes with light volcanic gravels (0.4–0.8 cm in diameter) between them.
The outer diameter of the subsurface irrigation unit was 12.5 cm, and its length was
35 cm. The outer pipe’s surface is slotted with a slot width of 0.2 cm, a length of 4.0 cm,
and a tilt angle of 30◦. The inner pipe length is 35 cm with a diameter of 2.5 cm and
is perforated in a spiral shape with a 0.3 cm hole diameter. The subsurface irrigation
unit’s water flow rate was approximately 0.030 m3/h at a pressure of 300 kPa.

• SDIS: A subsurface dripline with a diameter of 1.6 cm (Rain Bird Corporation, Tucson,
AZ, USA) included subsurface pressure-compensating emitters used in this system
(Figure 2g). The distance between two pressure-compensating emitters was 0.457 m.
Two lateral rings of this subsurface dripline were installed around the date palm
tree. The diameters of the inner and outer lateral dripline rings were 1.2 m and
1.84 m, respectively. Accordingly, twenty pressure-compensating emitters were used
for each date palm tree. The flow rate of the pressure-compensating emitters was
approximately 0.010 m3/h at a pressure of 380 kPa.

• DIS: Six pressure-compensating drippers with a flow rate of approximately 0.03 m3/h
at 300 kPa were distributed around the date palm tree in this system (Figure 2h). The
dripper was installed on a lateral ring (1.6 cm in diameter) around date palm trees
with a diameter of 1.80 m.

• BIS: Four adjustable low-pressure bubblers with flow rates ranging from 0 to 0.120 m3/h
were used in this system for each date palm tree (Figure 2i). The bubbler flow rate of
0.045 m3/h was adjusted at the pressure of 200 kPa. The bubbler heads were installed
on a wedge and inserted into the ground around the date palm tree.

2.3. Experimental Design and Measurements

The experiment involved four solar-powered micro irrigation systems (SIS, SDIS, DIS,
and BIS) with six deficit irrigation level treatments as a different percentage of available
water (AW). The experiment was a factorial randomized block design (factorial RBD) with
three replicates. Factor one was the four irrigation systems; factor two was the six irrigation
levels; and factor three was the date palm age or years of experiment. Therefore, 72 date
palm trees were used in this experiment for five successive years from 2018 to 2022 (date
palm age was from 14 to 18 years).

Based on the evaluation of irrigation systems, we selected the data of irrigation water
amount that presented significant optimum water use efficiency (WUE) and optimum date
palm tree yield to develop the ML models for prediction of the optimum irrigation water
and PV energy requirements for each micro irrigation system.

The measurements in this study included the meteorological variables, irrigation
water requirements at the four deficit irrigation treatments, the actual amount of irrigation
water used for each irrigation system, the amount of electrical energy consumed for each
irrigation system, date palm yield, and water use efficiency. First, the data of meteorological
variables, plant age, and actual water and energy requirements for date palm irrigation
for four successive years from 2018 to 2021 were used to train and test four ML-based
prediction models for predicting the irrigation water and energy requirements. Then, the
data obtained from the fifth season (2022) were used to validate the performance of the
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best developed model by comparing the observed values with the predicted values. The
measurements in the current study can be summarized as follows:

• Meteorological variables: A cloud-based IoT platform was used for meteorological
variables’ data collection. The IoT platform included several components, i.e., the
sensors, controller, source of internet, cloud platform (ThingSpeak cloud platform),
and laptop. These components were efficiently connected and seamlessly worked to
realize the meteorological variables’ data collection.

• Irrigation water requirements: The amount of irrigation water requirements (IWR)
was expressed per date palm tree. The IWR was controlled based on the volumetric
soil water content (VSWC) using a soil moisture sensor-based control system. The
sensor-based irrigation scheduling (SBIS) method was used for the irrigation schedule
in this experiment using a soil moisture sensor-based control system designed and
manufactured by the first author of the current study [9]. The minimum setpoints were
adjusted at different VSWC as a percent of available water (AW) content (40, 50, 60, 70,
80, and 90% of AW), as shown in Figure 3. The maximum setpoints were adjusted at
25% VSWC for all irrigation systems. Three VSWC sensors (VH400Vegetronix, Inc.,
Riverton, Salt Lake County, UT, USA) were used for each treatment. Each sensor is
installed between two irrigation units at a distance of 1 m from the palm tree’s trunk,
with a depth of 25 cm.
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wilting point, and unavailable water.

• Irrigation water applied: Multi-jet water flow meters (model: LXSG-15E-50E, Ningbo
Yonggang Instrument Co., Ltd., Cixi, Ningbo, China) made from copper with a nom-
inal diameter of 20 m were used to calculate the actual amount of irrigation water
applied. The flow meters were made of copper with total dimensions of approximately
1.9 × 9.9 × 1.6 cm.

• The reduction factor: The reduction coefficient (Kr) for each irrigation system was
estimated using the following formula:

Kr =
IWR× 1000

ETc ×Ai
(1)

where Kr is a reduction factor of ETc for achieving the optimum WUE or optimum yield;
IWR is the irrigation water requirement applied based on the sensor-based irrigation
scheduling (m3/palm/day); ETc is the crop evapotranspiration in the study area (mm/day);
Ai is the target irrigation area of each date palm tree. The target irrigation area was equal
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to 90% of the actual shaded area of the date palm; Ai was determined according to the light
intercepted fraction by the canopy.

The ETc was determined according to the following formula:

ETc = Kc × ETo (2)

where Kc is the crop factor for the date palm tree ((Kc ranged from 0.8 to 1.0)) [5,33], and
ETo is the reference evapotranspiration (mm/day). The ETo was determined according to
the Penman–Monteith equation [34].

• Electrical energy consumed: The amount of electrical energy consumed for each irriga-
tion system was measured using digital energy meters (D69-2049, Yueqing Winston Elec-
tric Co., Ltd., Wenzhou, China). These digital energy meters are multi-function meters,
which simultaneously display the measured AC voltage (80–300 VAC), AC (0–100 A),
active power (0–10000 W), and cumulative energy consumption (0–10000 kWh).

• Yield and water use efficiency: The yield of the palm tree was predicted by weighing
the ripe date fruits immediately after harvesting using a digital balance. The water
use efficiency was predicted based on the yield and the cumulative irrigation water
applied using the following equation:

WUE =
DPY
AIW

(3)

where WUE is water use efficiency (kg/m3); DPY is the date palm yield (kg); and AIW is
the applied irrigation water (m3).

2.4. Machine-Learning Algorithms

In this study, we developed and evaluated four common ML algorithms widely used
to automate the decision making of irrigation systems’ management [7]. In order to reach a
fair evaluation, we utilized 60%, 20%, and 20% of the overall dataset in training, testing,
and validating, respectively, the ML methods. The following subsections briefly show the
ML algorithms, which are developed and utilized in this study.

2.4.1. Linear Regression

Linear regression examines the relationship between two quantitative variables,
namely dependent variables (goal) and independent variables (predictor). In practice,
it comes in two variants. The first is a simple linear regression where we have one in-
dependent variable and one dependent variable. The second is a multi-linear regression
where there is more than one independent variable. The multi-linear regression where
there is more than one independent variable was used in this study, as shown in the
following equation:

ŷi = B0 + B1xi1 + B2xi2 + . . . Bnxin (4)

where ŷi is the predicted value (output), the Bs are the regression model parameters, and
the xis are the input variables.

In this study, the xis represent the meteorological variables and date palm age, whereas
the output ŷi represents the irrigation water required and the solar PV energy, which is
required for water pumping and controlling each irrigation system. The values of the Bs
started at random and were then adjusted during the learning phase.

2.4.2. Support Vector Machine

The support vector machine (SVM) is based on two elements of the statistical learning
theory, namely the decision boundary and the decision plane. SVM uses a linear function
to establish a nonlinear decision boundary across a nonlinear mapping of the input vector
x into a high-dimensional feature space. In practice, it uses a linear function to establish
a nonlinear decision boundary across a nonlinear mapping of the input vectors x into a
high-dimensional feature space. The decision plane can be defined as a plane that separates
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a set of varied objects [31]. When SVM is applied to a regression problem, it takes the
name of support vector regression (SVR) [24]. Similar to the SVM approach, there is
motivation to optimize the generalization bounds adopted for SVR. Namely, SVR relies on
identifying the loss function by excluding the expected errors, which may exist within a
specific distance from the ground values. As shown in Figure 4a, this loss function embeds
a uni-dimensional linear regression function with an epsilon-insensitive band; therefore, it
is called the epsilon-insensitive loss function.
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The goal of SVR is to find a function f (x) = wTx + b, which deviates no more than
ξ from the target values yi for all training data [31]. For linearly separable data, the
corresponding quadratic optimization problem is given as

Minimize 1
2 wTw

s.t. yi
(
wTxi + b 6 1; ∀i = 1, 2, . . . , N

) (5)

where w is the weight vector, the xis are the input features (or the weather conditions), and
b is the bias. The SVM can deal with nonlinear regression cases, as shown in Figure 4b. For
the nonlinearly separable data, the corresponding optimization problem can be given as

Minimize 1
2 wTw + C

N
∑

i=1
ζ

s.t. yi
(
wTxi + b > 1− ζ; ∀i = 1, 2, . . . , N, ζ > 1

) (6)

where C is a constant usually used to control the error. For the experiments of this study,
we considered C = 100, ξ = 0.1, and 0.01 for the irrigation water requirements and the
solar PV energy requirements, respectively. For the kernel function of SVR, we used the
Gaussian RBF kernel function with γ (Gamma) = 0.1 and 0.01, respectively. Gamma in SVR
is a hyperparameter, which decides how much binding we want in a decision boundary.

2.4.3. Long Short-Term Memory

Long short-term memory (LSTM) is a recurrent neural network method capable of
treating sequential (or time series) data. This is because LSTM contains memory blocks
that replace the summation unit in each neuron of other neural network models. The
standard LSTM model is composed of one hidden layer followed by a feed-forward output
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layer. Each layer contains several cells where the information is stored; Figure 5 shows the
internal structure of one cell.

Agronomy 2023, 13, x FOR PEER REVIEW 11 of 32 
 

 

where C is a constant usually used to control the error. For the experiments of this study, 
we considered C = 100, 𝜉 = 0.1,  and 0.01 for the irrigation water requirements and the 
solar PV energy requirements, respectively.  For the kernel function of SVR, we used the 
Gaussian RBF kernel function with γ (Gamma) = 0.1 and 0.01, respectively. Gamma in 
SVR is a hyperparameter, which decides how much binding we want in a decision bound-
ary. 

2.4.3. Long Short-Term Memory 
Long short-term memory (LSTM) is a recurrent neural network method capable of 

treating sequential (or time series) data. This is because LSTM contains memory blocks 
that replace the summation unit in each neuron of other neural network models. The 
standard LSTM model is composed of one hidden layer followed by a feed-forward out-
put layer. Each layer contains several cells where the information is stored; Figure 5 shows 
the internal structure of one cell. 

As depicted in Figure 5, the LSTM memory cell consists of three gates built upon a 
sigmoidal neural network, where each gate has a different function [27]. The three gates 
are the input gate, the forget gate, and the output gate. In detail, the input gate controls 
whether to enter the input data into the cell state. The forget gate decides whether to erase 
data from the cell state or not. Lastly, the output gate decides which data to pass as the 
output hidden state. The following equations represent the function of each gate. 

 

 

Figure 5. The internal structure of one LSTM cell. 

(𝑖 = 𝜎(𝑊 𝑋 + 𝑊 ℎ + 𝑏 ) (7)

𝑓 = 𝜎 𝑊 𝑋 + 𝑊 ℎ + 𝑏  (8)

𝑜 = 𝜎(𝑊 𝑋 + 𝑊 ℎ + 𝑏 ) (9)

𝑐 = 𝑓 ⊙ 𝑐 + 𝑖 ⊙ 𝑡𝑎𝑛ℎ(𝑊 𝑋 + 𝑊 ℎ + 𝑏 ) (10)

Figure 5. The internal structure of one LSTM cell.

As depicted in Figure 5, the LSTM memory cell consists of three gates built upon a
sigmoidal neural network, where each gate has a different function [27]. The three gates
are the input gate, the forget gate, and the output gate. In detail, the input gate controls
whether to enter the input data into the cell state. The forget gate decides whether to erase
data from the cell state or not. Lastly, the output gate decides which data to pass as the
output hidden state. The following equations represent the function of each gate.

(i t = σ(WxiXt + Whiht−1 + bi) (7)

ft = σ
(

Wx f Xt + Wh f ht−1 + b f

)
(8)

ot = σ(WxoXt + Whoht−1 + bo) (9)

ct = ft � ct−1 + it � tanh(WxcXt + Whcht−1 + bc) (10)

ht = ot � tanh(ct) (11)

For simplicity, this could be represented in one form as follows:

ht, ct = LSTM(xt, ht−1, ct−1) (12)

where it, ft, and ot are the LSTM gating for the cell state to input, forget, and output
information, respectively. ht and ct are the hidden state vector and the cell memory state
vector, respectively. Xt is the input vector, and σ is the sigmoid activation function. The
W’s are linear transformation matrices whose parameters need to be learned for each gate
and cell memory; the bs are the corresponding bias vector [35].

In this study, we built the structure of LSTM similar to the model described in our
previous paper [35]. Namely, the LSTM includes one input layer, two hidden layers with
twelve and six neurons, respectively, and one output layer with two neurons, one for
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each output. The number of epochs was 250, such that the batch size was 150. The initial
learning rate of the model was 0.001 with a suitable decay rate to slow down the training
after several epochs.

2.4.4. Gradient Boosting Machine

Gradient boosting (GBoost) machine is a decision-tree-based ensemble algorithm that
combines many weak learners, based on the gradient direction of the loss function, to
create one stronger learner. GBoost learns the decision trees, in parallel, by fitting the
negative gradients in each iteration. To learn the decision tree, GBoost finds the best split
points, which takes a long time, making GBoost inapplicable in large-scale problems [36].
The eXtreme gradient boosting (XGBoost) algorithm is an efficient scalable end-to-end
implementation of GBoost, even with billions of examples, using far fewer resources than
existing systems [37].

As an ensemble learning algorithm, XGBoost works by establishing many independent
learners (or classifiers) through random subsamples of the training samples using the
bootstrap aggregation mechanism. This subsampling process is conducted across many
iterations, plus the algorithm adds more iterations sequentially to adjust the weights of the
weak learners [38]. The booster parameter sets the type of learner. Usually, this is either a
tree or a linear function. In the case of trees, the model will consist of an ensemble of trees.
In the case of the linear booster, it will be a weighted sum of linear functions.

In both cases, the XGBoost calculates the predicted value as

ŷi =
K

∑
k=1

fk(xi) (13)

where fk represents the independent learner (or a regression tree), and fk(xi) is the prediction
score given by that learner for the ith sample. Then, the set of functions fk in the regression
tree can be learned by minimizing the objective function

Obj =
n

∑
i=1

l(yi, ŷi ) +
K

∑
k=1

Ω( fk ) (14)

where l is the loss function during training, and Ω is a term for penalizing the model
complexity to avoid model overfitting. It is known that the loss function calculates the
difference between the predicted value ŷ and the actual value yi [38].

In this study, we selected the objective function as <logistic>, with a linear booster
<gblinear> for simplicity.

2.5. Performance Evaluation of the ML Models

Three different performance metrics were used in this study to evaluate each de-
veloped ML model’s performance and calculate its forecasting error for each irrigation
system. Empirically, the forecasting error is defined as the difference in values between
the actual (or observed) values and the predicted values given by the model. This can be
mathematically written as

et =|ŷt −yt| (15)

where et is the forecasting error, ŷt is the predicted value, and yt is the actual value, all at
the same period t.

Generally, forecasting errors can be divided into two kinds of errors, namely residual
and prediction errors. The residual errors are calculated using the training dataset, while
the prediction errors are calculated using the testing and validation datasets. In this study,
we mainly concentrated on calculating the prediction errors using the testing and validating
datasets because they are more realistic. Two kinds of prediction errors are employed in
this study:
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• Scale-dependent errors. In this kind of error, the forecast errors are on the same scale
as the data themselves. The most commonly used scale-dependent errors are root
mean square error (RMSE) and the mean absolute error (MAE) [39]. RMSE calculates
the square root of the mean of the squares of all errors of all values. In other words, it
measures the variance of the residuals. Contrarily, MAE represents the average of the
absolute difference between the actual and predicted values in the dataset. In other
words, it measures the average of the residuals in the dataset. RMSE is a differentiable
function, which makes it easy to perform mathematical operations in comparison to
the non-differentiable function, such as MAE. The mathematical formulae of RMSE
and MAE can be given as follows:

MSE = mean (et
2) (16)

RMSE =
√

MSE (17)

MAE = mean (|et|) (18)

• Scale-independent errors. In this kind of error, the forecast errors are free scale re-
gardless of the data values being small or large. One of the most commonly used
scale-independent errors is the coefficient of determination (usually known as R2). R2

is a performance measure, which provides information about the goodness of fit of a
model. In the context of regression, it represents the proportion of the variance in the
dependent variable, which is explained by the independent variable [40,41]. Whereas
correlation explains the strength of the relationship between an independent and
dependent variable, R2 explains to what extent the variance of one variable explains
the variance of the other variable.

2.6. Statistical Analysis and ML Hardware and Software Platforms

The statistical analysis was conducted using analysis of variance (ANOVA) for data of
meteorological variables, date palm yield, WUE, and electrical energy consumption using
Statistical Analysis Software, IBM SPSS version 26 (SPSS Inc., Chicago, IL, USA). The Tukey
test was used to determine the significant differences among the means at p < 0.05.

Design Expert software (DX Version 13, Stat-Ease, Inc., Minneapolis, MN, USA) was
used to graph the irrigation experiment data and for optimization of the target parameters
and variables.

All ML experiments in this study were conducted on an HP workstation PC, Intel
Core™ i7-6700 CPU at 3.40 GHz, 16.00 GB RAM ×64 based processor, equipped with an
Ubuntu 16.04 operating system with python 3.7 software environment. The ML approaches
were developed using the Keras library with an open-source Tensorflow library in the
backend [42].

3. Results and Discussion
3.1. Meteorological Data Description

The climate of the Al-Ahsa region is characterized by hot dry summers and mild-to-
cool winters. Rain is very scarce almost everywhere in this region. In the study area, no rain
was received during summer, and a little rain precipitation was received during January
and February. Therefore, rain was not considered in this study due to its scarcity.

Table 1 displays the average yearly data of the meteorological variables of sun hour,
the minimum, maximum, and average temperature, minimum, maximum, average relative
humidity (RH), average wind speed, maximum solar irradiance, average solar irradiance,
and solar radiation. The statistical analysis using one-way ANOVA indicated that there
were significant differences (p < 0.05) between the years of the experiment regarding the
sun hour, temperature, minimum RH, average wind speed, maximum and average solar
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irradiance, and solar radiation. There was no significant difference for the other variables
during the experiment years.

Table 1. A comparison among the average yearly values (±standard deviation) of the meteorological
variables of the experimental area for the five years.

Variables 2018 2019 2020 2021 2022

SH, h 7.87 ± 0.9 c 8.05 ± 0.96 ac 7.98 ± 0.98 bc 8.19 ± 1.12 a 8.09 ± 1.06 ab

T max, ◦C 37.16 ± 8.89 a 36.72 ± 9.86 a 36.22 ± 9.15 a 36.71 ± 9.8 a 36.47 ± 9.28 a

T min ◦C 20.66 ± 7.29 a 20.52 ± 8.05 a 20.89 ± 8.09 a 21.21 ± 7.6 a 21.07 ± 7.64 a

T avg, ◦C 28.66 ± 8.17 a 28.34 ± 8.89 a 28.31 ± 8.61 a 28.63 ± 8.63 a 28.48 ± 8.5 a

RH max, % 57.34 ± 19.17 a 57.67 ± 22 a 59.37 ± 21.22 a 59.26 ± 22.75 a 59.31 ± 19.29 a

RH min, % 13.37 ± 9.86 b 13.96 ± 11.18 ab 15.83 ± 12.2 a 16.1 ± 13.53 a 15.97 ± 11.23 a

RH avg, % 43.34 ± 18.97 a 44.53 ± 21.09 a 45.91 ± 21.54 a 46.53 ± 21.8 a 46.24 ± 18.39 a

WS avg, km/h 3.04 ± 2.98 a 2.69 ± 3.08 ab 2.59 ± 2.31 ab 1.88 ± 1.03 c 2.23 ± 1.37 bc

SI max, kW/m2 0.99 ± 0.13 a 0.97 ± 0.13 ab 0.93 ± 0.15 c 0.95 ± 0.14 bc 0.94 ± 0.14 bc

SI avg, kW/m2 0.264 ± 0.06 a 0.256 ± 0.07 ab 0.239 ± 0.07 c 0.244 ± 0.07 bc 0.244 ± 0.06 bc

SR, MJ/m2 22.05 ± 5.36 ab 21.49 ± 5.6 ab 19.97 ± 5.54 c 22.49 ± 6.48 a 21.21 ± 5.62 b

Different letters in each row indicate significant differences between experiment year means. The significant
difference among each variable was determined using the Tukey test at p < 0.05. SR, T max, T min, T avg, RH
max, RH min, RH avg, WS avg, SI max, SI avg, SR, refer to sun hour, the maximum temperature, minimum
temperature, average temperature, maximum RH, minimum RH, average RH, average wind speed, maximum
solar irradiance, average solar irradiance, and solar radiation.

During the experiment years, the coldest month was January with an average daily
minimum temperature of 11.62 ◦C and an average daily maximum temperature of 24.09 ◦C.
The summer season had the hottest months from May to September, and the highest average
daily maximum temperature (46.01 ◦C) was recorded in June, followed by July (45.59 ◦C).
The average daily maximum RH during winter ranged between 73.2 and 63.02%, whereas
during summer, it ranged between 46.87 and 29.31%. The average daily minimum RH
during winter ranged between 27.1 and 25.2%, whereas during summer, it ranged between
11.12 and 9.51%. The average daily wind speed ranged from 2.71 to 4.29 km. The average
daily maximum solar irradiance during winter ranged between 73.2 and 63.02%, whereas
during summer, it ranged between 46.87 and 29.31%. The highest average daily solar
irradiance was recorded in June (0.978 kW/m2) and the lowest in January (0.662 kW m2).
Figure A1 in the Appendix A shows the average daily data of the meteorological variables
for five years from 2018 to 2022.

3.2. Irrigation Water Applied

Figure 6 shows the average yearly data of the irrigation water and the cumulative
irrigation water applied at irrigation levels. The average yearly irrigation water applied
upon adjusting the minimum irrigation control setpoints at 40, 50, 60, 70, 80, and 90%
of AW was 0.089 ± 0.03, 0.119 ± 0.03, 0.149 ± 0.05, 0.178 ± 0.06, 0.206 ± 0.07, and
0.232 ± 0.08 m3/day/palm, respectively. The average cumulative irrigation water applied
at 40, 50, 60, 70, 80, and 90% AW was 33.43 ± 1.22, 43.89 ± 1.76, 54.32 ± 1.89, 64.32 ± 1.57,
75.65 ± 1.68, and 85.65 ± 1.87 m3/year/palm, respectively. The statistical analysis using
two-way ANOVA indicated that there were significant differences (p < 0.01) between the
irrigation water applied and the cumulative yearly irrigation under different irrigation
level treatments and date palm ages. The interaction effect of the irrigation levels and
palm ages on the irrigation water applied (Figure 6a) and the cumulative irrigation water
(Figure 6b) was plotted on 3D plots using Design Expert software. This interaction was
significant at p < 0.01 regarding the daily irrigation water applied and the yearly cumulative
irrigation water. The cumulative irrigation water applied in the irrigation level treatments
in the current study was within the irrigation level range mentioned in many previous
studies [5,9,43–46].
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Figure 6. Amount of daily applied irrigation water (AIW) per date palm tree (a) and cumulative
yearly applied irrigation water (CAIW) per date palm tree (b) at different minimum irrigation control
setpoints (%AW) and date palm ages during the experiment years from 2018 to 2022.

Table 2 shows the reference evapotranspiration (ETo), crop evapotranspiration (ETc),
target irrigation area, and the reduction coefficient (Kr) when the optimal amount of
irrigation water is applied based on soil moisture sensor-based scheduling controller over
the five years of the experiment at optimum WUE and date palm yield. The statistical
analysis using one-way ANOVA indicated that there were significant differences (p < 0.05)
between the years of the experiment regarding the ETo, ETc, target irrigation area, and Kr
at optimum WUE and date palm yield.

Table 2. Comparison among average yearly values (±standard deviation) of reference evapotranspi-
ration (ETo), crop evapotranspiration (ETc), target irrigation area, and the reduction coefficient (Kr) at
optimum WUE and date palm yield for the five years.

Parameters Irrigation System 2018 2019 2020 2021 2022

ETo avg, mm/day 5.941 ± 2.02 b 6.151 ± 2.02 bc 5.768 ± 1.93 c 6.212 ± 2.02 b 6.744 ± 1.86 a

ETc avg, mm/day 5.857 ± 2.09 bc 6.063 ± 2.1 bc 5.681 ± 1.98 c 6.187 ± 2.11 b 6.538 ± 1.94 a

Irrigation area, m2 18.21 ± 1.23 e 20.23 ± 2.21 d 23.98 ± 1.78 c 26.21 ± 1.89 b 28.23 ± 1.02 a

Kr at optimum WUE

SIS 0.519 ± 0.03 a 0.501 ± 0.01 ab 0.512 ± 0.02 a 0.498 ± 0.01 b 0.481 ± 0.01 b

SDIS 0.659 ± 0.02 a 0.651 ± 0.05 a 0.649 ± 0.06 ab 0.652 ± 0.04 a 0.631 ± 0.03 b

DIS 0.965 ± 0.03 a 0.932 ± 0.08 b 0.946 ± 0.04 ab 0.951 ± 0.05 a 0.929 ± 0.05 b

BIS 1.135 ± 0.05 a 1.104 ± 0.04 a 1.051 ± 0.03 b 1.063 ± 0.02 b 1.043 ± 0.07 b

Kr at optimum yield

SIS 0.811 ± 0.09 a 0.798 ± 0.03 b 0.788 ± 0.06 b 0.796 ± 0.01 b 0.785 ± 0.04 b

SDIS 0.946 ± 0.01 a 0.951 ± 0.02 a 0.964 ± 0.04 a 0.952 ± 0.06 a 0.921 ± 0.02 b

DIS 1.195 ± 0.03 a 1.102 ± 0.08 a 1.099 ± 0.04 b 1.198 ± 0.05 a 1.097 ± 0.05 b

BIS 1.235 ± 0.01 a 1.254 ± 0.04 a 1.251 ± 0.03 a 1.263 ± 0.02 a 1.143 ± 0.07 b

Different letters in each row indicate significant differences between experiment year means. The significant
difference among each variable was determined using the Tukey test at p < 0.05.



Agronomy 2023, 13, 1081 16 of 31

3.3. Yield and Water Use Efficiency

Figure 7 displays the effect of irrigation water levels and palm age on the yield
(kg/palm) under the micro irrigation systems used. The interaction effect of the irrigation
levels and palm age on palm tree yield under SIS (Figure 7a), SDIS (Figure 7b), DIS
(Figure 7c), and BIS (Figure 7d) was plotted on 2D plots using Design Expert software.
According to ANOVA, the date palm age, the irrigation system, and the irrigation levels
applied had a significant impact (p < 0.05) on the yield of the date palm trees tested.
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Figure 7a–d indicated that the date palm trees subjected to SIS and SDIS had the
highest yield of 64.31 and 63.28 kg/palm at the irrigation level of 60% AW and 70% AW,
followed by DIS (63.2 kg/palm) and BIS (60.19 kg/palm) systems at 80% AW and 90% AW,
respectively. The increase in date palm yield at low irrigation levels under SIS and DIS
could be due to their high efficiency compared to the surface irrigation systems of DIS
and BIS [5,44]. There were no significant differences regarding the palm tree yield when
the irrigation level was increased from 60% AW to 90% AW under SIS, from 70% AW to
90% AW under SDIS, and from 80% AW to 90% AW under DIS.

On the other hand, there were significant differences in palm tree yield when the
level of irrigation was increased from 40% to 90% AW under BIS. The results indicated
that the yield of date palm trees decreased until, in the following years, it stopped at
an irrigation level of 40% AW under the two irrigation systems of DIS and BIS. This is
because, although the date palm trees can withstand prolonged abiotic stresses, including
drought, the long-term water stress leads to a significant reduction in their growth and
productivity [47–49]. Our results revealed that the increased palm tree yield was related to
the subsurface irrigation systems’ optimal availability of soil water, which expedites root
growth and enhances the uptake of soil nutrients [6,50,51].

Figure 8 displays the effect of irrigation water levels and palm ages on the water use
efficiency (WUE, kg/m3) under the micro irrigation systems used. Figure 8a–d indicated
that the date palm trees subjected to SIS had the highest WUE of 1.42 kg/m3 at the irrigation
level of 40% AW, followed by SDIS with 1.22 kg/m3 at 50% AW. The highest WUE values
were 0.69 and 0.65 kg/m3 at the irrigation level of 70% AW and 80% AW for DIS and BIS,
respectively. This is because the use of SIS and SDIS leads to higher yields with lower water
consumption; SIS and SDIS also provide more stable irrigation water conditions for optimal
root system growth [52]. The highest yield and WUE were reported in date palm cvs.

Although the date palm trees consumed a low amount of irrigation water under SIS
and SDIS, this amount was highly efficient for fruit production. This is because most of the
irrigation water applied through subsurface irrigation systems is utilized by the palm [53].
SIS and SDIS not only minimize the runoff but also improve soil nutrient uptake and
prevent irrigation water loss through evaporation [50,51]. In addition, the drainage losses
and evaporation are negligible, and the wetted surface spreads across the entire root zone
of the tree [5]. The findings in the current study were similar to those reported in previous
studies [5,44].
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3.4. Parameters’ Optimization

The optimum WUE and date palm yield were achieved in the current study by
applying the optimum irrigation water and solar PV energy requirements. The optimum
irrigation water and solar PV energy requirements were determined by optimizing the
deficit irrigation water level (% AW) under each micro irrigation system. The objective of
this optimization is to achieve the optimum results in the shortest time, conserve water,
reduce the photovoltaic energy required, achieve the highest water efficiency and date palm
yield, and decrease the irrigation cost. The desirability function approach helps analyze
experiments where the multiple responses must be optimized simultaneously [54].

The irrigation level is desired to be as small as possible to decrease the irrigation cost
while maintaining date palm yield and WUE. The optimization criterion determined the
optimum irrigation level for each irrigation system separately.

In this study, we executed two criteria to optimize the irrigation water and energy
requirements for optimum WUE and optimum palm yield. The first criterion was to
minimize the irrigation water and energy requirements and maximize the WUE using the
minimization of the irrigation level. The second criterion was to minimize the irrigation
water and energy requirements and maximize the date palm yield using the minimization
of the irrigation level. The two criteria were implemented at date palm ages equal to 14,
15, 16, 17, and 18 years. Table 3 summarizes the constraints imposed by the two criteria
for optimizing irrigation water and energy requirements for optimum WUE and date
palm yield.

The best solutions for satisfying the optimization criteria are shown in Table 4. In
this study, the nearest irrigation level to the irrigation level that was found for satisfying
the optimization criteria was used to determine the optimum parameters. Based on these
optima, the datasets were prepared to develop the ML prediction models. Table 4 shows the
average values of water use efficiency (WUE), date palm yield, irrigation water applied at
optimum WUE, irrigation water applied at optimum yield, the electrical energy consumed
at optimum WUE, the electrical energy consumed at optimum yield under micro irrigation
systems, and date palm ages.
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Table 3. Constraints for optimizing irrigation level (IL), applied irrigation water (AIW), electrical
energy consumption (EEC), water use efficiency (WUE), date palm yield (DPY) at date palm age
(DPA) equal to each age (EEA) of 14, 15, 16, 17, and 18 years, under two criteria.

Conditions Criterion: 1 Criterion: 2 Lower Limit Upper Limit

DPA, year EEA EEA 14 18
IL, %AW Minimize Minimize 40 90

AIW, m3/day/palm Minimize Minimize 0.03 0.3
EEC, Wh/day/palm Minimize Minimize 3 40

WUE, kg/m3 In range Maximize 0.5 1.5
DPY, kg/palm Maximize In range 30 60

Table 4. The average values (± standard deviation) of water use efficiency (WUE), date palm yield,
applied irrigation water at optimum WUE (AIW1), applied irrigation water at optimum yield (AIW2),
the electrical energy consumed at optimum WUE (EEC1), the electrical energy consumed at optimum
yield (EEC2) under micro irrigation systems, and date palm ages.

Parameters Irrigation
Systems

ILS
(%AW)

ILA
(%AW)

Date Palm Age, Year

14 15 16 7 18

WUE
(kg/m)

SIS 40.39 40 1.35 ± 0.14 1.34 ± 0.14 1.31 ± 0.1 1.42 ± 0.11 1.37 ± 0.14
SDIS 49.21 50 1.12 ± 0.12 1.06 ± 0.13 1.15 ± 0.13 1.21 ± 0.12 1.06 ± 0.11
DIS 71.01 70 0.67 ± 0.1 0.68 ± 0.11 0.7 ± 0.14 0.69 ± 0.09 0.62 ± 0.1
BIS 82.23 80 0.48 ± 0.15 0.63 ± 0.09 0.65 ± 0.12 0.64 ± 0.08 0.62 ± 0.08

Yield
(kg/palm)

SIS 59.41 60 42.3 ± 2.33 45.25 ± 3.13 47.36 ± 3 56.99 ± 3.42 60.22 ± 3.89
SDIS 70.12 70 44.23 ± 2.67 44.37 ± 3.47 47.93 ± 3.03 54.31 ± 4.06 62.29 ± 4.12
DIS 80.27 80 39.2 ± 3.13 42.22 ± 3.57 48.73 ± 3 58.51 ± 4.52 62.28 ± 3.25
BIS 90.21 90 40.2 ± 2.9 46.42 ± 3.64 49.53 ± 2.99 57.21 ± 4.28 60.19 ± 4

AIW1
(m3/day/palm)

SIS 40.12 40 0.08 ± 0.05 0.11 ± 0.05 0.12 ± 0.04 0.11 ± 0.03 0.11 ± 0.05
SDIS 49.98 50 0.1 ± 0.06 0.13 ± 0.06 0.15 ± 0.05 0.14 ± 0.04 0.14 ± 0.06
DIS 70.22 70 0.14 ± 0.07 0.19 ± 0.08 0.2 ± 0.07 0.23 ± 0.07 0.21 ± 0.08
BIS 80.12 80 0.17 ± 0.08 0.21 ± 0.09 0.25 ± 0.08 0.24 ± 0.08 0.24 ± 0.09

AIW2
(m3/day/palm)

SIS 60.12 60 0.12 ± 0.06 0.16 ± 0.07 0.18 ± 0.06 0.18 ± 0.06 0.17 ± 0.07
SDIS 70.11 70 0.14 ± 0.07 0.19 ± 0.08 0.2 ± 0.07 0.23 ± 0.07 0.21 ± 0.08
DIS 79.21 80 0.17 ± 0.08 0.21 ± 0.09 0.24 ± 0.08 0.24 ± 0.08 0.24 ± 0.09
BIS 90.21 90 0.19 ± 0.09 0.24 ± 0.1 0.26 ± 0.09 0.27 ± 0.09 0.28 ± 0.1

EEC1
(Wh/day/palm)

SIS 40.12 40 9.64 ± 3.46 11.15 ± 3.88 11.55 ± 4.03 13.07 ± 4.52 14.58 ± 4.68
SDIS 50.11 50 18.01 ± 6.44 20.8 ± 7.23 21.58 ± 7.51 24.39 ± 8.45 27.23 ± 8.73
DIS 70.21 70 19.68 ± 7.04 22.75 ± 7.91 23.55 ± 8.22 26.67 ± 9.24 29.79 ± 9.55
BIS 80.21 80 15.23 ± 5.45 17.6 ± 6.12 18.22 ± 6.36 20.64 ± 7.15 23.04 ± 7.39

EEC2
(Wh/day/palm)

SIS 60.21 60 15.42 ± 5.52 17.83 ± 6.2 18.45 ± 6.44 20.9 ± 7.24 23.33 ± 7.48
SDIS 69.22 70 26.3 ± 9.41 30.39 ± 10.56 31.46 ± 10.97 35.64 ± 12.34 39.81 ± 12.76
DIS 80.21 80 22.79 ± 8.15 26.33 ± 9.15 27.26 ± 9.51 30.88 ± 10.69 34.49 ± 11.05
BIS 90.22 90 17.3 ± 6.2 20 ± 6.95 20.71 ± 7.22 23.45 ± 8.12 26.19 ± 8.4

ILS refers to irrigation levels in the best solutions for satisfying the optimization criteria, subsurface irrigation, and
ILA refers to irrigation levels applied (the nearest irrigation level to the solution determined by the optimization).

3.5. Variables’ Correlation

Figure 9 shows the correlation among the meteorological variables (sun hour, the
minimum, maximum, and average temperature, minimum, maximum, and average RH, av-
erage wind speed, maximum solar irradiance, average solar irradiance, and solar radiation),
irrigation water applied at optimum water use efficiency and optimum palm yield, and
electrical energy consumption at optimum water use efficiency and optimum palm yield.
The darker blue color indicates the highly positive correlation between the variables and
the parameters. The darker red color indicates the highly negative correlation between the
variables and the parameters. The light color indicates that there is no correlation between
the variables and the parameters. Figure 9 indicates a positive significant correlation with
a correlation coefficient ranging from 0.312 to 0.948 among the sun hour, the maximum
temperature, the minimum temperature, the average temperature, average wind speed,
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maximum solar irradiance, average solar irradiance, and solar radiation, irrigation water
applied at optimum water use efficiency and optimum palm yield, and electrical energy
consumption at optimum water use efficiency and optimum palm yield. This table also
indicates a significant correlation with a correlation coefficient ranging from −0.344 to
−0.748 among maximum RH, minimum RH, and average RH, irrigation water applied at
optimum water use efficiency and optimum palm yield, and electrical energy consumption
at optimum water use efficiency and optimum palm yield. The relation between the meteo-
rological variables and irrigation water and energy requirements obtained in the present
study is similar to many previous studies [6,9,13,55].
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energy consumption. SR, T max, T min, T avg, RH max, RH min, RH avg, WS avg, SI max, SI avg,
SR, AIW1 and AIW2, and EEC1 and EEC2 refer to sun hour, the maximum temperature, minimum
temperature, average temperature, maximum RH, minimum RH, average RH, average wind speed,
maximum solar irradiance, average solar irradiance, solar radiation, reference evapotranspiration,
crop evapotranspiration, applied irrigation water at optimum water use efficiency and optimum
palm yield, and electrical energy consumption at optimum water use efficiency and optimum palm
yield, respectively.

3.6. Evaluation of the Prediction Models

Based on the results of the irrigation experiments, we selected the data of optimum
irrigation water amount that presented significant optimum values of water use efficiency
(WUE) (the first option) or optimum yields (the second option) to develop the LR, SVR,
LSTM, and XGBoost prediction models for all micro irrigation systems. The deficit irrigation
percentages selected based on the optimum WUE and optimum yield were 40% and 60%
AW for SIS, 50% and 70% AW for SDIS, 70% and 80% AW for DIS, and 110% and 125%
AW for BIS, respectively. These parameters were selected to predict the irrigation water
requirements and the electrical energy requirements when the target is to achieve optimum
WUE and when the target is to achieve optimum crop yield using solar-powered micro
irrigation systems (SIS, SDIS, DIS, and BIS). This will conserve irrigation water and produce
optimum yields in arid regions where water scarcity is a significant concern [5,6,9,44]. The
evaluation results shown in Tables 5 and 6 are based on the testing dataset only.
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Table 5. Comparison among evaluation values of three performance metrics for ML models based
on the testing dataset for predicting the irrigation water requirements (IWR1) and the electrical
energy requirements (EER1) when the target is to achieve the optimum water use efficiency using
different solar-powered micro irrigation systems based on limited meteorological data, i.e., average
temperature, RH, wind speed, solar irradiance, and date palm age.

Parameters
Irrigation
Systems

Evaluation
Metrics

Models

LSTM XGBoost SVR LR

IWR1

SIS
RMSE 0.0116 0.0129 0.0139 0.0132
MAE 0.0087 0.0099 0.0109 0.0112

R2 0.9256 0.8899 0.8494 0.8504

SDIS
RMSE 0.0144 0.0168 0.0188 0.0173
MAE 0.0106 0.0129 0.0188 0.0143

R2 0.9245 0.8858 0.7565 0.8475

DIS
RMSE 0.0154 0.0178 0.0337 0.0245
MAE 0.0144 0.0178 0.0277 0.0194

R2 0.9297 0.8889 0.7151 0.8534

BIS
RMSE 0.0231 0.0267 0.0366 0.0275
MAE 0.0164 0.0198 0.0307 0.0214

R2 0.9318 0.8981 0.7595 0.8564

EER1

SIS
RMSE 0.0173 0.0198 0.0267 0.0204
MAE 0.0125 0.0149 0.0218 0.0163

R2 0.9339 0.8950 0.7575 0.8544

SDIS
RMSE 0.0202 0.0238 0.0277 0.0245
MAE 0.0144 0.0178 0.0277 0.0194

R2 0.9349 0.8909 0.7252 0.8534

DIS
RMSE 0.0231 0.0248 0.0406 0.0275
MAE 0.0164 0.0198 0.0347 0.0214

R2 0.9370 0.8971 0.6878 0.8574

BIS
RMSE 0.0260 0.0307 0.0396 0.0316
MAE 0.0192 0.0228 0.0327 0.0255

R2 0.9339 0.8930 0.7817 0.8524
SIS, SDIS, DIS, and BIS refer to subsurface irrigation, subsurface drip irrigation, drip irrigation, and bubbler
irrigation systems, respectively. RMSE, MAE, and R2 refer to the root mean square error, the mean absolute error,
and the coefficient of determination, respectively.

Table 6. Comparison among evaluation values of three performance metrics for ML models based on
the testing dataset for predicting the irrigation water requirements (IWR2) and the electrical energy
requirements (EER2) when the target is to achieve the optimum date palm yield using different solar-
powered micro irrigation systems based on limited meteorological data, i.e., average temperature,
RH, wind speed, solar irradiance, and date palm age.

Parameters
Irrigation
Systems

Evaluation
Metrics

Models

LSTM XGBoost SVR LR

AIW2

SIS
RMSE 1.2778 1.4632 1.5098 1.5677
MAE 0.8852 1.0860 1.0435 1.2107

R2 0.9318 0.8971 0.8716 0.8524

SDIS
RMSE 2.3856 2.7265 2.8116 2.8907
MAE 1.6522 2.0216 1.9424 2.2419

R2 0.9318 0.8981 0.8726 0.8554

DIS
RMSE 2.6093 2.9859 3.0750 3.1691
MAE 1.8077 2.2166 2.1226 2.4694

R2 0.9318 0.8971 0.8726 0.8554
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Table 6. Cont.

Parameters
Irrigation
Systems

Evaluation
Metrics

Models

LSTM XGBoost SVR LR

BIS
RMSE 2.0180 2.3107 2.3780 2.4459
MAE 1.3968 1.7147 1.6424 1.9033

R2 0.9318 0.8971 0.8726 0.8554

EEC2

SIS
RMSE 2.0026 2.3404 2.4097 2.5082
MAE 1.4285 1.7375 1.6652 1.9359

R2 0.9360 0.8971 0.8726 0.8524

SDIS
RMSE 3.4138 3.9808 4.1105 4.2238
MAE 2.4346 2.9502 2.8393 3.2752

R2 0.9360 0.8981 0.8726 0.8554

DIS
RMSE 2.9597 3.4561 3.5630 3.6699
MAE 2.1120 2.5641 2.4612 2.8590

R2 0.9360 0.8981 0.8716 0.8554

BIS
RMSE 2.2455 2.6295 2.7017 2.7805
MAE 1.6013 1.9533 1.8642 2.1624

R2 0.9360 0.8971 0.8726 0.8554
SIS, SDIS, DIS, and BIS refer to subsurface irrigation, subsurface drip irrigation, drip irrigation, and bubbler
irrigation systems, respectively. RMSE, MAE, and R2 refer to the root mean square error, the mean absolute error,
and the coefficient of determination, respectively.

Table 5 shows the comparison among the ML models for predicting the irrigation
water and electrical energy requirements based on limited meteorological data, i.e., average
temperature, RH, wind speed, solar irradiance, and date palm age, for each irrigation
system separately. The evaluation is conducted using three performance metrics, RMSE,
MAE, and R2. The lower the value of RMSE and MAE, the higher the accuracy of an
ML model. In addition, higher values of R2 that are close to 1.0 are considered optimum.
Moreover, Table 6 shows the same comparison among the four ML models but for predicting
the irrigation water and electrical energy requirements for each irrigation system separately.

3.7. Analysis of the Prediction Results

It is clear from both Tables 5 and 6 that both the LSTM and XGBoost models outper-
formed the other two methods, namely the LR and SVR. In addition, the LSTM surpassed
XGBoost in accuracy on the level of all irrigation systems. Therefore, we recommend using
the LSTM model to predict irrigation water and electrical energy requirements, whether
the target is optimum WUE or optimum crop yield through different solar-powered micro
irrigation systems. Even though the experimental results identified LSTM as the best ML
model, in the following, we will show the advantages and disadvantages of each model
based on our observations during experiments. In order to perform a logic analysis, we
will compare the performance of the lower two models together and the performance of
the higher two models together.

3.7.1. Comparison between LR and SVR

These two models are similar, since both of them are based on the standard regression
concept; however, there are a few differences. The advantage of using the linear regression
approach is that limited data are required to train this model. In addition, during our
experiments, it showed less computational complexity compared to other models, particu-
larly when predicting the model’s parameters [56]. However, since the irrigation system
parameters are highly nonlinear, with complex changing dynamics, linear regression will be
suitable for parameters with linear relationships between the predictor and the target [57].
However, in this case, the model may suffer underperformance for a problem, which is
nonlinear [7].
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Our study here is not unique in using SVR in sustainable farming; rather, it is used
widely in this domain. For example, it was used by Goap et al. in Ref [58] to predict soil
moisture content using meteorological data and farm sensing data. The prediction choices
are made based on the amount of soil moisture and precipitation to save water resources. In
the irrigation management domain, Vij et al. [59] used SVR to automate irrigation forecasts
by establishing a hyperplane per dimension. In their study, the class labels are chosen,
such that the distance between the hyperplanes utilized to identify the best linear classifier
is as little as feasible [7]. In our experiments, we noticed that SVR is simple and more
powerful than the standard linear regression model. Moreover, we found SVR to be a very
time-efficient technique, even though our data and thereby the feature space are highly
dimensional. Since our dataset samples are homogenous and mostly noiseless, SVR has a
good performance. However, if the data are noisy and include outliers, it is possible that
SVR’s performance will degrade drastically [60].

3.7.2. Comparison between XGBoost and LSTM

XGBoost is a tree-based method; however, the LSTM is a neural-network-based model.
XGBoost is an ensemble of trees, where each tree is associated with a separate input–
output mapping. The final output of the technique represents the weighted sum of the
outputs of all the trees (or even linear functions). This process is established in an iterative
procedure [61]. In such a sparse environment of trees, XGBoost does not perform well and
is very sensitive to outliers because every tree is obliged to fix the defects of predecessor
trees. Moreover, it is demonstrated that it is hardly a scalable technique [62].

In contrast, LSTM, or ANN in general, is inspired by the biological neural network in
the human brain. ANN simulates neurons and synapses by connecting the artificial neurons.
Artificial neurons are typically aggregated into a number of layers, where the connection
among layers transmits the input signals from layer to layer. This architecture gives LSTMs
more advantages over tree-based methods, such as XGBoost. Recently, a deep architecture
for LSTM was developed to model uni-, multi-, and hierarchical time series data in several
applications, such as petroleum production [63] and energy consumption [31], to mention
a few. In our experiments here, we employed a deep architecture for LSTM, and we found
it superior to XGBoost, as shown in Tables 5 and 6.

The superiority in the performance of LSTM over XGBoost and other models is
intuitive and logical in the scope of each method’s characteristics. LR fits a straight line (or
a plane), which minimizes the discrepancies between the actual values and the predicted
ones [64]. SVR transforms the original feature space into a high-dimensional space. It tries
to find a linear mapping in the new space as a sum of nonlinear kernel functions in the
original space [65]. For both LR and SVR, the assumption of linearity between variables
makes both of them quite prone to overfitting and sensitive to outliers, particularly if the
data are complex, as is the case in our dataset, which includes 12 input features. Moreover,
such decision boundary-based models, such as the SVR, will not perform well, especially
when the dataset has noise and where the target classes may overlap [31].

In addition to the human-brain-like architecture, LSTM has more properties, which
make it very suitable for handling sequential data, such as the meteorological data we
have here. First, they can remember information for longer periods; therefore, they are
capable of handling long-term dependencies among historical data [63]. Second, they can
learn high-level representations, which capture the structure of the data, making LSTMs
very efficient for modeling complex sequential data. These reasons make LSTMs the most
powerful neural network technique, which can achieve forecasting tasks, especially when
there is a long-term trend in the data, as in our situation here [66]. Notwithstanding, it is
worth mentioning that XGBoost was faster than LSTM in our experiments. Therefore, it is
recommended to use XGBoost to achieve feature selection before using LSTM for prediction,
which ensures improvement in the overall performance of LSTM [30]. Furthermore, using
deep architecture or more hidden layers in LSTM will improve the performance drastically.
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3.8. Validation of the Best ML Model

Based on the performance evaluation of the ML models developed, the LSTM was used
to predict the optimum irrigation water requirement based on the limited meteorological
data, i.e., average temperature, RH, wind speed, solar irradiance, and date palm age of 18
years, for each micro irrigation system used. Table 7 shows the evaluation of the LSTM
model at the validation phase for predicting the irrigation water and energy requirements
when the target is to achieve optimal WUS and when the target is to achieve optimal
date palm yield. This validation was conducted to ensure that the LSTM model can
accurately predict the irrigation water and energy requirements based on the input variables.
The evaluation metrics’ values indicated that the LSTM model can efficiently predict the
irrigation water and energy requirements, as shown in Table 7.

Table 7. Evaluation values of three performance metrics for LSTM models based on the validation
dataset for predicting the irrigation water requirements (IWR1) and the electrical energy requirements
(EER1) for optimum water use efficiency and for predicting the irrigation water requirements (IWR2)
and the electrical energy requirements (EER2) for optimum date palm yield using the solar-powered
micro irrigation systems.

Irrigation Systems Parameters
Evaluation Metrics

RMSE MAE R2

SIS IWR1 0.0118 0.0078 0.9247
IWR2 0.0207 0.0137 0.9065
EER1 1.6868 1.1711 0.9247
EER2 2.8125 1.9829 0.9136

SDIS IWR1 0.0157 0.0108 0.9216
IWR2 0.0246 0.0167 0.9125
EER1 3.1511 2.1878 0.9247
EER2 4.7964 3.3817 0.9136

DIS IWR1 0.0236 0.0157 0.9226
IWR2 0.0286 0.0197 0.9136
EER1 3.4471 2.3937 0.9247
EER2 4.1589 2.9333 0.9125

BIS IWR1 0.0276 0.0187 0.9237
IWR2 0.0326 0.0227 0.9125
EER1 2.6660 1.8512 0.9247
EER2 3.1540 2.2234 0.9136

Figure 10 compares the observed irrigation water applied and the predicted water
requirements under the irrigation systems of SIS (Figure 10a), SDIS (Figure 10b), DIS
(Figure 10c), and BIS (Figure 10d) using the LSTM prediction model developed based on
the limited meteorological data, i.e., average temperature, RH, wind speed, solar irradiance,
and date palm age, when the target is to achieve optimum WUE.

Figure 11 compares the observed irrigation water applied and the predicted water
requirements under the irrigation systems of SIS (Figure 11a), SDIS (Figure 11b), DIS
(Figure 11c), and BIS (Figure 11d) using the LSTM prediction model developed based on
the limited meteorological data, i.e., average temperature, RH, wind speed, solar irradiance,
and date palm age, when the target is to achieve optimum WUE. The predicted and
the observed irrigation water requirements were approximately similar for the majority
of the required amounts, where the predicted irrigation water requirements curve was
almost identical to the observed irrigation water applied curve under all irrigation systems
throughout the year, as shown in Figures 10 and 11.
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Figure 11. Observed vs. predicted values of electrical energy requirements (EER1) for optimum
energy use under (a) subsurface irrigation system, (b) subsurface drip irrigation system, (c) drip
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4. Conclusions

Precision irrigation management is a critical issue for ensuring agricultural sustain-
ability in countries with land and water shortages. In this study, we developed four
machine-learning models, namely linear regression, support vector regression, the LSTM
neural network, and XGBoost. We employed these models to predict the optimum irri-
gation water and energy requirements for date palm irrigation. In order to achieve this
target, we prepared a dataset, which included limited meteorological data, i.e., average
temperature, RH, wind speed, and solar irradiance from 2018 to 2022, and date palm
age in these years, actual irrigation water applied, and energy consumed by four surface
and subsurface solar-powered micro irrigation systems to achieve the optimum water use
efficiency and date palm yield. In order to perform a fair evaluation, we utilized 60%, 20%,
and 20% of the overall dataset in training, testing, and validating, respectively, the ML
models. The empirical results indicated that the irrigation levels at the minimum irrigation
control setpoints of 40% and 60% AW for SIS, 50% and 70% AW for SDIS, 70% and 80%
AW for DIS, and 80% and 90% AW for BIS, respectively, achieved optimum WUE and
optimum yield. Based on the evaluation of the ML models developed, the best model
for predicting the irrigation water and energy requirements for achieving optimum WUE
and yield targets was the LSTM, followed by XGBoost. The validation result of the LSTM
model showed its ability to predict the water and energy requirements for all irrigation
systems with high accuracy based on the limited meteorological variables and date palm
tree ages. However, this study was performed in only one cultivar of date palm (Khalas cv.),
and the irrigation water and energy requirements of irrigation systems could be different
for drought-resistant or other date palm cultivars under different conditions. Therefore,
further study is needed to train the ML models to consider other conditions not addressed
in this study. Future research will concentrate on more date palm cultivars and irrigation
methods to improve the ML models developed, which could also be adapted to predict the
irrigation water and energy requirements for other cultivars of agricultural and economic
importance or other perennial fruit trees.

Author Contributions: Conceptualization, M.M. and A.S.; methodology, M.M., A.S. and H.H.;
engineering design, M.M.; software, M.M., A.S. and H.H.; system manufacturing, M.M.; validation,
M.M.; formal analysis, M.M., A.S. and H.H.; investigation, M.M., A.S. and H.H.; data curation, M.M.;
writing—original draft preparation, M.M., A.S. and H.H.; writing—review and editing, M.M., A.S.
and H.H.; visualization, M.M.; project administration, M.M.; funding acquisition, M.M., A.S. and
H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deputyship for Research & Innovation, Ministry of Education
in Saudi Arabia: Grant No. INST089.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [M.M.], upon reasonable request.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia, for funding this research work through project number
(INST089).

Conflicts of Interest: All authors declare no conflict of interest.

Nomenclature

AI artificial intelligence
AIW applied irrigation water
ANN artificial neural network
AW available water
BIS bubbler irrigation
CAIW cumulative applied irrigation water
DIS drip irrigation
DPA date palm age
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DPY date palm yield
EEA equal to each age
EEC electrical energy consumption
EER electrical energy requirements
FC field capacity
IL irrigation level
Imp current at maximum power
Isc current at short circuit
IWRKr irrigation water requirementsreduction factor
LR linear regression
LSTM long short-term memory
MAE mean absolute error
ML machine learning
Pmax maximum power
PV photovoltaic system
PWM pulse-width modulation
PWP permanent wilting point
R2 coefficient of determination
RH avg average RH
RH max maximum RH
RH min minimum RH
RMSE root mean square error
SBIS sensor-based irrigation scheduling
SDIS subsurface drip irrigation
SH sun hour
SI avg average solar irradiance
SI max maximum solar irradiance
SIS subsurface irrigation system
SPI solar pumping inverter
SR solar radiation
SVR support vector regression
T avg average temperature
T max maximum temperature
T min minimum temperature
UAW unavailable water
VFD variable-frequency
Vmp voltage at the maximum power
Voc voltage at open circuit
VSWC volumetric soil water content
WS avg average wind speed
WUE water use efficiency
XGBoost extreme gradient boosting

Appendix A

Figure A1 shows the average daily data of the meteorological variables, i.e., the
maximum temperature, minimum temperature, average temperature, maximum solar
irradiance, average solar irradiance, average wind speed, and average RH, for the five
years from 1 January to 31 December 2022 in the experimental area using the cloud-based
IoT platform.
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