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Abstract: Selenium (Se) is a beneficial microelement for humans, and its varying abundances and
shortages have attracted widespread concern. The accumulation process of soil Se is quite compli-
cated, being controlled by multiple factors. However, the influence mechanism of soil properties,
climate, and topographic conditions on Se distribution is still unclear in Se-deficient areas. For
this study, we collected 2804 samples from cropland soil to assess the levels of Se and the factors
that influence those levels in Se-deficient areas of southwestern China. The Se content in this area
(0.17 mg/kg) was less than the mean value of China as a whole (0.29 mg/kg). Moran’s I index and
a random forest (RF) model showed that higher Se levels were mostly observed in the southern and
northern sections of the area we studied. The RF model had excellent performance in predicting soil
Se content, with an accuracy of 64%. The use of Shapley additive explanations indicated that soil
organic matter (SOM) and mean annual precipitation (MAP) were the critical factors determining Se
distribution. The areas with high SOM and MAP showed high Se levels. The information obtained
from this work can provide guidance for agricultural planning in Se-deficient areas.

Keywords: selenium deficiency; soil organic matter; mean annual precipitation; complex network;
random forest (RF); Shapley additive explanations (SHAP)

1. Introduction

Selenium (Se) is not only a microelement, but also a vital nutrient for humans [1]. As
the central component of both Se-enzyme and Se-protein, Se is key to promoting the gene
expression of organisms [2]. There is little difference between Se-deficient and Se-toxic
values [1,3]. Numerous studies have indicated that an appropriate Se level has many
beneficial biological functions in the human body, including immune system regulation,
cancer prevention, and antioxidation [2,4]. However, insufficient Se intake may cause
Keshan disease [5], and too much Se entering the body can lead to an additional series
of adverse reactions (i.e., hair loss and skin damage) [6]. The Se that is needed by the
human body mostly comes from soil, absorbed via the food chain [7]. Due to the differences
between geographical environments, Se is unevenly distributed in soil (covering a range of
0.01-2 mg/kg) [8]. Studies have shown that about 15% of the population in the world is at
risk of Se deficiency [9]. In this regard, China is a typical Se-poor country, with a mean Se
content of 0.29 mg/kg [1]. As a consequence, understanding the levels and driving factors
of Se, especially in low-Se areas, is the key to the effective regulation of soil Se levels, with
which we might better promote Se absorption in humans.

The accumulation process of soil Se is quite complicated, being controlled by multiple
environmental factors (e.g., soil properties, climate, and topography) [10,11]. Previous
studies have shown that both soil parent material and precipitation are the main sources
of soil Se in Se-rich areas [10-12]. Regarding parent material, being the material basis
for soil development, its mineral composition directly determines the initial level of soil
nutrients [13]. Song et al. [14] explored the reasons for soil Se enrichment in the agroe-
cosystems of China, and found that the contribution of parent material on Se levels was
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significantly greater than that of human activities (e.g., fertilization and irrigation). Fur-
thermore, Nascimento et al. [15] suggested that precipitation and rock type are the most
critical variables determining the level of Se on a regional scale. Climatic conditions (i.e.,
temperature, precipitation) determine the formation and development of soils on a large
scale and greatly change the soil Se level [16]. Some research has indicated that an atmospheric
deposition caused by precipitation is an important component for supplementing Se levels in
terrestrial ecosystems [16,17]. Meanwhile, precipitation can affect the biochemical cycle of Se
by controlling soil properties (e.g., SOM and soil pH) [18]. Wang et al. [19] and Liu et al. [20]
both found that, in Se-lack regions, SOM and precipitation were tightly associated with Se
levels, while the contribution of parent material to the overall soil Se was relatively small.
Therefore, it is necessary to further clarify the influencing mechanisms of potential factors
on Se distribution in different regions.

SOM and pH are important properties of soil [21], and they are regarded as key factors
in the regulation of Se levels [22]. Se content usually increases along with SOM [18,20].
Studies have reported that most of the Se exist in the form of organic matter or organic
minerals [23,24]. SOM controls the mobility of Se by forming OM bonds, thus reducing
the intake of Se by plants [25]. In addition, acidic soil and potential anoxic zones can
promote the conversion of the soluble Se (IV, VI) into the insoluble Se (0, —1I) [26], which
prevents the loss of Se through leaching. Likewise, topography affects hydrothermal
conditions [22]. Se levels are low in areas with steep terrain and serious soil erosion [19].
Land use is related to SOM, and thus also determines Se content [27]. The relationship
between environmental factors and soil Se is quite complex, being both linear and nonlinear.
However, the majority of studies have only explored the relationship between them from
a linear perspective [18,22], and hence, it is difficult to fully reveal the influence of these
factors on Se content.

Complex network theory describes the topological relationship in a network based
on graph theory and statistical principles [28]. Its primary function is to visualize the
structural characteristics of the whole network, which is independent of the position of
nodes and edges [29]. The application of the Complex network theory in explaining in-
teractions between soil properties and external environmental factors is relatively rare,
mainly focusing on a few macronutrient elements (e.g., C, N, and P) and heavy metals
(e.g., Cr, Pb, and Zn) [30-32]. For instance, Zhang et al. [32] investigated the effects of
50 environmental factors on soil organic carbon (SOC) storage in a mining area by con-
structing a complex network graph; ultimately, they found that soil moisture content and
bulk density were closely related to SOC storage. Dai et al. [31] applied the complex
network theory to visualize the correlation between heavy metals and soil properties in
different soil layers, and argued that the high correlation coefficients among heavy metals
(e.g., Cu, Pb, Zn, and Cr) in topsoil might be due to the fact that these metals come from
the same source. Random forest (RF) is an advanced machine learning approach [33].
Compared with classical statistical methods [34,35], RF shows an outstanding performance
in explaining the nonlinear relationship between variables [36]. As such, it has often been
used to predict soil properties [36,37]. Zeraatpisheh et al. [36] employed the RF model to
link environmental covariates with soil properties to effectively predict SOC content in the
semi-arid zone of Iran. Zhang et al. [37] explained the effect of variables on the level of
available nutrients in paddy soil using the RF model [37]. However, the weak interpretabil-
ity caused by the associated “black-box” mechanism greatly limits the application of the RF
model. Shapley additive explanations (SHAP) are an emerging approach for interpreting
machine learning model outputs [38]. Unlike previous contribution factor methods (i.e.,
gini, permutation) [39], SHAP not only indicates the effect of factors on the model, but also
determines the influence direction (positive or negative) of factors on the model results [40].
Zhou et al. [39] employed SHAP to analyze the importance of each variable in soil texture
prediction. Yang et al. [40] determined the effect of factors on soil heavy metal adsorption
by calculating SHAP values. However, thus far, studies on the application of SHAP in
visualizing the influence of environmental factors on Se remain limited.
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Although many scholars have explored the distribution and potential sources of soil Se,
they are mainly concentrated in Se-rich areas rather than in Se-lacking areas. Furthermore,
the attempt to explore the relationship between Se and soil properties, and topographic and
climatic conditions from a nonlinear perspective is still insufficient. Kaizhou is located in
a low-Se belt in southwest China [1], which is a major agricultural region. Thus, this study
applied the complex network graph, Moran’s Index, RF, and SHAP methods to reveal the
content characteristics of Se and its relationship with environmental factors in Kaizhou. The
special aims were to (1) explore the content and spatial distribution of soil Se; (2) visualize
the influence of environmental factors on Se; and (3) identify the key factors controlling Se
content. On the basis of the above literature, we suspect that Kaizhou, as a Se-lacking area,
has controlling factors of soil Se that may differ from those in Se-rich areas.

2. Materials and Methods
2.1. Study Area

Kaizhou (30°00'-31°20" N, 107°55'-108°37' E), located in the Three Gorges reservoir
area, is a major agricultural region of China (Figure 1). It is a mountainous area with
an elevation of 118 m to 1275 m. The climate belongs to subtropical monsoon climate, with
MAP and MAT values of 1244 mm and 17 °C, respectively. Paddy fields and dry land are
the main land uses in the area. The predominant soil parent materials include Xujiahe
Formation of Triassic (T3Xj), Suining Formation of Jurassic (J1sn), Ziliujing Formation of
Jurassic (J3zl), and Shaximiao Formation of Jurassic (J2s), all of which are developed in
purple sandstone and shale with low Se content [41].

(a) Mean annual precipitation (mm) N . N
A The Three Gorges reservoir area

Legend
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s Low : 1203

(b) Soil parent materal
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Figure 1. The sampling sites, mean annual precipitation (a), soil parent material (b), and soil organic
matter (SOM) (c) distribution in Kaizhou, the Three Gorges reservoir area, China.

2.2. Sample Collection and Processing

In November 2016, 2804 soil samples (020 cm) were obtained from cropland in
Kaizhou (Figure 1). Within 10 m of the sampling location, about 3 to 5 subsamples were
obtained to form a mixed soil sample. At the same time, the global positioning system
(GPSmap 669 s, GarMin) was applied to record the location information (e.g., longitude
and latitude) of each site.

All samples were air-dried in the laboratory and passed through a screen (2 mm). The
soil pH value was measured using a pH meter (HT-P15) [42], and the SOM content was
measured via the oxidation method using potassium dichromate [43]. The soil total Se
was extracted using mixed acid (HNO3 and HCIOy) at 180 °C and analyzed by hydride
generation atomic fluorescence spectrometry (SK-2003A) [27].
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2.3. Data Acquisition

According to the soil formation factors model proposed by Jenny [44], two types of
environmental factors were selected (Table 1), namely, (1) categorical factors (e.g., land use
and soil parent material) and (2) numerical factors (e.g., soil properties and climatic and
topographic factors). Among them, data on land use types were obtained from land use
maps (1:10,000) [45] (Figure S1), whereas data on soil parent material were collected from
geological maps (1:250,000) (Figure 1). Data on climate factors, including MAT (Figure S1)
and MAP (Figure 1), spanning 30 years (1970-2000), were collected from the WorldClim
dataset with a spatial resolution of 1 km. The topographic parameters (i.e., elevation, slope,
VD, aspect, and TWI) were calculated by SAGA GIS 8.0.0 (Figure S1) based on the digital
elevation model (30 x 30 m). Soil property data include soil pH and SOM content, which
were measured in the laboratory. Soil texture information (e.g., clay, silt, and sand) were
obtained from the “soil particle size distribution in China” dataset [46].

Table 1. The information on environmental factors.

Resolution (m)

: a
Environmental Factors Type or Scale Source
. DEM € (https:/ /www.usgs.gov/,
Elevation NE 30 accessed on 17 May 2022)
Valley depth (VD) NF 30 DEM
Topography Aspect NF 30 DEM
Slope NF 30 DEM
Topographic wetness index (TWI) NF 30 DEM
Mean annual WorldClim dataset
X . NF 1000 (https:/ /www.worldclim.org/,
Climate precipitation (MAP) accessed on 8 May 2022)
Mean annual .
temperature (MAT) NF 1000 WorldClim database
Soil pH (pH) NF - Laboratory analysis
Soil properties Soil organic matter (SOM) NF - Laboratory analysis
The “soil particle size
; b p
Soil texture NF 1000 distribution in China” dataset
Oth Land use € CF 1:10,000 Land use map
ers Parent material 4 CF 1:250,000 Geological map

2 CF: categorical factors, NF: numerical factors. b Soil texture: clay, silt, sand. ¢ Land use: paddy land and dry land.
d Parent material: Xujiahe Formation of Triassic (T3xj), Suining Formation of Jurassic (J1sn), Ziliujing Formation
of Jurassic (J3zl), Shaximiao Formation of Jurassic (J2s). ¢ DEM: digital elevation model.

2.3.1. Descriptive Statistics

The basic data analysis of soil Se was implemented in SPSS 25.0. The homogeneity of
variance and normality of data were checked before further analysis. The differences in Se
levels among the parent materials were evaluated using ANOVA. An independent samples
t-test was employed to examine the significant effect of land use on Se content. Two-way
ANOVA was performed to reveal the interaction effect of environmental factors on soil Se.

2.3.2. Spatial Autocorrelation Analysis

Moran’s I index is a common method for spatial autocorrelation analysis, consisting
of global and local Moran’s I index [47]. Global Moran’s I measures the overall degree of
association in the study area, and its value ranges from —1 to 1 [48]. An index approaching
0 suggests that the position of samples is random, an index of <0 indicates a negative spatial
autocorrelation among the samples, and an index of >0 suggests a positive autocorrelation
among the samples [48]. Meanwhile, the local Moran’s I reflects the distribution of spatial
clusters and outliers [49] and can be expressed as follows [50]:

M- M

I; TZ?:L]‘# [Wij (M — M)] (1)
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where M, represents the value of soil Se at position i, M denotes the average value of M,
M; represents the Se content at other positions (j # i), and the W;; is a weight measured by
a distance band.

2.3.3. Complex Network Theory

Complex network theory was employed to visualize the relationship among the factors.
First, SPSS 25.0 was used to obtain the Pearson correlation coefficients, and factor pairs with
a correlation coefficient of more than 0.1 (p < 0.01) were selected to build a complex topology
network graph in Gephi v0.9.7. A total of 14 nodes comprising environment factors and
soil Se were obtained, and these nodes were connected based on their correlation. The
nodes and lines have no practical spatial significance. In the complex topology network
graph, the width and color of the edges represent the degree and direction of correlation
among variables, respectively.

2.3.4. Random Forest

The RF model was used to draw the spatial distribution map of soil Se in Kaizhou. RF
is a tree model that relies on a decision tree to obtain the prediction results [33]. Compared
with other machine learning models, RF can reduce noise interference and prevent overfit-
ting [36]. It was performed by the package named “scikit-learn” in Python v3.8. During the
modeling process, two main parameters were considered, namely, the number of decision
trees and the number of variables used to grow each tree [37,51], which were set to 500 and
3, respectively. All samples were randomly divided into training set (80%) and verification
set (20%). The coefficient of determination (R?), mean absolute error (MAE), and root mean
square error (RMSE) were used to assess the RF model performance [52].

MAE = %Z?:1|Mj - Nj| @
1
RMSE = \/ Y (M- Ny (3)
" (M;— N)?
pem - Zm (MmN @)

Yy (M;— M)?

where M represents the observed values, N; denotes the predicted values of the jth sample,

M suggests the mean of observed variables, and n denotes the number of samples.

2.3.5. Shapley Additive Explanations

The RF model demonstrates superior performance in handling nonlinear relationships
among variables. However, its “black-box” mode greatly limits its interpretability. The
SHAP value is an additive attribution approach derived from coalitional game theory [53]
that can show the importance of each factor for model prediction [40]. The SHAP method
has three prominent features, including local accuracy, missing values, and consistency [54],
which allow an effective interpretation of machine learning models. SHAP can be expressed
as follows [39]:

f(N)=¢o+ Z]Ail ¢;Nj ©)

where N € (0,1). M indicates the existence or absence of a factor. ¢y is the average
predicted value of the target factor. M denotes the number of factors in the model. ¢; is the
contribution of factor j (i.e., SHAP value).

In this work, the “SHAP” package in Python v3.8 was implemented to rank the
importance of environmental factors affecting soil Se level.
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3. Results
3.1. Data Analysis of Se and Environmental Factors

The basic statistics of soil Se and environmental factors in Kaizhou are shown in
Figure 2 and Table 2, respectively. The Se content ranged from 0.05 mg/kg to 0.86 mg/kg,
with the average being 0.17 mg/kg. The coefficient of variation (CV) of Se was 34.48%,
indicating a moderate variation. Following the classification standard of soil total Se [41],
17.08% of the samples collected in Kaizhou were Se-deficient (<0.125 mg/kg), 42.22%
were on marginal Se deficiency (0.125-0.175 mg/kg), 39.60% had a moderate Se level
(0.175-0.400 mg/kg), 1.06% had abundant Se content (0.400-3.000 mg/kg), and none of
the collected samples was Se-excessive (>3.000 mg/kg). All topographic factors and soil
properties showed a moderate variation, and their CVs ranged between 10% and 100%.
Meanwhile, the climatic factors (i.e., MAP and MAT) showed a weak variation. Figure 3
presents the complex network graph between environmental factors and soil Se. In the
topology graph, obvious different correlations between environmental factors and Se
can be observed (p < 0.01). Among them, SOM, MAP, elevation, aspect, TWI, and clay
were positively correlated with Se content, with SOM showing the highest correlation
(Figure 3 and Figure S2). Meanwhile, the other environmental factors (i.e., pH, MAT, silt,
and slope) had a significant negative effect on Se content. Results of one-way ANOVA
and independent samples t-test showed that parent material and land use had significant
influences on Se level (Tables 3 and 4, p < 0.01). Meanwhile, results of the two-way ANOVA
indicated that SOM and parent material had strong interaction effects on soil Se content
(p < 0.05), whereas SOM, pH, and elevation had no strong interaction effects (Table 5).
A significant interaction effect on Se content was also observed between MAP and parent
material (p < 0.05), and no strong interactions were observed between MAP, pH, and
elevation (Table 5).

1250 - 100
Minimum: 0.05

1000 - z MaXilnllln: 0.86 L 80
] Mean: 0.17 _
) SD: 0.06 X
I 0/ -
o 7501 : CV(%): 34.48 | 60 §
2 } Skew: 2.52 5
g } Kurto: 15.08 o
2. 5007 1 F40 B

250 G4 L 20

0 r — y . 0
0.0 0.2 04 0.6 0.8 1.0

Se distribution in surface soil (mg/kg)

Figure 2. Basic statistics and sample distribution of soil Se content in Kaizhou.
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Table 2. The basic statistics of environmental factors.

Environmental Factors Minimum Maximum Mean CV (%) Skew Kurtosis

Elevation (m) 154 1278 470 50.59 0.59 —-0.71

VD (m) 0 520 116 70.41 0.80 0.62
Topography  Aspect (°) 0 360 190 53.71 —0.08 -1.12

Slope (°) 0 54.75 11.34 60.94 —0.87 0.95

TWI 3.49 25.23 7.67 40.82 1.95 4.56

_ MAP (mm) 1203 1292 1244 1.25 0.30 0.19
Climate MAT (°) 13.25 18.17 16.85 6.12 —0.83 —0.30
Soil pH 3.98 8.55 6.05 16.90 0.56 —0.63

_ SOM (g/kg) 2.59 45.74 16.44 43.03 0.78 0.41

Soil prop- Silt (%) 29.67 57.90 45.94 12.00 —0.80 0.63
erties Sand (%) 16.11 50.11 32.08 27.48 0.36 —0.71
Clay (%) 17.00 31.40 21.98 18.90 0.68 ~1.02

Correlation coefficient

1

@ SoilSe @ Climate @ Topography @ Soil property

Figure 3. The complex topology network graph between soil Se and environmental factors. The color
of edges suggests positive (red) and negative (green) correlation between nodes, and the stronger
the correlation, the thicker the edges. The range of correlation coefficients between the factors is
—0.10-0.66. Ele: elevation.

Table 3. Soil Se content (mean =+ standard deviation, mg/kg) in different soil parent materials (n = 2804).

T3xj (n = 63) J1sn (1 = 866) J3zl (n = 131) J2s (n = 1744)
0.23 + 0.08P 0.18 £0.05¢ 0.29 +0.09 2 0.16 + 0.06 ©

The different letters represent significant differences in Se level among the parent materials (p < 0.01). T3xj: Xujiahe
Formation of Triassic; J1sn: Suining Formation of Jurassic; J3zl: Ziliujing Formation of Jurassic; J2s: Shaximiao
Formation of Jurassic.

Table 4. Soil Se content (mean =+ standard deviation, mg/kg) in different land uses (n = 2804).

Paddy Field (n = 1810) Dry Land (n = 994)

0.17 £ 0.06 ° 0.18 £ 0.07 2
The different letters represent significant differences in Se level between the land uses (p < 0.01).

Table 5. Test of interaction of main environmental factors on Se content (two-way ANOVA).

Item Factor Sum of Squares df Mean Square F Sig
SOM and Par 0.90 287 0.003 1.54 0.000 **
SOM and pH 49 2104 0.002 0.94 0.672
SOM and Ele 3.81 1758 0.002 0.77 0.919
Se MAP and Par 0.57 93 0.006 2.20 0.000 **
MAP and pH 6.62 2063 0.003 0.92 0.817
MAP and Ele 5.26 1729 0.003 1.17 0.072

Par: soil parent material; Ele: elevation; df: degree of freedom, **: significant interaction (p < 0.05).
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3.2. Spatial Distribution Characteristics of Soil Se

Moran’s I indicated that soil Se content had a strong positive spatial autocorrelation
(Moran’s I = 0.32, p < 0.01) (Figure 4). Most of the high-high clusters of Se were observed in
some local areas, such as the southern and northern parts of Kaizhou, whereas the low-low
clusters were scattered all over the study area.

Global Moran's Index = 0.32 (p < 0.01) A

Legend

Not Significant

High-High Cluster
High-Low Outlier
Low-High Outlier
Low-Low Cluster

> > ¢ @ X

Figure 4. Moran’s index analysis of soil Se content.

The RF model was used to further reveal the distribution pattern of soil Se. The
accuracy evaluation indexes MAE, RMSE, and R2 of the RF model were 0.03, 0.04 and 0.64,
respectively, thereby suggesting that 64% of the spatial variation of soil Se can be explained
by the RF model. Higher Se values were mostly observed in the south and middle parts of
Kaizhou (Figure 5), which was consistent with the results of Moran’s I analysis (Figure 4).

Soil Se (mg/kg) N

0 3 o 12 Km

Legend
Soil Se ( mg/kg)
mm High:0.56

S Low 1 0.09

Figure 5. The spatial distribution map of soil Se content in Kaizhou.
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3.3. Control Factors for Soil Se Content

The effect of environmental factors on Se content was visualized using SHAP. In the
SHAP summary plot (Figure 6), the Y-axis represents the environmental factors, and their
influence on Se decreases from top to bottom. Meanwhile, the X-axis is controlled by
the SHAP value of the selected factors. The color of the point reflects the high (red) and
low (blue) values of environmental factors. As shown in Figure 6, SOM was ranked as
the most important factor affecting soil Se content. Samples with low SOM (blue) were
mostly distributed on the left side (SHAP value < 0), whereas samples with high SOM (red)
were mainly distributed on the right side (SHAP value > 0), thus demonstrating a positive
correlation between SOM and Se content. Meanwhile, MAP was ranked the second most
important environmental factor for determining soil Se content. Samples with similar MAP
values (i.e., sharing similar colors) were distributed on both the left (SHAP value < 0) and
right sides (SHAP value > 0), thereby suggesting that soil Se was influenced by other factors
besides MAP. The other factors were ranked as follows in terms of their effects on soil Se
content: pH > elevation > parent material > MAT > valley depth. All of the factors showed
negative contributions to the accumulation of Se, except for elevation (positive contribution)
and parent material (categorical variable). These results supported the findings from the
correlation analysis between environmental factors and soil Se (Figure 3).

High
SOM .._.*-__........ seme o o
MAP - - .
Bl - -
pH *—.- . .
Par <4
MAT -
Aspect +° %
VD +— : %
Slope "- SR )
TWI +..
Sand —'-
Silt + .
Clay +~ .
Landuse +°
. Low

—0.10 -0.05 000 005 010 015 020
SHAP value

Figure 6. Shapley additive explanations (SHAP) summary plot of environmental factors for soil Se
content. Environment factors are arranged along the Y-axis according to their importance, with the
most key factors ranked at the top. The color of the points represents the high (red) or low (blue)
values of the environmental factor. Ele: elevation; Par: soil parent material.
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4. Discussion
4.1. Se Content in Surface Soil

China is a typical Se-poor country with an average Se content that is 0.4, 0.3, 0.6
and 0.2 times lower than those of the entire world, Japan, Brazil, and Scotland [15,55,56],
respectively. Located in the Three Gorges reservoir area, Kaizhou had a Se content of
0.17 mg/kg, which was close to the background value of the reservoir area (0.16 mg/kg) [20]
yet less than the national average (0.29 mg/kg) [41]. The frequency distribution of soil Se
showed that more than 50% of the collected samples had low Se content (<0.175 mg/kg)
and that almost none of the samples had abundant Se content (>0.4 mg/kg). These results
indicated that Kaizhou can be considered a Se-deficient area. The Se content in the human
body is largely controlled by soil Se [25]. As a major agricultural region, people in Kaizhou
may be at risk of having insufficient Se intake. Therefore, the Se level of soil in this area
should be strictly regulated to protect human health.

4.2. Spatial Distribution Characteristics of Soil Se

Spatial distribution information is useful in understanding the regional soil Se level.
The high-high clusters of soil Se were mainly observed in some local areas, such as the
southern and northern parts of Kaizhou (Figure 4). These areas had high Se content
mainly for two reasons: (1) the soil parent material in the south of Kaizhou is the Ziliujing
Formation of Jurassic, which had higher Se values compared with other soil parent materials
in the region [20] (Table 3); and (2) the scattered high Se value in the northern part of
Kaizhou was consistent with the distribution of SOM (Figure S3). Multiple studies reported
that Se can be bound to SOM and thus immobilized in the soil [10,25]. Meanwhile, low-low
clusters were scattered all over the study area. It might be attributed to a combination
of many environmental factors [10]. First, the biochemical cycle of Se is greatly driven
by hydrological processes [1]. Kaizhou is a mountainous and hilly area with a complex
topography and an elevation ranging from 113 m to 1375 m, and its parent materials
mostly include purple shale and sandstone, thereby resulting in the loss of soil Se on steep
slopes [19]. Second, atmospheric deposition is a key factor controlling Se content. Kaizhou
is located in the southwest inland area of China, and its Se content is rarely supplemented
by the wet deposition of Se from the East Asian summer monsoon [17]. At the same time,
this region is not affected by dry deposition caused by the Asian winter monsoon from the
Asian desert [1].

4.3. Driving Factors of Se Content
4.3.1. Effect of SOM on Soil Se Content

The average SOM content of Kaizhou is 16.44 g/kg, which is considered marginal [57].
The SHAP summary plot revealed that SOM was the most important factor that determines
the Se content of Kaizhou (Figure 6). In addition, Figures 1 and 5 showed similar distribu-
tion patterns of Se and SOM. Those areas with high SOM content were often accompanied
by high Se content, while low Se level was mainly distributed in those areas with low SOM.
This result also confirms the close relationship between SOM and Se.

The influence of SOM on soil Se has been explored by many scholars, and they held
that there was a strongly positive relationship between SOM and Se level [13,20]. SOM
can promote soil Se accumulation through two mechanisms. The first is a direct effect,
which immobilizes Se in the soil via organic-inorganic associations. When the soil is in
a Se-deficiency state, the immobilization effect of SOM on soil Se becomes more obvious [25].
For example, Supriatin et al. [24] found that in agricultural land with low Se levels in the
Netherlands, most Se exists in organic forms, whereas inorganic forms only accounted for
about 5%. Second, SOM can indirectly influence soil Se level in combination with other
environmental factors [1]. Table 5 presented that SOM and parent material have a significant
interaction effect on soil Se content (p < 0.05). Furthermore, SOM and soil Se also showed
similar distribution trends under different parent materials (Figures 1 and 5), and they all
obtained the highest values in J3zl, thereby suggesting that SOM and parent material may
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jointly affect the soil Se content. Parent material is the main source of soil Se [11] that can
directly determine Se content. In addition, parent material can indirectly control the Se
biochemical cycle by regulating SOM reserves [1]. However, numerous studies showed
that low-Se parent material (purple shale and sandstone) only has little effect on soil Se
level compared with other environmental factors (e.g., SOM and MAP) [19,20]. Therefore,
although both SOM and parent material could affect the soil Se level in Kaizhou, SOM was
the dominant factor rather than the soil parent material.

4.3.2. Effect of MAP on Se Content

Besides SOM, MAP was another key factor regulating the level of soil Se (Figure 6),
consistent with previous research [17,58]. Those areas with high MAP usually had higher
Se content than those with low MAP (Figures 1 and 5). Atmospheric deposition caused
by precipitation was identified as the main way of soil Se accumulation [59]. Most of the
soluble Se in the ocean volatilizes into gaseous selenides, which then migrate to terrestrial
ecosystems through precipitation [60]. Sun et al. [17] calculated the Se deposition based on
the Se level in rainwater and found that when the precipitation was 2000 mm/year, the
input of Se to soil reached as high as 0.2-0.4 mg/m?/year. Furthermore, MAP affects the
biochemical cycle of Se by controlling soil properties (e.g., SOM and soil pH). Liu et al. [20]
and Xu et al. [22] reported that MAP has a negative contribution to soil pH. Soil pH can
change the valence state of Se and thus determine its mobility [18]. The study area had
acidic soil with an average pH of 6.05 (Table 2). Under acidic conditions, soil Se exists as
insoluble Se (0, —II) instead of soluble Se (IV, VI) [26]. Therefore, MAP may reduce the loss
of Se from the soil by affecting soil acidity.

Parent material and MAP had significant interaction effects on Se content (Table 5). Similar
to atmospheric deposition, parent material was a major source of Se [14]. In some cases, the
contribution of the parent material to Se was greater than that of precipitation [11,14], which
contradicted the findings of this work (Figure 6). It is probably due to the environmental
background of the study area. Specifically, the parent material of Kaizhou is mostly purple
shale and sandstone, which are classified as low-Se parent materials [20]. Many studies also
identified MAP and SOM, instead of soil parent material, as the main factors that control
the Se level in low-Se soil [16,17].

4.3.3. Land Use with Little Influence on Soil Se

In this work, land use only had minimal influence on soil Se level, while the opposite
findings were reported in previous works [18,27]. Pang et al. [18] examined the distribution
of Se in agroecosystems and found that the Se levels of paddy fields and dry land were
obviously different, mainly due to SOM and soil pH. Xiao et al. [27] found that land use
had a strong effect on total Se content and that the Se content in forest soil was generally
higher than that in grassland and agricultural soil. Land use patterns usually change soil
properties [18,61], especially SOM content. Therefore, in this research, land use might affect
Se content through SOM, which was consistent with the result where SOM ranked first in
the SHAP summary plot while land use ranked last (Figure 6). In agricultural practice, the
SOM level can be improved by changing land use types to accelerate the accumulation of
Se, especially in Se-lacking areas.

5. Conclusions

This study explored the content and driving factors of Se in the cropland soil of
southwestern China. The Se level in Kaizhou was less than the national average, and this
area can thus be regarded as a Se-deficient area. Meanwhile, the spatial distribution of soil
Se in the area was uneven, and higher Se values were mostly observed in its southern and
northern parts.

The RF and SHAP results verified the hypothesis that the potential controlling factors
of soil Se content differed between Se-rich and Se-lacking (i.e., Kaizhou) areas. SOM and
MAP were closely associated with Se accumulation in Kaizhou. Those areas with high
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SOM and MAP were usually accompanied by a high Se level. Furthermore, land use may
regulate Se level through SOM, although land use had little influence on Se indicated by
the SHAP summary plot. Therefore, in future agricultural practice, the contribution of
various factors to soil Se, especially SOM, MAP, and land use, should be considered.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/agronomy13041031/s1. Figure S1: Maps of environmental fac-
tors in Kaizhou; Figure S2: The correlation analysis plot between Se and environmental factors;
Figure S3: The scatter plot between soil Se and SOM.
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