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Abstract: This paper proposes a novel model for named entity recognition of Chinese crop diseases
and pests. The model is intended to solve the problems of uneven entity distribution, incomplete
recognition of complex terms, and unclear entity boundaries. First, a robustly optimized BERT pre‑
training approach‑wholewordmasking (RoBERTa‑wwm)model is used to extract diseases andpests’
text semantics, acquiring dynamicword vectors to solve the problemof incompleteword recognition.
Adversarial training is then introduced to address unclear boundaries of diseases and pest entities
and to improve the generalization ability of models in an effective manner. The context features are
obtained by the bi‑directional gated recurrent unit (BiGRU) neural network. Finally, the optimal tag
sequence is obtained by conditional random fields (CRF) decoding. A focal loss function is intro‑
duced to optimize conditional random fields (CRF) and thus solve the problem of unbalanced label
classification in the sequence. The experimental results show that the model’s precision, recall, and
F1 values on the crop diseases and pests corpus reached 89.23%, 90.90%, and 90.04%, respectively,
demonstrating effectiveness at improving the accuracy of named entity recognition for Chinese crop
diseases and pests. The named entity recognition model proposed in this study can provide a high‑
quality technical basis for downstream tasks such as crop diseases and pests knowledge graphs and
question‑answering systems.

Keywords: crop diseases and pests; named entity recognition; deep learning; pre‑training language
model; adversarial training

1. Introduction
Crop diseases and pests (CDP) are an increasingly important factor threatening food

security and restricting agricultural production [1]. To prevent and control the occurrence
of CDP, obtaining CDP control information quickly and accurately is essential [2]. How‑
ever, with the rapid development of information technology, the scale of CDP text data is
growing exponentially. How to extract CDP knowledge frommassive heterogeneous data
sources has thus become an urgent problem. Crop disease and pest named entity recog‑
nition (CDP‑NER) aim to accurately and efficiently identify entities related to CDP from
massive unstructured data. This helps people obtain accurate, timely, and valuable infor‑
mation on disease and insect pest control and is of great significance to these challenges [3].
At the same time, CDP‑NER is also the research basis for constructing CDP knowledge
graphs and question‑answering systems and directly affects the quality of these tasks [4,5].
Therefore, it is of great research value as well as practical significance for agricultural in‑
formatization in the study of effective entity recognition models in the field of CDP.

Named entity recognition (NER) [6] has been widely used in professional fields such
as biomedicine [7], environmental science [8,9], and finance [10], but there are relatively
few in‑depth studies on Chinese named entity recognition of crop diseases and pests (CDP‑
CNER). In the past, the recognition of named entities of crop diseases and pests wasmostly
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accomplishedviamethods based on rules anddictionaries andmachine learning [11]. Meth‑
ods based on dictionaries and rules need to design rules or define dictionaries in advance,
rely too much on experts, and are difficult to adapt to the continuous change and expan‑
sion of agricultural data in the era of big data [12]. Rule‑basedmethods are gradually being
replaced bymachine learningmethods. Models commonly used for entity extraction in the
agricultural field include hiddenMarkov models (HMM) [13], maximum entropyMarkov
models (MEMM) [14], conditional random fields (CRF) [15], etc. Malarkodi et al. [16] pro‑
posed a CRF‑basedmethod of NER for real agricultural data. Although statistical machine
learningmethods have had some success in the field of CDP‑NER, researchers must spend
much energy on feature engineering and data annotation and contendwith problems such
as high‑dimensional sparse data and poor scalability [17].

The development of deep learning [18] and artificial neural networks [19] has brought
breakthroughs in the field of CDP‑CNER. The deep learning method effectively solves
the problems of traditional‑approach NER reliance on artificial dictionaries and insuffi‑
cient feature extraction [20]. Commonly used models include long short‑term memory
(LSTM) [21], recurrent neural networks (RNN) [22], and convolutional neural networks
(CNN) [23] and their improved models [24]. Among them, the end‑to‑end BiLSTM [25]
and CRF model that does not rely on artificial features has become the mainstream CDP‑
NER model and achieved promising results. However, because of the complex internal
structure of LSTM, it takes much time and resources to train with the BiLSTM and CRF
backbone models, so some researchers have attempted to simplify and improve LSTM, re‑
sulting in the gated recurrent unit (GRU) application [26]. In addition, these studies use
traditional word vector models to obtain static representations and lack the ability to dif‑
ferentiate the same word with different meanings in different contexts. The large‑scale
pre‑training model based on the Transformer model can represent polysemous words and
has performed better in tasks such as CDP‑NER [27]. Chen et al. proposed a named en‑
tity recognition model based on ALBERT to obtain word vectors and then input them into
BiGRU‑CRF for NER [28]. However, although introducing the pre‑training model in the
field of CDP‑CNER has improved recognition accuracy to a certain extent, it can only be
masked in units of words during pre‑training. Word‑level semantic information cannot be
obtained, and fully learning complex text features in the field of CDP is challenging.

Overall, the field of CDP‑CNER still faces many challenges. Firstly, because Chinese
CDP texts are complex, they contain many complex terms, including the names of control
agents such as “thiabendazole methyl wettable powder”. At the same time, some entities
express different semantics in different scenarios and may have unclear boundaries, cre‑
ating a need to incorporate context and fully learn the characteristics of complex texts in
the field of CDP. However, CDP‑CNER still lacks the ability to obtain complex text fea‑
tures in the field of CDP and cannot obtain semantic information for Chinese word‑level
features. There is also the problem of uneven distribution of entity label samples in CDP
data. For example, common entity categories such as “prevention and control chemicals”
contain thousands of samples, while entity categories such as “etiology” only contain ap‑
proximately 200 samples. The uneven distribution of samples seriously impacts overall
entity recognition performance.

In order to solve the above problems, wepropose amodel that integrates theRoBERTa‑
BiGRU‑CRF model and adversarial training (RGC‑ADV). In RGC‑ADV, dynamic vector
representation at the word level of the input Chinese text information is obtained through
the RoBERTa‑wwm [29] pre‑training model to solve the problems of incomplete word
recognition and polysemy and fully learn the text features. At the same time, adversar‑
ial training is introduced to solve the problem of fuzzy boundaries. Entities with unclear
boundaries are similar to input disturbances and may cause the model to make wrong de‑
cisions. Adversarial training is a method of adding confrontational disturbances to the
word vector layer to enhance the robustness of the model to input disturbances [30,31]. A
bidirectional GRU network is used to obtain connections among remote context semantics,
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while the CRF layer at the output end is used to address dependency between labels and
thus obtain a globally optimal label sequence. A focal loss function is then introduced
to solve the problem of sample imbalance. Finally, three evaluation metrics, precision,
recall [32], and F1 score [33,34], are used to evaluate the model.

The structure of this article is as follows. Section 2 introduces the CDPdata set and the
named entity recognitionmethods used in this study. Section 3 describes the experimental
parameters and provides an analysis of the experimental results. Section 4 provides a
discussion. Section 5 summarizes the research presented in this article.

2. Materials and Methods
2.1. Introduction to Data Set

Due to the lack of large‑scale public annotation data sets for CDP and considering that
China hasmore than a thousand crop resources [35], it would take a lot of labor and time to
produce a corpus of all crops. Therefore, this paper selects Fujian Province of China as its
research area. Based on the data of the Third National Crop Germplasm Resources Survey
compiled by the Fujian Academy of Agricultural Sciences [36] and the Statistical Yearbook
of Fujian Province [37], ten main crops are selected to obtain pest and disease materials,
including five food crops, namely rice, soybean, wheat, barley, and sweet potato, and five
cash crops, namely tea, sugar cane, peanut, radish, and rape.

2.1.1. Data Sources
There are many sources of knowledge in the CDP field. In this study, data pub‑

lished by the Crop Science Research Institute of the Chinese Academy of Agricultural Sci‑
ences [38] is selected as the main data source, while Baidu Encyclopedia is used as the
supplementary data source. Auxiliary data sources include the CDP control experience
of agricultural experts in Fujian Province as well as professional books such as Application
Manual of Technical Specifications for Major Crop Disease and Pest Prediction [39] and Atlas
of Excellent Crop Germplasm Resources in Fujian Province [40]. We determined our data ac‑
quisition method in relation to these different data sources. For the web data, we obtained
correspondingURLs for the CDP data by parsing theweb page structure and using regular
expressions and BeautifulSoup to batch‑parse the web page content. Published hard‑copy
data was scanned to form a PDF file, and optical character recognition (OCR) technology
was then used to convert the PDF into text data. For the expert experience data, field sur‑
veys and expert consultation were adopted to obtain and sort out the text data. Finally,
the various data sources were fused and aligned to obtain an original corpus for CDP. This
contained a large amount of redundant data, so the original data were preprocessed before
data annotation. Preprocessing included the deletion of invalid values, removal of inactive
words, and the addition of missing values, resulting in a standardized CDP corpus with a
total of about 170,000 Chinese characters.

2.1.2. Data Annotation
Based on the guidance of agriculture experts, eight entity categories were marked,

namely diseases and pests, other names, etiology, damaged part, distribution areas, dis‑
ease date, damaged crops, and prevention and control drug. The suffixes DIS, NAME,
ETIOLOGY, PART, AREA, DATE, CROP, and DRUG were used to distinguish these cate‑
gories. This paper uses the BIO labeling method, where B and I represent the beginning
and the interior of the name of the CDP entity, while O represents the non‑CDP entity part.
The crop pest entity data labeling is shown in Table 1. The labeled data is divided into
training, verification, and test sets in the ratio of 7:2:1.
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Table 1. Crop disease and pest data annotation table.

Entity Name Beginning Part Inner Part Other

Diseases and pests B‑DIS I‑DIS O
Other names B‑NAME I‑NAME O
Etiology B‑ETIOLOGY I‑ETIOLOGY O

Damaged part B‑PART I‑PART O
Distribution areas B‑AREA I‑AREA O

Disease date B‑DATE B‑DATE O
Damaged crops B‑CROP I‑CROP O

Prevention and control drug B‑DRUG I‑DRUG O

2.2. Proposed Approach
This paper proposesRGC‑ADVas aCDP‑CNERmodel that combinesRoBERTa‑wwm

and adversarial training. The model structure is shown in Figure 1. The whole network
can be divided into seven layers: input layer, RoBERTa‑wwm layer, adversarial training
layer, BiGRU layer, full connection layer, CRF layer, and output layer. First, the input
text is pre‑trained at the RoBERTa‑wwm layer to obtain semantic information at the word
level, convert each word of CDP text into a feature vector, and then the perturbation term
is added to the vector representation to generate a counter sample. This last step improves
the robustness of the model to input disturbance. The original vector representation and
the adversarial sample are then input into BiGRU for training, fully learning the relation‑
ship between contexts. Last, the CRF layer is used to obtain the final prediction result,
and a focal loss function is introduced to improve the problem of unbalanced CDP sample
labels.
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name for rice blast).

2.2.1. RoBERTa‑wwmModel
RoBERTa‑wwm (robustly optimized BERT pre‑training approach‑whole word mask‑

ing) is based on BERT, a pre‑training language model that uses a two‑way transformer as
an encoder to effectively fuse the information in the left and right parts of a word. BERT’s
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training goal is to accomplish next‑sentence prediction (NSP) and generate a masked lan‑
guage model (MLM) [41]. The working principle of MLM is to randomly select 15% of
words from the input disease and pest sentences for replacement, with an 80% probability
of replacing them with a masking mark [MASK], 10% probability of replacing them with
random words, and a 10% probability of keeping the original words unchanged. When
executing the MLM task, BERT uses a static mask, with a randommask only applied once
for each pest sample during the whole training process. RoBERTa, on the other hand, uses
a dynamic mask, randomly selecting a certain proportion of words from the CDP sample
for replacement in each iteration cycle. In this way, the model can obtain a greater repre‑
sentation of sentence patterns, thus improving the accuracy of the identification of named
CDP entities for different diseases [42]. RoBERTa omits the NSP task and instead uses
continuous input of Full‑Sentences and Doc‑Sentences until the maximum length of the
input sentence is reached. Research has shown that RoBERTa improves the prediction of
sentence relations. The wwm suffix [43] specifies that samples in the pre‑training stage
adopt the whole‑word mask strategy and cover up with word granularity; this is effective
for obtaining semantic representation at the word level. RoBERTa‑wwm combines the ad‑
vantages of RoBERTa and wwm. For the Chinese CDP corpus, BERT only covers a single
Chinese character every time it executes MLM and cannot learn word‑level semantic infor‑
mation. RoBERTa‑wwmadopts the Chinesewholewordmasking. Firstly, the CDP corpus
is segmented, and then the words are masked randomly. After covering all the Chinese
characters that make up the same word, we predict these words. Finally, dynamic word
vectors with word‑level features are generated. It is more suitable for the task of CDP‑
CNER. The details are shown in Table 2.

Table 2. The masking strategy of BERT and RoBERTa‑wwm. Example “稻瘟病的症状” (this means
the symptoms of rice blast).

Illustration Sample

Original text 稻瘟病的症状
Segmented text 稻瘟病的症状

BERT’s masking strategy 稻[MASK]病的[MASK]状
RoBERTa‑wwm’s masking strategy [MASK] [MASK] [MASK]的[MASK] [MASK]

This paper uses RoBERTa‑wwm as the pre‑training model for NER to extract text fea‑
tures. During the training process, the model parameters are fine‑tuned according to the
data provided byRoBERTa‑wwmso that themodel can better learn the semantic features of
pest and disease data. RoBERTa‑wwm is composed of 12‑layer transformers, each using a
multi‑head attentionmechanism to reduce the distance between twowords at any position
in the input pest sequence to a constant. The model structure is shown in Figure 2, where
Toki, Ti, and Ei represent the ithword in the pest text data and thewordvector before and af‑
ter the transformer code. Suppose the input is Tok =

{
Tok[cls], Tok1, Tok2 . . . Tokn, Tok[SEP]

}
while the vector E =

{
E[cls], E1, E2 . . . En, E[SEP]

}
corresponding to Tok, that is obtained

through RoBERTa‑wwm, contains the CDP semantic information obtained by RoBERTa‑
wwm in the pre‑training stage.

2.2.2. Adversarial Training
Countermeasures training is used to perturb the model by adding some disturbance

to the original input pest samples. This creates countermeasure samples which are then in‑
put into the model for training, effectively reducing noise due to personal information and
improving the model’s generalization ability. The research shows that the introduction of
projected gradient descent (PGD) [44] can achieve an attack effect very close to the optimal
global solution. Therefore, introducing PGD in the RGC‑ADV model for iterative attack
will consistently control the perturbation range within the specified range S. Once the dis‑
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turbance value exceeds the specified range S, it will fight against the sample xt. Projecting
to the specified range x + S, the iterative process is shown in Formula (1) [45]:

xt+1 = ∏x+S(xt + α·sign(∇xJ(xt,y))) (1)

where α represents the size of disturbance in each iteration of PGD, ∏x+s is the projection
operation, and xt and xt+1 represent the adversarial samples generated during iteration
steps t and t + 1. RGC‑ADV obtains the initial vector E of CDP output from RoBERTa‑
wwm and adds perturbation to it to generate a CDP resistance sample EADV. The vectors
E and EADV are trained together as the input of BiGRU.
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2.2.3. BiGRU Model
The GRU is developed based on LSTM and is composed of update and reset gates.

The specific gate structure allows the GRU to solve the problem of gradient disappearance
or explosion. Compared with LSTM, this has the advantages of fewer parameters, a sim‑
ple structure, and low computational complexity. The internal GRU structure is shown in
Figure 3. The update and reset gate are, respectively, composed of zt and rt; the update
gate is used to determine the extent to which information from the previous time period
is transmitted to the current period, while the reset gate is used to control how much in‑
formation is forgotten. The main calculation process of the GRU network is shown in
Formulas (2)–(5) [46]:

rt = σ(Wr[ht−1, xt]) (2)

zt = σ(Wz[ht−1, xt]) (3)

h̃t = tanh
(
Wh̃·[rt∗ht−1, xt]

)
(4)

ht = (1 − zt)∗ht−1 + zth̃t (5)

where xt represents the pest information input at time t, σ indicates the sigmoid activation
function, ht and ht−1 represent the output vectors of the hidden layer at times t and t − 1,
h̃t represents the state of the current candidate set, Wr, Wz, and Wh̃ represent the input
weight matrix of the activation function, ∗ represents the Hadamard product, and tanh is
the activation function.
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However, because theGRUnetwork can only process CDPdata in one direction, it can
only make predictions by acquiring the forward text data features [47]. Therefore, RGC‑
ADVuses BiGRU to train the CDP text output vector from the anti‑training layer, capturing
the semantic dependency of the context of CDP information and obtaining forward and
backward data features. It uses these features to improve the accuracy of the predicted
value [48].

2.2.4. Full Connection Layer
The full connection layer usually appears behind feature extraction operations such as

the convolution layer and activation function and principally maps the learned distributed
feature representation to the sample label space [49], thus classifying the samples. RGC‑
ADV first integrates the sample output feature results by BiGRU through the full connec‑
tion layer, effectivelyweakening the impact of location features on the classification results.
This improves the classification effect for the CDP samples.

2.2.5. Conditional Random Fields Model
CRF is a discriminant model for the correlation between labels that takes into account

the transfer characteristics among CDP labels and uses CRF decoding to obtain the highest‑
probability group of label sequences. The score of the output sequence H is calculated
by using the output sequence P from the full connection layer as the input to CRF. The
calculation process is shown in Formula (6):

Score(H,y) = ∑n
i=0 Ayiyi+1

+ ∑n
i=1 Pi,yi (6)

where n is the sequence length, A is the transfer fraction matrix, and Aij represents the
transfer score matrix element from the ith tag to the jth tag of the pest sample. When
decoding, a Viterbi algorithm [50] is used to calculate the sequence tag of sequence Hwith
the highest probability among all Hmax, as shown in Formula (7):

Hmax = argmax(score(H,y)). (7)

Adjacent CDP tags are ordered relationships in the task of CDP‑CNER. For example,
the I‑DISEASE tag should appear after the B‑DISEASE tag. However, the ability of BiGRU
to deal with the dependency of learning tags is limited. Therefore, RGC‑ADV adds a CRF
layer to obtain the globally optimal tag prediction sequence. In addition, because of the
unbalanced classification of the CDP sample labels, the focal loss function is introduced to
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optimize the CRF model [51]. Focal loss makes the training process pay more attention to
negative classification samples by controlling theweights of positive and negative samples
to continuously optimize the performance of the model, as shown in Formula (8) [52]:

LossFocal = −α(1 − P(y|x))γ ln(P(y
∣∣x)) (8)

where α ∈ [0, 1] is a factor used to balance the number of positive and negative samples
in the pest samples; γ ≥ 0 is the modulation coefficient, which is used to reduce the loss
of easily classified (non–pest entity) samples, and make the model pay more attention to
difficult (pest entity) samples; and P(y|x) represents the probability that the label of the
pest sample x is y.

3. Results
3.1. Experimental Parameter Setup

This study uses the RoBERTa‑wwmmodel to pre‑train the data set, ultimately obtain‑
ing a 768‑dimensional vector representation. An AdamW optimizer is used to train the
model, while the warmup learning rate strategy is used to assist learning. The initial learn‑
ing rate is set to 0.001, the maximum length of the set sequence is 128, the hidden‑layer
dimension is 768, the batch size is set to 64, and the epoch is 30 rounds. In order to miti‑
gate the impact of unbalanced label classification, the focal loss function is integrated into
the CRF layer in order to optimize it with balance factor α = 0.96 and γ = 2.

For model evaluation, this study uses the most commonly used evaluation indicators
in the NLP field, namely Precision, Recall, and F1 score, to evaluate the model. Precision
refers to the sample probability for all the samples predicted to be CDP. Recall refers to the
sample probability that is accurately predicted from the sample of the actual pest entity.
The F1 score is calculated by weighting the Precision and Recall rates and is a comprehen‑
sive reflection of the model evaluation results. The specific calculations are as follows:

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

F1 score =
2∗Precision ∗ Recall
Precision+ Recall

. (11)

where TP means the correctly predicted sample number of CDP entities, TP+ FP means
the total number of samples of CDP entities predicted. TP+ FN means the total sample
number of CDP entities in the data set.

3.2. Experimental Results
3.2.1. Comparative Model Results

In order to verify the superiority of the RGC‑ADVmodel proposed in this paper, a va‑
riety ofmodelswere used for comparative analysis. Two types of comparative experiments
were performed: using different embedding methods and using different downstream
model structures under the same embedding method. The selected models were BiGRU‑
CRF [53], BERT‑BiGRU‑CRF [54], ALBERT‑BiGRU‑CRF [55], RoBERTa‑wwm‑BiGRU‑CRF,
and RoBERTa‑wwm‑CRF [56]. The results are shown in Table 3.

Generally, the entity extraction effect of the RGC‑ADV model proposed in this paper
has certain advantages over other methods. The Precision rate is 89.23%, the Recall rate
is 90.90%, and the F1 value is 90.04%. This shows that RGC‑ADV is well adapted to the
entity recognition task in the field of CDP and is effective at extracting the text data for this
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field. From the results of the two groups of comparative experiments, we can draw the
following conclusions:
1. Effectiveness of the embedding method:

Using the same data set and downstream model, the RoBERTa‑wwm embedding
method can identify CDP entities more accurately than ALBERT or BERT. RGC‑ADV
outscored BiGRU‑CRF, BERT‑BiGRU‑CRF, and ALBERT‑BiGRU‑CRF in Precision, Recall,
and F1 score by 9.15, 1.57, and 3.39 percentage points, 9.76, 0.33, and 5.36 percentage points,
and 9.48, 0.97, and 4.4 percentage points, respectively. This shows that RoBERTa‑wwm
embedding can improve the ability of the model to perform semantic representation of the
text, thus optimizing the effect of better CDP‑CNER tasks;

2. Effectiveness of the downstream model:

Through the introduction of adversarial training, RGC‑ADV’s scores are increased by
0.67 percentage points in Precision, 1.24 percentage points in Recall, and 0.95 percentage
points in F1 score. This improved performance shows that adversarial training can help
the model better adapt within the CDP field. Moreover, compared with the RoBERTa‑
wwm‑CRF model, RGC‑ADV scores increased by 4.2, 4.19, and 4.19 percentage points in
Precision, Recall, and F1, respectively. This further verifies that the proposed model can
achieve strong entity recognition results in the field of CDP and has distinct advantages
over other approaches.

Table 3. Comparison of experimental results for different entity recognition models.

Experiment Content Model
Evaluating Indicator

Precision
(%)

Recall
(%)

F1 Score
(%)

Other embedding
methods

BiGRU‑CRF 80.08 81.14 80.56
BERT‑BiGRU‑CRF 87.66 90.57 89.07

ALBERT‑BiGRU‑CRF 85.84 85.54 85.64

Our method
RoBERTa‑wwm‑adv‑BiGRU‑

CRF
(RGC‑ADV)

89.23 90.90 90.04

Other downstream
models

RoBERTa‑wwm‑BiGRU‑CRF 88.56 89.66 89.09
RoBERTa‑wwm‑CRF 85.03 86.71 85.85

3.2.2. Results for RGC‑ADV Model
The RGC‑ADVmodel proposed in this paper is used to train the CDP data set; model

performance testing is carried out on eight types of entities. The experimental results are
shown in Table 4. In general, RGC‑ADV is effective at learning the feature information of
CDP texts and has good recognition capability. The F1 scores for six types of entity recog‑
nition, namely diseases and pests, other names, etiology, damaged part, damaged crops,
and prevention and control drug, are all more than 89%. This may be because descriptions
are relatively simple for these entities, and the data characteristics are obvious. The recog‑
nition effect for the damaged part is weak, with an F1 score of 78.29%. We found that the
description of the same crop part in the pest text is diverse, for instance, stem, stem base,
stalk, and other words that all describe the plant stem. This makes it difficult to distin‑
guish the entity boundary of the crop part. The recognition effect for the damage date is
also poor. Here, the F1 score of 81.21% is related to the small number of release date sam‑
ples and the relative difficulty of identifying the entity boundary; this leads to difficulty in
the full learning of the model.
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Table 4. Crop disease and pest entity recognition results.

Entity Precision (%) Recall (%) F1 Score (%)

Diseases and pests 95.16 92.91 94.02
Other names 91.82 90.68 91.25
Etiology 98.51 98.85 98.68

Damaged part 76.23 80.46 78.29
Distribution areas 93.50 97.74 95.57

Disease date 79.76 82.72 81.21
Damaged crop 91.10 92.80 91.94

Prevention and control drug 87.76 91.02 89.36

4. Discussion
In recent years, improving CDP‑CNER performance has been a research hotspot, and

it is also a challenging and active area in the intelligent upgrading of CDP control. In this
paper, the RGC‑ADVmodel is applied to the CDP‑CNER, aiming to solve the impact of the
unbalanced distribution of entity samples and the indistinct entity boundary on the effect
of CDP‑CNER and solve the problem that Chineseword‑level semantic information cannot
be obtained in CDP‑CNER. The model proposed in this paper has a good performance in
the process of CDP‑CNER.

The performance improvement of CDP‑CNER has always been a problem that needs
to be solved urgently [57]. At present, CDP‑CNER is mainly based on pre‑training lan‑
guage models to obtain semantic information. The word vector representations obtained
by traditional word vector models such as Word2Vec [58] and GloVe [59] are static and
cannot represent the ambiguity of words. Due to the complexity of CDP, it is difficult to
use the traditional word vector models to obtain static representations to meet the actual
needs of CDP‑CNER. The pre‑training language models based on Transformer is a dy‑
namic text representation method, which will dynamically adjust the text representation
according to the current crop pest and disease context [60]. Zhang et al. [61] completed
the CDP‑CNER based on the BERT pre‑training model, effectively solving the problem
of polysemy. However, when the BERT model pre‑trains the Chinese CDP corpus, it can
only cover up Chinese characters and not obtainword‑level semantic information [62]. Liu
et al. [63] proposed a NER model for wheat diseases and pests based on the fusion of AL‑
BERT and rules. ALBERT reduces the number of model parameters compared to BERT
and improves the ability and training speed of the model in acquiring sentence‑level fea‑
tures. However, ALBERT still lacks the ability to acquire Chinese word‑level features [64].
It is still unable to effectively solve the problem of incomplete word recognition and fuzzy
boundaries in the field of CDP‑CNER. The RoBERTa‑wwm model not only inherits the
advantages of BERT but also improves on it in terms of data volume and model structure.
In addition, the Chinese full‑word masking technology is used to realize the word‑based
masking method and obtain a vector representation with word‑level semantic informa‑
tion [65]. In view of the above problems, this paper fully considers the text characteristics
of CDP and uses the advantages of RoBERTa‑wwm to solve the problem of incomplete
recognition of CDP entity. Combined with adversarial training, it can effectively improve
the accuracy of CDP‑CNER and solve the problem of difficult recognition of entities with
unclear boundaries to a certain extent.

The RGC‑ADV model is effective in the field of CDP‑CNER, which can help us bet‑
ter obtain CDP entities in text data. However, the model has a poor recognition effect on
nested entities. The next stage of research will introduce more dimensional language fea‑
tures to enhance the recognition of nested entities of CDP. In addition, the coverage and
scale of the CDP labeling corpus are small, which to a certain extent, restricts the improve‑
ment of entity recognition performance in the field of CDP.
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5. Conclusions
This paper proposes a CDP‑CNER model, RGC‑ADV, which significantly improves

the accuracy of CDP‑CNER. Themodel effectively integrates RoBERTa‑wwm‑BiGRU‑CRF
and adversarial training for CDP‑CNER to complete the optimal annotation of CDP text
sequences. The main innovations are reflected in the following three aspects. First, the
model fully considers the features of the corpus as well as the hidden features in the sen‑
tence. Through RoBERTa‑wwm, a word vector representation that integrates the infor‑
mation and characteristics of CDP can be generated to alleviate the deviation caused by
incomplete representation of semantic features in the prediction of the model and to en‑
hance the semantic representation ability of the model for Chinese CDP text information.
Second, adversarial training is introduced in the training process. Adversarial perturba‑
tion is added to the word vector layer to further improve the recognition effect of entities
with unclear boundaries while improving the model’s generalization ability. Third, a fo‑
cal loss function is introduced to optimize the CRF; this effectively alleviates the impact of
the unbalanced classification of the CDP label samples. Our results show that RGC‑ADV
exhibits a strong ability to recognize CDP entities in the CDP‑CNER process, laying a solid
foundation for CDP knowledge graphs and question‑answering system tasks. It also pro‑
vides a new research perspective for NER in garden plants, animals, and other fields. In
the future, we will introduce richer feature information based on the RGC‑ADV model
to improve the recognition accuracy of CDP nested entities. At the same time, we will
further explore the impact of different coverage and scale of CDP annotation corpus on
CDP‑CNER tasks.
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