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Abstract: While populations of the Asian chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu), an 

invasive pest affecting the European chestnut (Castanea sativa Miller), have started to be controlled 

biologically, this pest still conditions chestnut tree development. With the aim of assessing plant 

health status as a means of monitoring gall wasp infestation, we used a field spectroradiometer to 

collect data from leaves taken from 83 trees in two chestnut orchards. We calculated characteristic 

spectral signatures for pest infestation, and after training and validation, developed classifiers to 

distinguish between different infestation levels. Several partial least square discriminant analysis 

(PLS-DA) and random forest (RF) models were fi�ed with reflectance and transformed values to 

obtain characteristic curves reflecting infestation. Four wavelengths (560 nm, 680 nm, 1400 nm, and 

1935 nm) were identified as showing the greatest differences between curves. The best overall 

accuracy (69.23%) was achieved by an RF model fi�ed with reflectance transformed values. Lower 

overall accuracy (26.92%) was achieved in distinguishing between infestation levels. In conclusion, 

while more specific differences in infestation levels were not detectable, our method successfully 

discriminated between gall absence and presence.  
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1. Introduction 

The European chestnut (Castanea sativa Miller) grows mainly in southern and 

western Europe, where there is a long tradition of chestnut cultivation for fruit and wood 

[1]. In Spain, around 50,000 ha of stands are managed for fruit, producing around 40,000 

tonnes annually [2]. The main chestnut producing areas in Spain are Galicia and Castilla 

y León [3]. Our study was conducted in the Bierzo region of Castilla y León, where 

chestnuts cover an area of some 20,000 ha and produce 8000 tonnes of fruit annually, 

leaving an annual income for owners of close to 15 million euros. In the last 20 years, 

numerous new chestnut tree plantations have been established, further increasing 

production.  

Chestnut production is currently challenged by several biotic sources of stress. A 

major insect pest in chestnut orchards is the Asian chestnut gall wasp (Dryocosmus 

kuriphilus Yasumatsu; Hymenoptera: Cynipidae) (e.g., [4]). This invasive species, 

widespread in many countries, including Spain, is a major source of concern. In El Bierzo, 

this pest, first detected in the spring of 2017, is now present throughout the region [5]. 

Although C. sativa is considered a susceptible species, variability in gall wasp infestation 

has been reported for different varieties, suggesting a genotype-dependent variation in 
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susceptibility [6–8]. Moreover, differences have been reported for trees of the same variety, 

likely due to specific features of individual trees within populations [9]. 

The galling activity of D. kuriphilus prevents or inhibits the development of normal 

shoots and leads to the production of abnormal plant structures [10]. Over the long term, 

the decreased capacity to develop buds can result in malformation of the branch 

architecture and general deterioration of the crown [11]. The reduced leaf area in affected 

trees can lead to a gradual loss of photosynthetic biomass and a decrease in tree vigour 

[12]. Studies that have quantified the impact of gall wasp infestation have reported fruit 

production reduced by up to 80% in heavily infested trees [13], a decline in the chestnut 

component of honey [14], and a marked reduction in radial growth [15]. 

Gall wasp infestation is expected to be reduced over the medium term by the 

parasitoid Torymus sinensis, released in El Bierzo from 2018, although establishment of the 

parasitoid continues to be low in many areas of Spain [16]. Of great interest, however, in 

areas where ecosystem services are economically important, is the development of non-

invasive techniques that allow early gall wasp infestation assessment.  

Innovative approaches to health status monitoring need to be tested, especially 

techniques for early pest detection. Potentially useful techniques are remote sensing 

(using unmanned aerial vehicles (UAVs), satellite, etc) using optical sensors and close-

range instruments such as field spectroradiometers. Hyperspectral spectroscopy has been 

successfully used for this purpose, as described in reviews by Cheshkova [17] and 

Terentev et al. [18].  

In agriculture, field spectroscopic methods have been applied to different kinds of 

crops, e.g., for early detection of various diseases in vineyards by Junges et al. [19] and 

Nguyen et al. [20] and in tomato fields by Cen et al. [21]. Spectroscopic techniques have 

been also applied to chestnut orchards; e.g., Pádua et al. [22] used a UAV-mounted 

multispectral sensor to determine tree health status. While no chestnut gall wasp research 

to date has used an optical sensor for detection purposes, studies have been conducted of 

distribution pa�erns at regional and plot scale [23,24], leaf yellowing [25], and pest impact 

on crown and branch architecture [11,26]. 

At the leaf level, classification, and discriminant analysis (DA) methods based on the 

visible (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectra have been used 

to identify diseased and healthy plants. Frequently used algorithms for DA based on 

hyperspectral data include partial least squares (PLS) [27–29], when the number of 

variables is high, and also machine learning algorithms such as random forest (RF) [27] 

and support vector machines (SVM) [30].  

Our objectives, based on using a field hyperspectral spectroradiometer to measure 

leaf reflectance in two chestnut orchards where the Asian chestnut gall wasp has been 

detected, were: first, to obtain a characteristic spectral signature for different gall wasp 

infestation levels, and, second, to develop PLS-DA and RF models that distinguish 

between different degrees of infestation.  

2. Materials and Methods 

2.1. Study Area and Sampling Design 

Our research was carried out in two chestnut (C. sativa Mill.) orchards located in 

Robledo de las Traviesas in El Bierzo (Castilla y Leon region, north-western Spain). While 

the main chestnut variety in both orchards is the same (Parede roja), irrigation systems 

and grid spacing differ between the studied plots. Figure 1 shows the location of the plots 

and Table 1 summarizes their main characteristics.  
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Figure 1. Study site in Robledo de las Traviesas (42°42′27.65″ N, 6°26′13.54″ W). For both plots, the 

analysed trees are depicted in an UAV orthoimage. 

Table 1. Main plot characteristics. 

Plot Coordinates 
Castanea 

sativa Variety 

Irrigation  

System 
Spacing Trees, n 

A 
42°42′27.65″ N 

6°26′13.54″ W 
Parede roja 

Drip 8.5 m × 8.5 m 52 

B 
42°42′35.5″ N 

6°26′5.28″ W 
Manual 9 m × 9 m 31 

Geographic coordinates refer to WGS84. 

2.2. Experimental Workflow 

Figure 2 depicts workflow steps for the proposed methodology. Fieldwork consisted 

of visually assessing chestnut gall wasp infestation and making spectral measurements 

using a field spectroradiometer. Preprocessing involved transforming mean reflectance 

values. Classification models were then fi�ed so as to identify the best classifier.  
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Figure 2. Workflow, as follows: 1. Infestation assessment; 2. Spectral measurements; 3. Spectral data 

preprocessing; 4. Classification model fi�ings; 5. Classification model validations; 6. Best classifier 

selection. 

2.3. Assessing Gall Wasp Infestation Levels 

To assess gall wasp impact, following Gehring et al. [11], we analysed how the pest 

affected branch architecture. In July 2022, for 83 trees, 4 branches each were selected for 

analysis based on their orientation: 211 branches from plot A and 123 branches from plot 

B (total 334 branches). Only shoots that had grown during 2022 were analysed. 

Measurements made were the annual growth of each branch, the number of buds, the 

number of buds with galls, and the number of galls. Ratios were calculated as useful 

infestation indicators: the number of galls versus the number of buds [6], and the number 

of affected buds versus the total number of buds [26,31]. The ratio between affected and 

non-affected buds for each branch was also calculated as a percentage, as follows:  

Percentage infestation = (NAb/Nb) × 100 (1)

where NAb is the number of affected buds and Nb is the total number of buds. Based on 

this indicator and on Gehring et al. [26], five infestation levels were defined, as described 

in table 2, where health status of the samples from each plot is also summarized.  
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Table 2. Branches assessed in both study plots (n = 334). 

Infestation Levels Plot A (n = 211) Plot B (n = 123) 

None (0%) 17 3 

Low (≤30) 30 25 

Moderate (>30 and ≤40) 23 23 

High (>40 and ≤60) 79 39 

Very high (>60) 62 33 

2.4. Field Spectroradiometer Measurements 

Hyperspectral measurements of the energy reflected by leaves were made using an 

ASD FieldSpec 4 spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA), 

a hyperspectral sensor (with a 1.5 m fibre optic cable and 25° field-of-view) that captures 

information along the electromagnetic spectrum from 350 nm to 2500 nm at 1 nm intervals. 

A contact probe with a halogen bulb was also used. 

A measurement protocol was defined, based on spectroradiometer user guide 

recommendations [32]. First, the sensor was calibrated using a white reference panel that 

reflected 99% of the incoming energy. Second, a white reflectance reference value was 

obtained for each leaf before measurement. Third, individual leaves were measured using 

exactly the same procedure (Figure 3): starting near the petiole and gradually moving to 

the apex, three measurements were made on the beam to obtain a representative 

reflectance value for each leaf. 

 

Figure 3. The red circles represent the indicative location of the probe for spectral measurements 

(indicate that the probe is 10 mm in diameter). 

It was decided to work with two different plots to adjust and validate the 

classification models. Furthermore, to ensure a health status that reflected the whole 

sample, selected from all the analysed branches for each chestnut gall wasp infestation 

level were at least 10 leaves, resulting in 102 samples for spectral measurement. By this 

way as it is possible to see in Table 3, the training set consists of 49 measurements from 

plot B, while 52 leaves were measured in plot A to form the validation data set.  

Table 3. Description of the datasets distinguishing by plot and purpose (training and validation). 

Infestation Levels 
Plot A 

Validation Set 

Plot B 

Training Set 

None (0%) 11 10 

Low (≤30) 10 9 

Moderate (>30 and ≤40) 10 10 

High (>40 and ≤60) 10 10 

Very high (>60) 11 10 
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2.5. Preprocessing 

Using Unscramble (CAMO Analytics, Montclair, NJ, USA), principal component 

analysis (PCA) was applied to identify spectral bands with high variability rates and to 

detect outliers. Since all measurements were made in the same conditions, no 

transformation was necessary. However, since reflectance transformations can improve 

the detection of changes in spectral traits in response to stress or disease [33,34], the 

reflectance values were transformed, as follows:  

Transformed reflectance= log(1/reflectance) (2)

Leaf measurements were grouped according to the absence and presence of gall wasp 

infestation so as to obtain a characteristic spectral signature for each group. Grouping was 

performed for both reflectance and transformed values. The 350-450 nm wavelength was 

excluded because of the associated noise. Following Pithan et al. [29], and taking gall-free 

leaves as a reference, the reflectance and transformed spectral signatures were 

normalized. This transformation, which did not change spectral values, enabled detection 

of wavelengths where infestation differences were greatest.  

2.6. Classification (Training and Validation) 

Several models (in which reflectance and transformed values operated as predictor 

variables) were constructed to classify infestation levels and distinguish between gall 

absence and presence in leaves. We used two classification algorithms, namely, PLS-DA, 

optimal when the number of variables is greater than the number of records [35], and RF, 

a widely used machine learning approach. The complete classification procedure, 

developed in R language (v.4.2.1, R Core Team 2022), used the caret and randomForest 

packages.  

To train the models, we defined three spectral datasets (Table 4): the full 

electromagnetic spectrum, four wavelengths chosen on the basis of normalized reflectance 

and transformed values that allowed two further variables sets to be obtained, and a 

dataset based on establishing a 10 nm interval around the average interval value for each 

of the four selected wavelengths. 

Table 4. Spectral datasets. 

Spectral Dataset Wavelengths Included 

All spectra [450:2500 nm] 

±10 nm intervals [555:565 nm], [665:685 nm], [1395:1405 nm], [1930:1940 nm] 

Four wavelengths (560 nm, 680 nm, 1400 nm, 1935 nm) 

Different samples were used for the training and validation sets, composed of 49 

spectral measurements obtained from plot B plus 50 spectral measurements obtained from 

plot A, respectively. In the validation procedure, overall classification accuracy was 

calculated as follows: 

Overall accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives.  

3. Results 

3.1. Spectral Characterization 

Calculated from the reflectance measurements, taking the sample average for each 

infestation level, were characteristic spectral signatures, distinguishing between gall 

absence and presence and between different levels of infestation (Figure 4).  
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The average signature associated with gall absence and presence revealed differences 

in some electromagnetic spectrum regions. Appreciable differences appeared in the green 

peak at around 560 nm (Figure 4a), increased to 750 nm (just before the NIR plateau), 

remained constant in the NIR band until 1300 nm, and became visible again at 1600 and 

2200 nm in the SWIR band. A p-value lower that 0.05 (Mann–Whitney test) confirmed that 

this difference in spectral traits was significant. Differences were also evident between the 

five infestation levels (Figure 4b) but were not confirmed to be statistically significant.  

 

Figure 4. Spectral characterization using reflectance values, based on gall absence or presence (a) 

and on different infestation levels (b). 

Figure 5 shows spectral characterization using transformed values. Differences were 

smaller, mainly in the NIR band, but were confirmed when gall absence and presence 

were analysed.  
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Figure 5. Spectral characterization using transformed values, based on gall absence or presence (a) 

and on different infestation levels (b). 

3.2. Variable Selection 

Figure 6 shows characteristic spectral traits for the reflectance values (Figure 6a) and 

the transformed values (Figure 6b) associated with each infestation level once normalized 

to the spectral features of infestation-free samples, i.e., for gall-free leaves. Visual 

inspection of the normalized curves identified four wavelengths (indicated by black lines 

in Figure 6) as potential variables for the classification models. In the VIS region around 

the green peak (560 nm), differences between the spectral curves are evident, and become 

distinguishable again just before the NIR (715 nm), while in the SWIR region, two 

wavelengths (1440 and 1935 nm) show differences, probably due to changes in water 

content. 

 

Figure 6. Characteristic spectral traits associated with infestation levels after normalization of 

reflectance values (a) and transformed values (b). Black vertical lines indicate the four wavelengths 

selected as predictor variables for the classification models. 
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3.3. Classification Results 

Based on the significant differences detected for the characteristic spectral signatures, 

classification was performed, initially only for the infestation absence and presence 

classes. PLS-DA and RF models were fi�ed using the three different datasets (the entire 

electromagnetic spectrum, four ±10 nm intervals, four wavelengths) and for both 

reflectance (raw and transformed) values. Table 5 reports the results, including overall 

accuracy percentages. The models fi�ed with transformed values appeared to yield be�er 

results than the models fi�ed with reflectance values. The RF models performed be�er 

than the PLS-DA models as the size of the variables decreased. The best model, with 

overall accuracy of 69.23% (for a 95% confidence interval), was ultimately the RF model 

based on reflectance transformed values and four wavelengths (560 nm, 680 nm, 1400 nm, 

and 1935 nm).  

Table 5. Classification model overall accuracy (%) as a performance indicator. 

Method Set of Variables  
Reflectance 

Overall Accuracy (%) 

Transformed Values 

Overall Accuracy (%) 

PLS-DA 

all the spectra 59.62 57.69 

±10 nm intervals 53.85 59.62 

4 wavelengths 53.85 59.62 

RF 

all the spectra 51.92 50 

±10 nm intervals 67.31 69.23 

4 wavelengths 67.31 69.23 

This RF classifier and the corresponding variables were used to discriminate between 

the five infestation levels (none, low, moderate, high, very high). The confusion matrix in 

Table 6 shows that overall classifier accuracy regarding infestation levels was 26.92%, with 

the high confusion between the infestation levels possibly due to similarities. Figure 7, 

which depicts the transformed signatures for each infestation level, shows that only the 

high infestation level seems to be visually different, but the fact that the difference is not 

statistically significant explains the low accuracy value.  

Table 6. Confusion matrix for infestation levels (N, none; L, low; M, moderate, H, high; VH, very 

high). 

  Reference Values 

  N L M H VH 

Predicted 

values 

N 4 1 1 0 5 

L 4 1 1 1 3 

M 5 1 2 0 2 

H 3 3 1 1 2 

VH 3 0 0 2 6 
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Figure 7. Transformed signatures associated with different infestation levels. 

4. Discussion 

We investigated changes in reflectance and transformed values for chestnut tree 

leaves caused by chestnut gall wasp infestation, classifying the different infestation levels 

using hyperspectral field spectroscopy. This technique has previously been used to 

analyse other issues, such as disease and nutritional deficiency, that alter the surface of 

leaves. The field spectroradiometer could be used as a non-destructive means of 

monitoring and assessing pest infestation and could aid the selection of other sensors, 

bearing in mind spectral resolution values. 

Our leaf hyperspectral sampling methodology was based on the use of a contact 

probe, which avoids the need to apply detrending functions or other filtering 

transformations, as described elsewhere [21,36]. The only transformation performed in 

our case, following Gitelson et al. [34], was to apply Equation (2), as this could help to 

be�er distinguish between different infestation levels.  

Several models were fi�ed to distinguish between leaves from branches with and 

without galls. The models achieved satisfactory accuracy values that coincided with 

visually observed differences (Figures 3 and 4) and statistically significant differences 

between reflectance and transformed spectral values. The best performing model (overall 

accuracy 69.23%) was an RF model based on transformed values and four wavelengths 

(560 nm, 680 nm, 1400 nm, and 1935 nm), with transformed traits enhancing signature 

differences. Nguyen et al.[20] achieved 95.30% overall accuracy in detecting grapevine 

leaves affected by a virus, and other works [27,37] also obtained be�er accuracy rates than 

achieved in our research. Although their study was based on the use of hyperspectral 

cameras and overall leaf values, the fact that Cen et al.[21] obtained high accuracy values 

(88.6%) in distinguishing between affected and non-affected leaves demonstrates that 

hyperspectral techniques are capable of discriminating between healthy and diseased 

leaves.  

We also a�empted to classify five different infestation levels using characteristic 

transformed curves as variables in an RF model. The overall accuracy obtained, 26.92%, 

was to be expected, given that the training and validation samples did not show significant 

differences.  

Hyperspectral leaf measurement information clearly identifies affectation by disease, 

nutritional deficiency, and water stress [19,28,29]. However, as shown by the error rates 
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in Table 5, the model as fi�ed was not capable of classifying between five different chestnut 

gall wasp infestation levels. A possible explanation is that the same branch may have 

visibly infested leaves and gall-free leaves (see Figure 8). On this basis, and considering 

the crown and branch infestation pa�ern, it may be that the infestation classification that 

we used (following Gehring et al. [26]) was not appropriate for assessing how the gall 

wasp affects leaf and canopy reflectance.  

Spectral sensors have already been used by Pádua et al. [22], and high-resolution 

satellite imaging is used for other crops, such as the olive [38]. Remote sensing, which 

undoubtedly has potential for monitoring health status over large areas, is capable of 

accurate disease detection [39–43]. Therefore, given our results after normalization of the 

reflectance and transformed values for four wavelengths, we suggest that spectral sensors 

that capture these wavelengths should be used to scale up research into discriminating 

between healthy and diseased crops. 

 

Figure 8. Chestnut wasp gall affected leaf and healthy leaf on the same branch. 

5. Conclusions 

A field spectroscopy method was used to classify different gall wasp infestation 

levels in chestnuts, with leaf reflectance transformed values to characterize infestation 

levels. Both reflectance and transformed values were included as variables in different 

PLS-DA and RF models designed to distinguish between gall absence and presence, with 

the best overall accuracy (69.23%) achieved by an RF model fi�ed with transformed 

values. Lower overall accuracy (26.92%) was achieved for the classification aimed at 

distinguishing between five infestation levels ranging from none to very high.  

Our findings enable us to conclude the following: the use of transformed reflectance 

values for the models enhances infestation differences; PLS-DA models work be�er with 

large sets of variables; RF models improve as the number of variables decreases; 

characteristic spectral signatures (raw and transformed reflectance values) can be 

obtained for different infestation levels; and, finally, gall absence versus presence is 

detectable, but not more specific differences in infestation levels.  

In sum, our findings suggest that field spectroscopy could be a useful non-destructive 

tool for monitoring Asian chestnut gall wasp infestations. Even if differences are not very 

great, they could be useful when choosing remote sensors based on their spectral 

resolution and in upscaling this health monitoring technique. 
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