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Abstract: Aboveground biomass (AGB) is an important indicator used to predict crop yield. Tra-
ditional spectral features or image textures have been proposed to estimate the AGB of crops, but
they perform poorly at high biomass levels. This study thus evaluated the ability of spectral features,
image textures, and their combinations to estimate winter wheat AGB. Spectral features were ob-
tained from the wheat canopy reflectance spectra at 400–1000 nm, including original wavelengths
and seven vegetation indices. Effective wavelengths (EWs) were screened through use of the suc-
cessive projection algorithm, and the optimal vegetation index was selected by correlation analysis.
Image texture features, including texture features and the normalized difference texture index, were
extracted using gray level co-occurrence matrices. Effective variables, including the optimal texture
subset (OTEXS) and optimal normalized difference texture index subset (ONDTIS), were selected
by the ranking of feature importance using the random forest (RF) algorithm. Linear regression
(LR), partial least squares regression (PLS), and RF were established to evaluate the relationship
between each calculated feature and AGB. Results demonstrate that the ONDTIS with PLS based on
the validation datasets exhibited better performance in estimating AGB for the post-seedling stage
(R2 = 0.75, RMSE = 0.04). Moreover, the combinations of the OTEXS and EWs exhibited the highest
prediction accuracy for the seeding stage when based on the PLS model (R2 = 0.94, RMSE = 0.01), the
post-seedling stage when based on the LR model (R2 = 0.78, RMSE = 0.05), and for all stages when
based on the RF model (R2 = 0.87, RMSE = 0.05). Hence, the combined use of spectral and image
textures can effectively improve the accuracy of AGB estimation, especially at the post-seedling stage.

Keywords: aboveground biomass; wheat; canopy; vegetation indices; texture

1. Introduction

Aboveground biomass (AGB) is of great practical significance to the monitoring of
crop growth [1] and the prediction of yield [2]. Therefore, the rapid and accurate prediction
of AGB is critical to managing agricultural activities efficiently [3].

The conventional manual field measurement of AGB involves destructive, time-
consuming, and laborious sampling [4]. Given these constraints, prompt and accurate
monitoring of AGB is critical. Previous studies demonstrated that multispectral or hyper-
spectral information from satellites or airborne platforms has been widely used to monitor
leaf area index [5], crop growth [6], nitrogen content [7], and the biomass of wheat [8].
However, unfavorable weather conditions, such as clouds or fog, may lead to a lack of
appropriate satellite data, thereby limiting application in crop monitoring. In particular,
high temporal resolution is required to explain spatial specificity in the field during the
critical stage of crop monitoring [9]. The accuracy of phenological information needs to be
determined from remote sensing observations, which depend largely on the frequency of
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observations [2]. Moreover, data from remote sensing satellites are usually expensive and
require extensive processing experience.

In recent years, with the development of unmanned aerial vehicles (UAVs) and their
application in the field of remote sensing, the use of canopy spectra and UAV images has
become a novel method for crop monitoring. For example, researchers have demonstrated
the feasibility of using canopy spectra extracted from UAV hyperspectral images combined
with partial least squares (PLS) regression to estimate the chlorophyll content of wheat [10].
In addition, color index and crop surface models have been extracted using orthogonal
correction with (red–green–blue) RGB UAV images to estimate leaf area index (LAI) [11],
plant height [12], and plant nitrogen content [13]. However, the spectral or image features
obtained from a UAV image are saturated in the later stage of crop growth, leading to poor
accuracy in the estimation of crop yield. To solve this problem, researchers have attempted
to combine spectral and image features; it has been reported that vegetation indices (VIs)
combined with a textural feature index (a normalized differential texture index, or NDTI)
extracted from 550 and 800 nm band images obtained by a UAV multispectral camera
provided better results than using traditional textural features and vegetation indices in
a rice AGB estimation model [14]. Previous studies proved the feasibility of UAV-based
textural features and VIs along with their combination in wheat AGB estimation and yield
detection. However, crop canopy information cannot be fully obtained in the case of large
crop coverage during the later stage of growth due to the low resolution of the images
obtained by most UAVs, resulting in low accuracy in estimating wheat AGB at the later
stage of growth [8]. The accurate estimation of crop AGB by using features obtained by a
UAV platform needs to be improved at the later stage of crop growth.

Near infrared spectroscopy is one of the common methods used to detect crop
biomass [15]. Using a hand-held spectrometer to obtain crop canopy reflectance and
extracting a VI or effective wavelength to estimate wheat biomass has been proven to be
an effective method [16]. For example, a power function, or exponential function relation-
ship, was found between the specific vegetation index (RVI) and AGB of soybean at the
seedling stage [17]. However, when crop biomass reaches a certain range, the crop canopy
reflectance tends to be saturated, which leads to the low accuracy of estimated AGB in
VI-based crops model. To reduce the effects of spectral saturation on crop AGB estimation,
some researchers have used PLS regression based on band depth and VIs to estimate
wheat biomass. However, the problem of canopy spectral saturation still exists [18]. Image
technology based on consumer-grade digital cameras has been commonly used to monitor
crop morphology [19], nutrient components [20], and pest status [21]. For example, image
information can be obtained through a digital camera, and the image can be processed
into 3D point cloud data to estimate wheat biomass, crown height, and harvest index.
This measurement method has the advantages of high adaptability and robustness [22].
However, when plants grow to a certain level, the model used to estimate AGB based on
image features performs poorly. The results demonstrate that an estimation model based
on individual spectral or image features cannot accurately estimate crop AGB at the later
stage of growth.

This study aims to evaluate the application of combining ground-scale images with
spectral information in estimating the AGB of winter wheat. Image texture, spectral
features, and their combinations are used to estimate the AGB of winter wheat in multiple
growth stages. In this study, several methods that can be used to predict the AGB of
winter wheat are proposed based on (1) spectral features (VIs, effective wavelength), (2) the
optimal texture subset (OTEXS) and optimal normalized difference texture index subset
(ONDTIS) calculated from canopy and side images, and (3) the combination of features
with random forest (RF) regression and PLS regression.
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2. Methods
2.1. Field Experiment and Measurements of Aboveground Biomass

The experiment was conducted at the Demonstration Base of National Precision Agricul-
ture located in Xiaotangshan Town, Changping District (40◦00′–40◦21′ N, 116◦34′–117◦00′ E),
Beijing, China (Figure 1). Ten wheat varieties, including Wanmai 38, Zhongmai 11, Lunxuan
518, and seven others, were adopted in the experiment that ran from October 2013 to June
2014. Each variety was transplanted at two planting densities, namely, 330 and 165 kg/hm2.
Forty plots, each with an area of 0.5 m × 0.6 m, were selected from forty sample plots as
experimental objects. Five planting periods were selected for field experiments (seedling,
jointing, heading, flowering, and filling stages).
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, Jimai
20. These are the varieties of wheat. The m stands for meter.

Ground destructive sampling was used to harvest wheat in each measurement area
on the ground. The fresh weight of each sample was measured by an electronic scale with
an accuracy of 0.5 g and a range of 5 kg. Altogether, 200 winter wheat AGB samples were
obtained (40 samples in each of the five stages listed above). Table 1 shows the statistical
data for measurements of winter wheat AGB.

Table 1. Descriptive statistics of aboveground biomass measurements at different growth stages.

Dataset Stage Samples Max/kg Mean/kg Min/kg Std/kg

Calibration Seedling 27 0.23 0.102 0.04 0.05
Post-seedling 107 0.73 0.37 0.08 0.13

All 134 0.73 0.317 0.04 0.16
Validation Seedling 13 0.232 0.106 0.047 0.054

Post-seedling 53 0.641 0.372 0.121 0.125
All 66 0.639 0.317 0.047 0.156

2.2. Digital Image and Spectrum Data Acquisition

Two different types of data were collected during two different time periods, as
described below. The image data of each wheat canopy sample were acquired using a
UC-M3151 industrial camera (MicroVision, Beijing, China) with an image resolution of
3 megapixels at the seedling stage. Photos were acquired on clear, cloudless, or partly
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cloudy days; the specific time was 6:00–8:00 Beijing time. A white rectangular frame with
an area of 0.5 m × 0.6 m and a tripod with adjustable height were built as auxiliary devices
for field image acquisition to ensure the consistency of shooting angles and the height of
multiple lenses. The tripod was adjusted to make the photos perpendicular to the wheat
canopy and ensure they were taken 1 m from the canopy at the seedling stage. At the post-
seedling stages (jointing to filling stages), the height of wheat plants increased continuously,
the wheat leaves between different rows began to overlap with each other, and the visual
field of the canopy image that was captured was almost filled with wheat leaves, leading to
small visible changes in the proportion of wheat in the canopy in the background image.
Therefore, winter wheat AGB was predicted by taking single-row side images of wheat
and extracting textural features. The side image acquisition auxiliary device included a
white background plate with an area of 1.2 m × 1.2 m and a tripod with adjustable height.
When taking photographs of winter wheat, a white background plate was placed parallel
to a row of wheat on the outside of the marking area and stood vertically on the ground
(Figure 2). The tripod’s height was adjusted to about 0.5 m, the lens was parallel to the
white back plate, and the distance from the side of the wheat was about 1.2 m.
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Figure 2. (a) Canopy image at the seedling stage; (b) side image at the post-seedling stage.

An AvaSpec-2048×14 fiber optic spectrometer (Avantes, Apeldoorn, The Netherlands)
was used to collect spectral reflectance data with a wavelength range of 200–1100 nm and
a spectral resolution of 2.4 nm. The spectral reflectance experiments were conducted on
clear, cloudless, or partly cloudy days; the specific time was from 10:30 to 14:30 (Beijing
time). When collecting the spectral data, the optical fiber probe was placed at about 0.75 m
vertically below the wheat leaf canopy. Standard reference plate correction was performed
every 15 min. Each plot was repeatedly measured five times, and the average value was
regarded as the spectrum measurement result for each plot.

2.3. Data Processing
2.3.1. Spectral Data Processing

Because the reflectance of the canopy experienced significant interference from the
reflectance of the 200–400 nm and 1000–1100 nm bands, the canopy spectral reflectance of
400–1000 nm was selected for use in measuring the effective spectral parameters. Savitzky–
Golay (S-G) smoothing can reduce the influence of high-frequency noise on the spectrum
by averaging the multi-point spectral data; in addition, multiplicative scattering correction
(MSC) can effectively eliminate the spectral difference caused by the different scattering
levels of different spectral bands. A combination of MSC and S-G smoothing was used
to preprocess the spectral data to reduce the influence of background noise and spec-
tral scattering, thereby enhancing the correlation between the spectrum and the winter
wheat AGB.
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2.3.2. Vegetation Index Calculation

Six commonly used VIs (Table 2) were selected to evaluate the capability of spectral
information to estimate AGB. The selected VIs were based on bands at 440, 680, 750, and
810 nm of canopy reflectance.

Table 2. Selected vegetation indices in this study for aboveground biomass estimation.

Vegetation Index Formula Reference

OSAVI (1 + 0.16)(R810− R750)/(R810 + R750 + 0.16) [23]
NDVI (R810− R680)/(R810 + R680) [24]
DATT (R810− R720)/(R810 − R680) [25]

CI red edge (R810 / R750)− 1 [26]
EVI 2.5(R810− R750)/(1 + R810 + 6R750− 7.5R440) [27]

RDVI (R810− R750)/
√

R810 + R750 [28]
Note: OSAVI, optimized soil-adjusted vegetation index; NDVI, normalized difference vegetation index; DATT,
chlorophyll content index; CI red edge, red edge chlorophyll index; EVI, enhanced vegetation index; RDVI,
renormalized difference vegetation index.

2.3.3. Texture Measurements

The gray level co-occurrence matrix (GLCM) can explore textural features and is often
used to extract image textural features. Eight kinds of GLCM-based textures in three bands
of each digital image, namely, red (R), green (G), and blue (B), were calculated at different
stages by using ENVI software:

VAR = ∑
i

∑
j
(i − u)2p(i, j) (1)

HOM = i ∑
j

1

1 + (I− J)2p(i, j)
(2)

CON =
Ng−1

∑
n =0

n2

{
∑Ng

i =1

Ng

∑
j =1

p(i, j), |i − j| = n

}
(3)

ENT = −∑
i

∑
j

p(i, j) log(p(i, j)) (4)

SEM = ∑
i

∑
j
{p(i, j)}2 (5)

COR =
∑i ∑j(i, j)p(i, j)− uxuy

σxσy
(6)

MEAN =
∑i ∑j p(i, j)

ij
, (7)

DIS =
Ng−1

∑
n=1

n

{
∑Ng

i=1

Ng

∑
j=1

p(i, j) , |i− j| = n

}
(8)

where p(i,j): (i,j)th entry in a normalized gray-tone spatial-dependence matrix = P(i,j)/R.
Ng represents the number of distinct gray levels in the quantized image. Ux, Uy, σx, and σy
are the means and standard deviations. Further details of the calculation are in available
in [29].

In this paper, a minimum window size of 3 × 3 pixels was used for textural feature
extraction to reduce computational complexity. In addition, the NDTI was used to explore
its ability to predict AGB in winter wheat [7] and is defined as in Equation (9):

NDTI = (Ti − Tj)/(Ti + Tj) (9)
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where Ti and Tj represent two different randomly selected textures.

2.4. Regression Modelling Methods
2.4.1. Simple Linear Regression (LR)

Linear regression (LR) has a simple and easily understandable model structure, which
has great applicability in practical applications [30]. AGB estimation of winter wheat based
on an LR model was used to evaluate the prediction performance of EWs, VIs, texture, and
NDTI in estimating AGB. The LR models were defined as shown in Equation (10):

AGB = bX + a (10)

where X represents the single input predictor variable and b and a represent the slope and
intercept of the fitted line of the LR model, respectively.

2.4.2. PLS and Random Forest (RF)

Partial least squares regression is a dimension reduction method that is a popular
modelling approach frequently used in studies of vegetation because it provides an efficient
way to make full use of spectral information [31,32]. Random forest (RF) is a powerful
machine learning algorithm. Each tree in the RF is constructed using a deterministic
algorithm by selecting a group of random variables and a random sample from a calibration
dataset. RF can not only deal with a large number of input variables, but also uses a small
number of variables to obtain a reasonable amount of prediction accuracy. In addition, RF
regression is beneficial in overcoming the over-fitting problem of simple decision trees [33].

2.5. Statistical Analysis

This study analyzed the relationship between AGB and different types of variables
(effective wavelength, VIs, OTEXS, ONDTIS, and a combination of spectral indices and
image indices) to improve the applicability of biomass estimation models. The flowchart
in Figure 3 illustrates the experimental method. A total of 200 experimental data points
were collected and randomly divided into a training set and a test set, with 2/3 of the
samples selected as a training dataset and 1/3 of the samples selected as a test dataset.
Three regression models (LR, PLS, and RF) were established to estimate winter wheat
biomass. The LR model was used to analyze the correlation between each calculated index
and the AGB of winter wheat. The combined features were used as the input of the PLS
and RF regression models to estimate the AGB of winter wheat. The AGB estimation
performance of the three regression models was evaluated by the determination coefficient
[R2, Equation (11)] and the root mean square error [RMSE, Equation (12)]. Python software
was used for all statistical analyses.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (11)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (12)
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3. Results
3.1. Estimation of AGB with Effective Wavelengths

The near infrared (400–1000 nm) reflectance spectra of the winter wheat canopy were
recorded. S-G and MSC were selected to preprocess the spectrum and eliminate the random
error and scattering effect. The interference of the treated spectral curve was obviously
reduced (Figure 4). Meanwhile, the adjacent wavelengths were usually highly correlated.
A successive projection algorithm (SPA) was used to select the effective wavelengths of
the processed spectrum to reduce information redundancy and improve the utilization
efficiency of spectral information.
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Figure 4. Reflectance spectra of the winter wheat canopy at different growth stages. Omni-spectral
data in (a) the seedling stage, (b) the post-seedling stage, and (c) all stages, as well as pre-spectrum
data in (d) the seedling stage, (e) post-seedling stage, and (f) all stages.

Figure 5 presents the results of effective wavelength selection using an SPA model
at the seedling stage. The RMSE values of different subsets in the SPA model during the
seedling stage are shown in Figure 5a, where “�” represents the number of the effective
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wavelength. The results show that when the number of variables was less than four, the
RMSE value shows a downward trend. In contrast, the change tends to be flat. Therefore,
four effective wavelengths were extracted by the SPA at the seedling stage to estimate the
AGB of winter wheat. Figure 5b shows the specific selection of effective wavelengths at
the seedling stage, in which “�” represents the selected effective wavelengths (583.35 nm,
762.553 nm, 929.176 nm, and 940.639 nm). Similarly, the number of effective wavelengths
selected by the SPA at the post-seedling stage and for all stages was 12 and 14, respectively.
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respectively. A square (�) represents the number of the effective wavelength.

The results of the model that predicts the AGB of winter wheat based on the effective
wavelengths (Table 3) at multiple growth stages. The results show that the LR model based
on effective wavelength estimation of winter wheat AGB had a higher R2 and lower RMSE
value at the seedling stage (R2 = 0.89, RMSE = 0.016), the post-seedling stage (R2 = 0.73,
RMSE = 0.07), and in all stages (R2 = 0.83, RMSE = 0.06) (Figure 6).

Table 3. Aboveground biomass estimates using selected effective wavelengths at different
growth stages.

LR RF PLS
R2

c RMSEc R2
v RMSEv R2

c RMSEc R2
v RMSEv R2

c RMSEc R2
v RMSEv

Seedling 0.89 0.01 0.89 0.01 0.96 0.01 0.84 0.02 0.91 0.01 0.89 0.01
Post-seedling 0.72 0.06 0.73 0.07 0.92 0.03 0.69 0.06 0.74 0.05 0.67 0.05

All 0.84 0.06 0.83 0.06 0.95 0.03 0.72 0.07 0.86 0.05 0.83 0.06

Note: R2
c , the R2 value of the calibration set; R2

v, the R2 value of the validation set; RMSEc, the RMSE of the
calibration set; RMSEv, the RMSE of the validation set.



Agronomy 2023, 13, 865 9 of 18

Agronomy 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

The results of the model that predicts the AGB of winter wheat based on the effec-
tive wavelengths (Table 3) at multiple growth stages. The results show that the LR model 
based on effective wavelength estimation of winter wheat AGB had a higher R2 and low-
er RMSE value at the seedling stage (R2 = 0.89, RMSE = 0.016), the post-seedling stage (R2 
= 0.73, RMSE = 0.07), and in all stages (R2 = 0.83, RMSE = 0.06) (Figure 6). 

Table 3. Aboveground biomass estimates using selected effective wavelengths at different growth 
stages. 

 LR RF PLS 
 R𝐜2 RMSE𝐜 Rv

2 RMSEv R𝐜2 RMSE𝐜 Rv
2 RMSEv R𝐜2 RMSE𝐜 Rv

2 RMSEv 
Seedling 0.89 0.01 0.89 0.01 0.96 0.01 0.84 0.02 0.91 0.01 0.89 0.01 

Post-seedling 0.72 0.06 0.73 0.07 0.92 0.03 0.69 0.06 0.74 0.05 0.67 0.05 
All 0.84 0.06 0.83 0.06 0.95 0.03 0.72 0.07 0.86 0.05 0.83 0.06 

Note: R  , the R2 value of the calibration set; R , the R2 value of the validation set; RMSE , the RMSE 
of the calibration set; RMSE , the RMSE of the validation set. 

 
Figure 6. Validation of aboveground biomass (AGB) estimation models established by best per-
forming effective wavelengths vs. AGB for the following stages: (a) seedling, (b) post-seedling, (c) 
all stage. 

3.2. Estimation of AGB with VIs 
Figure 7 shows the significant positive correlation between VI and winter wheat 

AGB. The AGB of winter wheat was predicted well by VIs with the LR, RF, and PLS 
models at the seedling stage. When all stages were considered, the prediction accuracy 
of winter wheat AGB at the post-seedling stage was lower (Table 4). The LR prediction 
model based on the renormalized difference vegetation index had the best prediction 
ability when estimating the AGB of winter wheat at the seedling stage (R2 = 0.82, RMSE = 
0.02). In all stages, the estimation of AGB by the LR model based on the optimized soil-
adjusted vegetation index had a good prediction effect (R2 = 0.68, RMSE = 0.09). Howev-
er, with the continuous growth of winter wheat, the correlation between each individual 
VI and winter wheat AGB was low at the post-seedling stage (Figure 8). The accuracy of 
the predictive model of winter wheat AGB based on each individual vegetation index 
separately performed poorly, of which the LR model based on the enhanced vegetation 
index had the best predictability (R2 = 0. 45, RMSE = 0.1). The LR model based on a single 
vegetation index did not accurately estimate the AGB of winter wheat at the post-
seedling stage. 

Figure 6. Validation of aboveground biomass (AGB) estimation models established by best per-
forming effective wavelengths vs. AGB for the following stages: (a) seedling, (b) post-seedling,
(c) all stage.

3.2. Estimation of AGB with VIs

Figure 7 shows the significant positive correlation between VI and winter wheat AGB.
The AGB of winter wheat was predicted well by VIs with the LR, RF, and PLS models at the
seedling stage. When all stages were considered, the prediction accuracy of winter wheat
AGB at the post-seedling stage was lower (Table 4). The LR prediction model based on the
renormalized difference vegetation index had the best prediction ability when estimating
the AGB of winter wheat at the seedling stage (R2 = 0.82, RMSE = 0.02). In all stages, the
estimation of AGB by the LR model based on the optimized soil-adjusted vegetation index
had a good prediction effect (R2 = 0.68, RMSE = 0.09). However, with the continuous growth
of winter wheat, the correlation between each individual VI and winter wheat AGB was low
at the post-seedling stage (Figure 8). The accuracy of the predictive model of winter wheat
AGB based on each individual vegetation index separately performed poorly, of which the
LR model based on the enhanced vegetation index had the best predictability (R2 = 0. 45,
RMSE = 0.1). The LR model based on a single vegetation index did not accurately estimate
the AGB of winter wheat at the post-seedling stage.
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Table 4. Prediction results of LR, RF, and PLS with the optimal VI across all different growth stages.

Stage VI
LR RF PLS

R2
c RMSEc R2

v RMSEv R2
c RMSEc R2

v RMSEv R2
c RMSEc R2

v RMSEv

Seedling RDVI 0.83 0.02 0.8 0.02 0.94 0.01 0.82 0.02 0.9 0.01 0.82 0.02
Post-Seedling EVI 0.45 0.08 0.45 0.1 0.89 0.04 0.4 0.09 0.48 0.06 0.43 0.05

All OSAVI 0.68 0.08 0.67 0.08 0.93 0.03 0.68 0.09 0.7 0.07 0.63 0.07

Note: R2
c , the R2 value of the calibration set; R2

v, the R2 value of the validation set; RMSEc, the RMSE of the
calibration set; RMSEv, the RMSE of the validation set.
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3.3. Estimation of AGB with Textural Features

The relationship between the textural features of the R, G, and B bands along with
the AGB of winter wheat varied greatly at multiple growth stages (Table 5). Most single
textures had poor prediction performance for estimating AGB at all stages. At the seedling
stage, the textural features of the R, G, and B bands (mean, variation, Con, Dis) were
significantly correlated with AGB. At the post-sowing stage, the correlation between the
textural features of the three bands (Hom, Ent, and Sem) and winter wheat AGB decreased
significantly. Therefore, a single textural feature cannot predict AGB comprehensively and
accurately, which is consistent with using a single vegetation index to predict the AGB of
winter wheat.

Table 5. Relationships between aboveground biomass and grey level co-occurrence matrix-based
texture measurements with the calibration set (R2).

Red Band Green Band Blue Band
Seedling Post-Seedling All Seedling Post-Seedling All Seedling Post-Seedling All

Mean 0.736 0.392 0.384 0.715 0.326 0.24 0.725 0.509 0.02
Var 0.787 0.017 0.004 0.685 0.033 0.004 0.603 0.022 0.095

Hom 0.567 0.562 0.074 0.559 0.582 0.001 0.56 0.599 0.262
Con 0.787 0.014 0.017 0.674 0.026 0.008 0.6 0.02 0.042
Dis 0.791 0.253 0.001 0.717 0.308 0.009 0.715 0.314 0.169
Ent 0.236 0.572 0.013 0.233 0.59 0.001 0.361 0.602 0.091
Sem 0.04 0.555 0.017 0.033 0.577 0.001 0.152 0.575 0.076
Cor 0.005 0.006 0.004 0.001 0.004 0.191 0.019 0.004 0.017

The LR model based on a single textural feature performed well at the seedling stage.
The correlation between most textural features and winter wheat AGB was not significant
during the post-seedling stage or for all combined stages. Therefore, this paper proposes
the use of the OTEXS as the input for the winter wheat AGB prediction model to improve
the ability of the LR model to estimate wheat AGB based on a single textural feature. We
employed the RF model to calculate texture feature importance, as well as to sort and
select the best textural features to form the optimal textural feature subset. The number of
OTEXSs at different growth stages was six.
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When compared with the prediction model of winter wheat AGB based on texture
features, the estimation accuracy of the LR, RF, and PLS prediction model based on the
OTEXS was significantly improved at the post-seedling stage and for all stages (Table 6).
The accuracy of the OTEXS-based RF model was significantly improved at the post-seedling
stage (R2 = 0.73, RMSE = 0.07) and for all stages (R2 = 0.75, RMSE = 0.06). The LR model
of AGB based on the OTEXS also provided the greatest estimation performance at the
seedling stage (R2 = 0.85, RMSE = 0.01). The results show that the OTEXS is one of the more
promising schemes that can be used to improve the prediction accuracy of an LR model for
estimating AGB at multiple growth stages (Figure 9).

Table 6. Prediction results of LR, RF, and PLS with the optimal texture subset across all different
growth stages.

LR RF PLS
R2

c RMSEc R2
v RMSEv R2

c RMSEc R2
v RMSEv R2

c RMSEc R2
v RMSEv

Seedling 0.90 0.01 0.85 0.01 0.96 0.01 0.83 0.02 0.91 0.01 0.85 0.01
Post-seedling 0.76 0.06 0.66 0.07 0.93 0.03 0.73 0.07 0.77 0.05 0.65 0.06

All 0.81 0.06 0.76 0.06 0.94 0.03 0.75 0.06 0.82 0.05 0.77 0.07

Note: R2
c , the R2 value of the calibration set; R2

v, the R2 value of the validation set; RMSEc, the RMSE of the
calibration set; RMSEv, the RMSE of the validation set.

Agronomy 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

Table 5. Relationships between aboveground biomass and grey level co-occurrence matrix-based 
texture measurements with the calibration set (R2). 

 Red Band Green Band Blue Band 
 Seedling Post-Seedling All Seedling Post-Seedling All Seedling Post-Seedling All 

Mean 0.736 0.392 0.384 0.715 0.326 0.24 0.725 0.509 0.02 
Var 0.787 0.017 0.004 0.685 0.033 0.004 0.603 0.022 0.095 

Hom 0.567 0.562 0.074 0.559 0.582 0.001 0.56 0.599 0.262 
Con 0.787 0.014 0.017 0.674 0.026 0.008 0.6 0.02 0.042 
Dis 0.791 0.253 0.001 0.717 0.308 0.009 0.715 0.314 0.169 
Ent 0.236 0.572 0.013 0.233 0.59 0.001 0.361 0.602 0.091 
Sem 0.04 0.555 0.017 0.033 0.577 0.001 0.152 0.575 0.076 
Cor 0.005 0.006 0.004 0.001 0.004 0.191 0.019 0.004 0.017 

The LR model based on a single textural feature performed well at the seedling 
stage. The correlation between most textural features and winter wheat AGB was not 
significant during the post-seedling stage or for all combined stages. Therefore, this pa-
per proposes the use of the OTEXS as the input for the winter wheat AGB prediction 
model to improve the ability of the LR model to estimate wheat AGB based on a single 
textural feature. We employed the RF model to calculate texture feature importance, as 
well as to sort and select the best textural features to form the optimal textural feature 
subset. The number of OTEXSs at different growth stages was six. 

When compared with the prediction model of winter wheat AGB based on texture 
features, the estimation accuracy of the LR, RF, and PLS prediction model based on the 
OTEXS was significantly improved at the post-seedling stage and for all stages (Table 6). 
The accuracy of the OTEXS-based RF model was significantly improved at the post-
seedling stage (R2 = 0.73, RMSE = 0.07) and for all stages (R2 = 0.75, RMSE = 0.06). The LR 
model of AGB based on the OTEXS also provided the greatest estimation performance at 
the seedling stage (R2 = 0.85, RMSE = 0.01). The results show that the OTEXS is one of the 
more promising schemes that can be used to improve the prediction accuracy of an LR 
model for estimating AGB at multiple growth stages (Figure 9). 

Table 6. Prediction results of LR, RF, and PLS with the optimal texture subset across all different 
growth stages. 

 LR RF PLS 
 R𝐜2 RMSE𝐜 Rv

2 RMSEv R𝐜2 RMSE𝐜 Rv
2 RMSEv R𝐜2 RMSE𝐜 Rv

2 RMSEv 
Seedling 0.90 0.01 0.85 0.01 0.96 0.01 0.83 0.02 0.91 0.01 0.85 0.01 

Post-seedling 0.76 0.06 0.66 0.07 0.93 0.03 0.73 0.07 0.77 0.05 0.65 0.06 
All 0.81 0.06 0.76 0.06 0.94 0.03 0.75 0.06 0.82 0.05 0.77 0.07 

Note: R , the R2 value of the calibration set; R , the R2 value of the validation set; RMSE , the RMSE 
of the calibration set; RMSE , the RMSE of the validation set. 

   
Figure 9. Validation of aboveground biomass (AGB) estimation models established by best per-
forming optimal texture subset vs. AGB for the following stages: (a) seedling, (b) post-seedling,
(c) all stages.

In this study, the researchers attempted to combine two different textures randomly
to construct a new texture parameter NDTI for AGB estimation [7]. Figure 10 shows that
the R2 value of the LR models based on the NDTI for estimating AGB had significant
differences at multiple growth stages. When compared with the two other growth stages,
the LR model based on the NDTI performed best for winter wheat AGB estimation at the
seedling stage. The NDTI (Rmean, Gmean) had the best performance, with an R2 value
of 0.94. At the post-seedling stage and across all stages, the NDTI-based LR model also
achieved better performance in the estimation of AGB than a single textural feature. Hence,
the NDTI (Bean, Bhom) performed best, with an R2 value of 0.67 at the post-seedling stage;
moreover, the NDTI (Ghom, Bhom) also performed best across all stages, with an R2 value
of 0.51. Table 7 shows the five best performing NDTIs at multiple growth stages.

The low accuracy of the AGB prediction model based on a single NDTI was detected at
the post-seedling stage and across all stages. This study employed the RF model to calculate
feature importance, as well as to sort and select the NDTI with the highest importance
as the optimal NDTI subset (ONDTIS) for estimating AGB. The number of NDTIs of the
ONDTIS in each growth stage was 8, 13, and 12, respectively. Compared with an individual
NDTI, the PLS models of AGB based on the ONDTIS were improved at multiple stages
(Table 8). At the seedling stage, the ONDTIS performed best, with the highest R2 value of
0.91 and the lowest RMSE of 0.01. Excellent results were obtained at the post-seedling stage
and across all stages (Figure 11).
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Figure 10. R2 value of the normalized differential texture index-based linear regression models for
estimating aboveground biomass at the (a) seedling stage, (b) post-seedling stage, and (c) across all stages.

Table 7. Performance of the five best normalized differential texture index-based linear regression
models based on the calibration dataset.

Seedling Post-Seedling All
x1 x2 R2 x1 x2 R2 x1 x2 R2

Rmean Rcor 0.93 Bmean Bent 0.67 Ghom Bhom 0.51
Rmean Gcor 0.9 Gent Bmean 0.64 Rmean Rcor 0.48
Rmean Bdis 0.86 Rent Gcor 0.64 Rcon Gcon 0.48
Rmean Gdis 0.85 Gmean Bent 0.62 Rhom Bhom 0.45

Rdis Gent 0.84 Gmean Gent 0.62 Rdis Bdis 0.45

Note: x1 and x2 represent two different randomly selected textures.

Table 8. Prediction results of LR, RF, and PLS with the optimal normalized difference texture index
subset across all different growth stages.

LR RF PLS
R2

c RMSEc R2
v RMSEv R2

c RMSEc R2
v RMSEv R2

c RMSEc R2
v RMSEv

Seedling 0.95 0.01 0.86 0.019 0.95 0.01 0.82 0.02 0.93 0.01 0.91 0.01
Post-seedling 0.82 0.05 0.74 0.07 0.94 0.02 0.73 0.06 0.78 0.05 0.75 0.04

All 0.82 0.066 0.77 0.07 0.94 0.03 0.82 0.06 0.82 0.05 0.78 0.06

Note: R2
c , the R2 value of the calibration set; R2

v, the R2 value of the validation set; RMSEc, the RMSE of the
calibration set; RMSEv, the RMSE of the validation set.
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3.4. Estimation of Winter Wheat AGB with Combination Features

The winter wheat AGB prediction models based on a single spectral or image feature
at the post-seedling stage and across all stages had limitations and low accuracy. A multiple
regression prediction model of winter wheat AGB was established by combining spectral
and image information to provide appropriate technical support so as to improve the
estimation accuracy of winter wheat AGB at the post-seedling stage. The combination
feature was formed by the combination of effective wavelengths and VIs, the OTEXS, and
the ONDTIS. The results of estimating winter wheat AGB based on the combined features at
multiple growth stages are shown in Table 9. The PLS regression estimation model of AGB
based on the combination of the OTEXS and effective wavelengths had the highest accuracy
at the seedling stage (R2 = 0.943, RMSE = 0.01). The LR estimation model of AGB based on
the combination of the OTEXS and effective wavelengths had the highest accuracy at the
post-seedling stage (R2 = 0.78, RMSE = 0.06; Figure 12). The RF-based winter wheat AGB
prediction model based on the combination of the OTEXS and effective wavelengths also
had the highest accuracy across all stages (R2 = 0.87, RMSE = 0.05). Figure 13 reveals the
accuracy of the assessment results of the multivariate regression models for AGB estimation
based on the independent validation datasets. As shown in Figure 13a–i, for the three
regression methods (LR, RF, and PLS), the accuracy of the models based on combined
features was better than that of models based on image textures or spectral features in
estimating winter wheat AGB, especially at the post-seedling stage.

Table 9. Prediction results of LR, RF, and PLS with combined features across all different
growth stages.

Stage Features
LR PLS RF

R2
c RMSEc R2

v RMSEv R2
c RMSEc R2

v RMSEv R2
c RMSEc R2

v RMSEv

Seedling

VI + OTEXS 0.95 0.01 0.85 0.02 0.93 0.01 0.92 0.01 0.97 0.007 0.88 0.02
EWs + OTEXS 0.98 0.01 0.85 0.02 0.96 0.009 0.94 0.01 0.97 0.008 0.82 0.02

ONDTIS + EWs 0.96 0.01 0.94 0.01 0.97 0.007 0.89 0.01 0.97 0.007 0.77 0.02
ONDTIS + VI 0.95 0.01 0.87 0.01 0.93 0.01 0.91 0.01 0.97 0.007 0.77 0.02

Post-
seedling

VI + OTEXS 0.77 0.06 0.72 0.06 0.80 0.05 0.71 0.06 0.95 0.02 0.70 0.06
EWs + OTEXS 0.82 0.05 0.78 0.05 0.84 0.04 0.76 0.05 0.96 0.02 0.74 0.06

ONDTIS + EWs 0.82 0.05 0.8 0.05 0.83 0.04 0.71 0.06 0.96 0.02 0.77 0.05
ONDTIS + VI 0.8 0.05 0.74 0.06 0.80 0.05 0.74 0.05 0.95 0.02 0.72 0.06

ALL

VI + OTEXS 0.85 0.06 0.81 0.05 0.85 0.05 0.83 0.06 0.97 0.02 0.86 0.05
EWs + OTEXS 0.88 0.05 0.85 0.05 0.89 0.04 0.83 0.06 0.97 0.02 0.87 0.05

ONDTIS + EWs 0.88 0.05 0.87 0.05 0.89 0.04 0.82 0.06 0.97 0.02 0.85 0.05
ONDTIS + VI 0.87 0.05 0.77 0.06 0.85 0.05 0.83 0.05 0.97 0.02 0.85 0.05

Note: R2
c , the R2 value of the calibration set; R2

v, the R2 value of the validation set; RMSEc, the RMSE of the
calibration set; RMSEv, the RMSE of the validation set; VI, vegetation index; OTEXS, optimal texture subset;
ONDTIS, optimal normalized difference texture index subset; EWs, effective wavelengths.
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(e) post-seedling, (f) all stages. OTEX + effective wavelengths for the following stages: (g) seedling,
(h) post-seedling, (i) all stages.

4. Discussion
4.1. Estimation of AGB with Spectral and Texture Features

Spectral techniques have been widely used to predict crop biomass and yield [30]. The
prediction accuracy of the LR model based on effective wavelengths at the post-seedling
stage (R2 = 0.73, RMSE = 0.07) was improved when compared with results based on a
vegetation index alone (R2 = 0.45, RMSE = 0.1). The wavelength selected by the SPA
includes red (550–770 nm) and near-infrared regions (800–1000 nm), which are the main
absorption bands of plant photosynthesis after sowing as seedlings mature; however,
VI only uses the spectral information of several bands. When compared with the AGB
model at the seedling stage (R2 = 0. 89, RMSE = 0.01), the accuracy of the AGB prediction
model had poor performance (R2 = 0.73, RMSE = 0.07) at the post-seedling stage, similar
to the model based on VIs. As the canopy matures, the increase in the leaf layer leads to
an increase in canopy complexity such that shadow becomes a spectral trap of incident
energy and reduces the amount of radiation returned to the sensor [34]. AGB cannot be
comprehensively and accurately predicted based on a single spectral feature.
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In recent years, researchers have found that image texture features can improve the
effect of using satellite images to predict forest biomass [35]. In the present work, the
correlation between a single textural feature and AGB was quite different at multiple stages,
which is consistent with a previous report [36]. The AGB prediction model based on a
single textural feature (mean and dis) at the seedling stage resulted in the best R2 value
(Table 5). The canopy of winter wheat had rich structural information at the seedling
stage. The mean and dis values contain the average value in the moving window of
the target and the background, which can smooth an image and minimize background
interference [7]. In this article, most of the textural features have poor correlations with
the AGB of winter wheat. This result provided a similar conclusion to that found in the
correlation between textural features and AGB in temperate forests [37]. By aiming at the
poor correlation between textural features and AGB, the NDTI-based rice AGB prediction
model had great performance at multiple stages [7]. A total of 276 NDTIs were calculated.
As a result, the correlation between NDTIs and AGB was found to be different at multiple
stages. Compared with textural features, the correlation between most NDTIs and AGB
was obviously improved in multiple stages, while the accuracy of the AGB prediction
model based on these NDTIs was better than that of the AGB model based on textural
features. The AGB prediction model based on NDTIs (Rmean and Rcon) at the seedling
stage had the optimal effect (R2 = 0.93). The correlation between NDTIs and AGB at the
seedling stage was better than that at the late stage and across all stages, which is consistent
with the results of the analysis of textural features. The canopy structure information was
most accurately captured by digital images at the seedling stage, in which the density of
plants was low and adjacent leaves hardly overlapped. However, with the continuous
growth of winter wheat, the canopy leaves of each plant overlapped with one another,
resulting in a loss of structural information in digital images and the decreased accuracy of
the winter wheat AGB prediction model based on image features. The result is consistent
with previous studies that used convolutional neural networks to predict biomass-related
shapes [8]. Hence, AGB cannot be predicted comprehensively and accurately by using a
single image feature.

Compared with the models based on a single spectral or image feature, the AGB model
based on the effective wavelength of a single spectral feature was better than the model
based on a single image feature at the seedling stage and across all stages. However, at
the post-seedling stage, the accuracy of the AGB model based on the ONDTIS was better
than the spectral feature model. Ref. [38] found that a large amount of spectral information
is lost at the later stages of crop growth, leading to difficulty in accurately predicting the
yield. Therefore, image and spectral information sources have different effects on the
AGB prediction model at multiple growth stages. At the seedling stage, the spectral and
image information has a strong correlation with AGB due to the simple three-dimensional
structure of the crop canopy. By contrast, the correlation between the spectral reflectance
of the canopy and the AGB of winter wheat decreased because the leaves obstructed one
another, leading to a loss of canopy information during the growth of the crop canopy.

4.2. Estimation of AGB with Optimal Image Features

In view of the poor prediction performance of the AGB model based on a single
textural feature and single NDTI, this work proposes that all of the textural features of
the R, G, and B bands and all NDTIs be fused as the input for the winter wheat AGB
prediction model. Considering that a large number of image features are mixed with more
redundant information, the accuracy of the LR model in estimating AGB may decrease;
therefore, the important coefficients of all image features were calculated and sorted to
eliminate irrelevant or redundant features, save space, and reduce calculation costs [39].
In the present study, RF was selected to extract data features and rank the importance of
features to determine the contribution of each feature to each tree in the RF. Image features
whose importance was no less than 10% or 40% of the highest importance were selected as
the OTEXS and ONDTIS, respectively. The best texture features and NDTIs were selected
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to form the OTEXS and ONDTIS, which were used as the input of the LR model to estimate
wheat AGB, thus making for better results from the NDTI [14]. The performance of the AGB
model based on the optimal subset of image features was improved at the post-seedling
stage and across all stages.

4.3. Comparison of Regression Methods at Multiple Growth Stages

PLS regression and RF were selected to establish an AGB prediction model based
on fusion data. The prediction model based on the combination of spectral and image
features (OTEXS + EWs) had better prediction performance than that based on spectral
feature combinations (vegetation index and feature effective wavelength) and image feature
combinations (OTEXS and ONDTIS) (Table 9). The combination of image and spectral
information provides richer information [40,41]. The RF model performed better at the
post-seedling stage because it built a large number of decision trees in the training process
while dealing with a large number of samples, thus leading to good performance when
dealing with outliers and noise.

5. Conclusions

The prediction accuracy of winter wheat AGB can be improved by using a combination
feature analysis method. The contribution of image and spectral features and their combi-
nation to predict AGB was evaluated. LR, PLS, and RF were used to evaluate the ability of
the combination to estimate winter wheat AGB based on the combined feature parameters
(OTEXS + VI, OTEXS + EWs, EWs + ONDTI, and VI + ONDTI). It has a great advantage
in predicting wheat AGB because the canopy structure information was most accurately
captured by digital images. The LR, PLS, and RF models based on the combination of the
OTEXS from image features and EWs from spectral features had the highest accuracy in
estimating winter wheat AGB at the post-seedling stage (R2 = 0.788 and RMSE = 0.059).
Feature selection has great potential to improve the ability of researchers to estimate winter
wheat AGB when compared with tradition textural features at the post-seedling stage. This
method has a certain reference value for estimating crop AGB at the post-seedling stage. In
future work, more spatial effectives of wheat and analysis models will be used to develop a
reliable crop AGB estimation model.
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