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Abstract: The sustainable high yield of crops is critically important under the current situation of
global climate warming. In order to improve regional yield, it is urgent to clarify the limiting factors
of local grain yield and change the traditional planting measurements to adapt to the warming
climate and make full use of climate resources. Long-term field experiments over seven years from
2014 to 2021 were conducted with the same maize cultivar (i.e., Luyu9105) with seven planting
density treatments: 3.0 × 104 (D1), 4.5 × 104 (D2), 6.0 × 104 (D3), 7.5 × 104 (D4), 9.0 × 104 (D5),
10.5 × 104 (D6), and 12.0 × 104 (D7) plants per hectare in Taihe and Hefei, which belong to the
southern Huang-Huai-Hai (SHHH) and southeast (SE) maize-producing areas in China. According
to the field experiment data, differences in grain yield, ear number, kernel number per spike, and
1000-kernel weight of different treatments were analyzed. The utilization efficiency of climate
resources in Taihe and Hefei was calculated using daily solar radiation, mean temperature, and
precipitation data. The results showed that Taihe had 7.8% higher solar radiation during the growing
season of maize than Hefei, while accumulated temperature ≥10 ◦C (AT10) was 3.9% lower than
Hefei. The grain yields of different planting densities in Taihe were 9.7~23.6% higher than in
Hefei. The agronomic optimal planting density (AOPD) was 8.6 × 104 plants ha−1 in Taihe and
8.0 × 104 plants ha−1 in Hefei. Compared to the actual grain yields, when the agronomic optimal
planting densities were adopted, the simulated yield increased by 51.3% and 59.6%, respectively.
The radiation utilization efficiency, temperature utilization efficiency, and precipitation utilization
efficiency in Taihe were 12.9%, 24.6%, and 26.7% higher than the values of Hefei, respectively, and
D4 and D5 treatments had significantly higher climatic resource utilization efficiency than D1 and
D2 treatment. The grain yield was negatively correlated with accumulated temperature ≥10 ◦C
and positively correlated with solar radiation. The multiple linear regression model among solar
radiation, accumulated temperature was ≥10 ◦C, and grain yield was y = 0.550R−0.562AT10 +
14,593.6 (R = 0.379). Accumulated temperature ≥10 ◦C was the main climatic factor affecting the
grain yield due to the higher occurrence probability of a maximum temperature ≥35 ◦C. Overall, in
the future, increasing planting density and alleviating heat stress may enhance grain yield. These
results could provide cultivation measurements with regional characteristics to adapt to the local
climate and maximize the utilization efficiency of climatic resources.

Keywords: maize; grain yield; planting density; solar utilization efficiency; temperature utilization
efficiency; precipitation utilization efficiency

1. Introduction

As the population of the world increases, it is necessary to increase the global crop yield
to mitigate food shortages and guarantee food security [1]. However, as the global climate
warms, extreme climate events, i.e., drought, heat damage, and wind, have increased across
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many of the world’s regions and pose new challenges to food security [2,3]. The southern
Huang-Huai-Hai (SHHH) maize region and hilly maize area in the southeast (SE) are the
southernmost regions of China’s main maize production areas. Due to their particular
geographical locations, the climatic conditions differ from other maize regions, i.e., the
northeast and northwest maize regions, especially under the background of global climate
warming. Thus, in order to make full use of climate resources, alleviate the negative effects
of climate warming, and improve the local grain yield, it is necessary to clarify the impacted
factors of maize production in these two regions and change the ordinary cultivation
methods to adapt to global climate change, which is helpful for local maize cultivation.

Grain yield is interactively determined by the genetic factors of the variety itself [4],
climatic factors (i.e., solar radiation, temperature, and precipitation) [5,6], and agronomic
measures (i.e., planting density, planting date, row space, and fertilization strategy) [7–9].
Breeding accounts for 50% of the grain yield [4]. Previous research has demonstrated
that maize yield potential has not undergone genetic improvement in hybrid ears, yet
high population density tolerance has undergone substantial genetic improvement [10].
Changing the planting density results in a high grain yield via prolongation of the functional
leaf period of maize leaves and significantly increases the leaf area index [1,11], which
can make full use of available climate and nitrogen resources [12,13]. However, the effects
of planting density on the grain yield depend on the compound interaction of hybrid,
climatic factors, and other managements, i.e., soil fertility, planting date, and row spacing
management [14,15]. Yield does not always increase with the increase in the planting
density of different regions, especially with global warming [16,17]. Therefore, under such
conditions, it is vital to elucidate the optimal planting density of different regions.

Adjusting the planting density is an effective measure for improving grain yield,
which can change the distribution and utilization of light, temperature, and other climatic
factors [18,19]. Solar radiation, heat resources, and water are the most important factors
that affect maize growth and development [20–22], especially solar radiation [23,24]. How-
ever, as it has been influenced by global climate change and environmental pollution, a
slightly decreasing trend of solar radiation in China has reduced dry matter weight by
12.3 kg ha−1 per year [25–27], and other results also indicated that a 100 MJ decrease in
accumulated photosynthetically active radiation resulted in an 850 kg ha−1 reduction in
maize grain yield in China [28]. Insufficient solar radiation will detrimentally affect photo-
synthetic efficiency and may induce the occurrence of barren stalks and stalk lodging [5].
Additionally, the Global Climate Model projected that the mean maximum (minimum)
temperature during the growing season of maize would increase by 1.9 ◦C and 3.7 ◦C
(1.5 ◦C and 3.2 ◦C) in the 2040s and 2080s, respectively [29]. As the climate has changed,
the growing degree days have increased in northeast China, which may accelerate maize
growth development [15,26] and decrease grain yield [30].

Numerous studies have analyzed the relationship between climatic factors and grain
yield among different cultivated regions [31,32]. Therefore, identifying grain yield and its
driving factors is vital to ensure sustainable grain production. In northwestern China, grain
yield was positively affected by solar radiation and thermal time during the growth stage,
and regional solar radiation had a greater impact on the grain yield than thermal time
in northwestern China, northeastern China, and northern China [23]. Conversely, Zhang
reported that a negative impact of temperature was found in northeastern China and the
Northern China Plain, which may be due to the fact that the temperature had exceeded the
32 ◦C threshold of maize growth [26].

However, existing studies have mainly focused on the northern China area, so little
is known about the maize development in SHHH and SE, the difference between the two
regions, and the relationship between grain yield and climatic resources. Our study could
clarify the optimal planting density in the two regions, the yield difference, and the causes
leading to this difference, which could provide guidance for research in other areas of
the world. In this context, we selected two sites, Taihe (33◦25′ N, 115◦60′ E) and Hefei
(31◦57′ N, 117◦11′ E), which are located in the SHHH and SE areas, respectively. Long-term
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field experiments were conducted with the same maize cultivar (i.e., Luyu9105), the same
planting density treatments, and other management measures over seven years. The goals
of this study were as follows: (1) to determine the optimal planting density in these two
regions; (2) to clarify the yield differences between two maize-producing areas and explore
the limiting factors of regional maize production; (3) to quantify the relationship between
solar radiation, heat resources, and grain yield.

2. Materials and Methods
2.1. Experimental Site

The field experiments were carried out in Taihe (33◦25′ N, 115◦60′ E) during 2014–2021
and Hefei during 2014–2017 (31◦57′ N, 117◦11′ E), which are two summer-sown maize
areas in SHHH and SE, respectively. The cropping pattern of these two regions is largely
a winter wheat–summer maize double-cropping system, with shallow rotary tillage for
winter wheat and no tillage for summer maize. The soil types in Taihe and Hefei are lime
concretion black soil and yellow cinnamon soil, respectively. The physical and chemical
characteristics of the topsoil (0–20 cm) during experiments are shown in Table 1.

Table 1. The physical and chemical characteristics of the topsoil during the experiment at Taihe
and Hefei.

Sites Years pH Soil Organic Carbon
(g kg−1)

Alkali-Hydrolyzable
N (mg kg−1)

Available P
(mg kg−1)

Available K
(mg kg−1)

Taihe

2014 7.2 22.1 120.6 43.1 227.9

2015 6.9 21.7 133.1 38.1 271.2

2016 7.2 22.3 169.7 40.5 249.7

2017 7.1 22.1 159.8 35.9 187.6

2018 6.9 20.6 146.2 30.8 186.4

2020 6.9 22.8 175.6 39.1 201.0

2021 6.8 20.6 145.9 38.6 156.7

Hefei

2014 6.9 21.6 118.4 25.4 269.6

2015 6.5 19.8 129.8 26.5 224.9

2016 6.7 20.6 156.4 21.1 200.7

2017 6.7 19.1 127.1 18.6 235.8

The daily mean temperature (Tmean) and precipitation (Prec.) were obtained from
the National Meteorological Data Center (http://data.cma.cn/). The meteorological data
details of Taihe and Hefei are shown in Table 2.

Table 2. The meteorological data details at Taihe and Hefei.

Taihe Hefei Taihe Hefei
2012–2021 2012–2021 2014–2021 2014–2017

The annual mean
temperature (◦C) 15.7 16.2 − −

The mean annual total
precipitation (mm) 1000 1033 − −

The mean temperature
from June to October (◦C) − − 23.7 24.6

The mean total
precipitation from June to

October (mm)
− − 657 745.3

Note: −means there were no data.

2.2. Experimental Design

Fully randomized complete blocks with three replications were designed at two
experimental sites, respectively, by using the same cultivar, Luyu 9105, as it is widely
grown in these two experimental sites and is high-yielding, resistant to multiple leaf
diseases, i.e., bipolarismaydis and rust disease, and highly adaptable. Seven different

http://data.cma.cn/


Agronomy 2023, 13, 846 4 of 17

planting densities were designed, which were 3.0 × 104 (D1), 4.5 × 104 (D2), 6 × 104 (D3),
7.5 × 104 (D4), 9 × 104 (D5), 10.5 × 104 (D6), and 12.0 × 104 (D7) plants ha−1. D1 was
not designed from 2017 to 2021. The size of each plot was 24.12 m2 (6.7 m length × 3.6 m
width), with six rows.

The maize was sown with a row spacing of 60 cm and a depth of 5 cm of the seeds. The
details of the planting dates and harvesting dates in the two sites are shown in Table 3. The
application rate of pure N, phosphorus, and potassium fertilizer in experimental sites were
240 kg ha−1, 105 kg ha−1, and 135 kg ha−1 using urea (containing N 46%) and compound
fertilizer (containing N, P2O5, K2O 15:15:15); for the insufficient potassium fertilizer, we
applied K2SO4 (containing K2O 50%) as a supplement. All of the fertilizer was applied to
each plot prior to sowing. According to the actual situation in the field, the recommended
dosages of chemical agents were used to control diseases, pests, and weeds.

Table 3. The planting dates and harvesting dates in Taihe and Hefei.

Years
Planting Date (Month/Day) Harvesting Date (Month/Day)

Taihe Hefei Taihe Hefei

2014 6/17 6/21 10/03 10/14
2015 6/17 6/21 10/03 10/14
2016 6/13 6/28 10/06 10/18
2017 6/12 6/15 10/13 10/10
2018 6/05 − 9/27 −
2019 − − − −
2020 6/05 − 9/27 −
2021 6/05 − 9/27 −

Note: −means experiment was not carried out in this year.

2.3. Research Methods
2.3.1. Grain Yield

At the maturity stage, 30 ears were selected for harvest in the middle three rows of
each plot to determine the yield and its components, i.e., the row number, kernel number
per ear, and 1000-kernel weight. A total of 100 kernels were sampled in the middle of
each ear and weighed, then multiplied by 10 to determine the 1000-kernel weight. All
the kernels were air-dried and the grain moisture content was determined using a grain
moisture tester (PM-8188-A). The grain yield was calculated at 14% moisture, which is
the standard for maize storage or sale in China (GB/T29890-2013). The grain yield was
calculated as follows [33,34]:

y (kg ha−1) =
A× B×C× (1−D)

106 × (1− 14%)
(1)

where y is the grain yield, A is the harvested ears (ears ha−1), B is the kernel number per ear,
C is the 1000-kernel weight (g 1000 kernels−1), and D is the sample moisture content (%).

2.3.2. Dry Matter Accumulation and Dry Matter Translocation (DMA and DMT)

At the silking and maturity stage, three adjacent plants were sampled with three
replicates. Fresh samples were heated at 105 ◦C in an oven for half an hour to inactivate
the enzymes and then dried at 80 ◦C to a constant weight to determine their DMA. The
DMT from the vegetative organs to the grain between silking and maturity, the DMA at the
post-silking stage, and the contribution of dry matter at the post-silking stage to the grain
weight (CDMGW) were calculated following the methods of Wu et al. [34].

DMT= DMA at the silking stage − DMA at the maturity stage (2)

The DMA at the post − silking stage = Grain weight at maturity stage − DMT (3)
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Contribution o f DMT be f ore the silking stage to grain yield (%) =
DMT

Grain yield
× 100 (4)

CDMGW(%) =
DMA at the post − silking stage

Grain yield
× 100 (5)

2.3.3. Climatic Data

Daily weather records during the growing season from 2014 to 2021, including daily mean
temperature (Tmean), maximum temperature (Tmax), precipitation (Prec.), and sunshine hours
(SH), were obtained from the National Meteorological Data Center (http://data.cma.cn/).

2.3.4. Accumulated Temperature ≥10 ◦C (AT10)

AT10 was calculated by summing the daily mean temperatures during the growing
season when the daily temperature was above 10 ◦C. The equation is as follows:

ATa = ∑n
0 (Tmean − 10) (6)

2.3.5. Solar Radiation

The total solar radiation model constructed based on the measured data in this study
requires astronomical radiation or clear sky radiation. Therefore, the radiation formula
in the Penman–Monteith model recommended by FAO56 was used to calculate these
two elements. Based on the solar radiation data and sunshine hour data of radiation
stations in the Huaihe River Basin from 1961 to 2010, with the percentage of sunshine as the
independent variable, the multiple regression analysis method was used to fit the empirical
coefficient a and b values, which revised the recommended values of FAO56. For the solar
radiation estimation model, see the following formulas:

R0 = Gscdr(ωs sin ϕ sin δ + cos ϕ cos δ sin ωs)/π (7)

dr = 1 + 0.033 cos
(

2π

365
J
)

(8)

δ = 0.409 sin
(

2π

365
J − 1.39

)
(9)

ωs = arccos(− tan ϕ tan δ) (10)

Rs = R0(0.172 + 0.521n/N) (11)

N =
24
π

ωs (12)

where R0 is the astronomical radiation, Rs is the clear sky radiation, Gsc is the solar constant
(118.109 MJ/(m2·d)), dr is the “Sun–Earth distance” correction factor, δ is the solar decli-
nation, ϕ is the geographical latitude, ωs is the hour angle at sunset, and π is 3.1415926, n
is the actual sunshine hour duration (unit h), N is the maximum possible sunshine hour
duration (unit h), and n/N is the relative sunshine hours.

2.3.6. Utilization Efficiency of Solar Radiation, Temperature, and Precipitation

The formulas for the calculation of solar radiation utilization efficiency (RUE) and
temperature utilization efficiency (TUE) are as follows [35]:

RUE =
q× y
∑ Rs

× 100% (13)

http://data.cma.cn/
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where y is the average grain yield of each experimental site and q is the conversion coeffi-
cient of dry matter to heat energy, and the value is 0.0175 MJ g−1. ∑ Rs is the total solar
radiation during the maize growing season (MJ m−2).

TUE =
Y

∑ ATa
(14)

TUE uses the units g, m−2 and ◦C−1. ∑ ATa is the accumulated temperature ≥10 ◦C
during the maize growing season (◦C d).

PUE =
Y

∑ P
(15)

PUE is the precipitation utilization efficiency with the units g and mm−1. ∑ P is the
total precipitation during the maize growing season (mm).

2.3.7. Statistical Analysis

Treatments’ effects on the grain yield and its components and utilization efficiency of
climate resources were analyzed using analysis of variance (ANOVA) at the 5% significance
level in SPSS 13.0 (SPSS, Chicago, IL, USA). Significant differences among means were
determined by least-significant-difference (LSD) multiple-range tests at the 5% level.

The regression and stepwise multiple regression were analyzed to test the relationship
between grain yield and grain components with meteorological data using SPSS 13.0
(SPSS, Chicago, IL, USA). The other data were analyzed using Excel 2016 (Redmond, WA,
USA). All of the figures were drawn using SigmaPlot 10.0 (Systat, San Jose, CA, USA) and
Excel 2016.

3. Results
3.1. Differences in Yield and Its Components

Yield was significantly affected by planting density, year, and experimental site
(Table 4). The interaction values of planting density × year, planting density × site,
year × site, and planting density × year × site were significant. A similar result was
also observed for kernel number per ear, whereas ear number was only significantly
different between different planting densities. As for 1000-kernel weight, the planting
density × site interaction and the year × site interaction were not significant.

Table 4. Analysis of variance for grain yield and its components.

Factor Yield 1000-Kernel Weight Kernel Number Ear Number

Density (D) 172.3 ** 47.1 ** 178.4 ** 9.9 **
Year (Y) 97.5 ** 89.1 ** 99.1 ** 1.2
Site (S) 446.3 ** 125.2 ** 370.2 ** 0.009
D × Y 6.8 ** 4.4 12.5 ** 1.1
D × S 5.6 ** 1.0 8.5 ** 0.01
Y × S 53.6 ** 70.5 ** 17.0 ** 0.07

D × S × Y 3.0 ** 2.0 * 3.4 ** 0.02
Note: ** indicates there was a significant difference at 1% level; * indicates there was a significant difference at
5% level.

Box plots for the yield, kernel number per ear, and 1000-kernel weight of maize in
Taihe and Hefei are shown in Figure 1. The average grain yields of different planting
densities from D1 to D7 in Taihe were 6155.4 kg ha−1, 8385.3 kg ha−1, 10,260.3 kg ha−1,
10,905.1 kg ha−1, 10,938.1 kg ha−1, 9921.1 kg ha−1, and 9753.4 kg ha−1, respectively. Grain
yield increased as planting density increased from D1 to D5 and then decreased from
D5 to D7. Ear number per hectare increased, whereas 1000-kernel weight and kernel
number per ear decreased as planting density increased. The average grain yields in
Hefei were 5557.5 kg ha−1, 7160.1 kg ha−1, 8479.2 kg ha−1, 9041.1 kg ha−1, 8718.9 kg ha−1,
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8563.7 kg ha−1, and 8213.0 kg ha−1 from D1 to D7. Grain yield increased as planting
density increased from D1 to D4 and then decreased from D4 to D7. Taihe produced a
significantly higher maize yield overall, and the values for different planting densities were
9.7%, 17.7%, 20.7%, 21.3%, 23.6%, 16.3%, and 21.3% higher than that in Hefei, respectively.
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Figure 1. Grain yield and its components under different planting densities in different sites. Note: 
Figure (A,C,E) represent grain yield, kernel number per ear, and 1000-kernel weight in Taihe. Figure 
(B,D,F) represent grain yield, kernel number per ear, and 1000-kernel weight in Hefei. Different 
letters above the boxes indicate significant differences between different planting densities. 

3.2. Regression of Grain Yield and Its Components 
The regression models between grain yield and its components are shown in Figure 

2. A positive relationship between grain yield and ear number was found in Taihe and 
Hefei (Figure 2C,F), but there was no significant relationship between grain yield and ker-
nel number per ear or 1000-kernel weight (Figure 2A,B,D,E) when combining the data of 
Taihe and Hefei, there was a positive relationship between grain yield and both ear num-
ber and kernel number per ear (Figure 2H,I). In conclusion, the grain yield was positively 
correlated with the ear number; the main difference in yields between Taihe and Hefei 
may be due to the kernel numbers per ear. 

Figure 1. Grain yield and its components under different planting densities in different sites.
Note: Figure (A,C,E) represent grain yield, kernel number per ear, and 1000-kernel weight in Taihe.
Figure (B,D,F) represent grain yield, kernel number per ear, and 1000-kernel weight in Hefei. Differ-
ent letters above the boxes indicate significant differences between different planting densities.

3.2. Regression of Grain Yield and Its Components

The regression models between grain yield and its components are shown in Figure 2.
A positive relationship between grain yield and ear number was found in Taihe and Hefei
(Figure 2C,F), but there was no significant relationship between grain yield and kernel
number per ear or 1000-kernel weight (Figure 2A,B,D,E) when combining the data of Taihe
and Hefei, there was a positive relationship between grain yield and both ear number and
kernel number per ear (Figure 2H,I). In conclusion, the grain yield was positively correlated
with the ear number; the main difference in yields between Taihe and Hefei may be due to
the kernel numbers per ear.
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Figure 2. Relationship between grain yield and its components. Note: Figure (A–C) represent the
relationship between grain yield and yield components in Taihe. Figure (D–F) represent the rela-
tionship between grain yield and yield components in Hefei. Figure (G–I) represent the relationship
between grain yield and yield components in Taihe and Hefei.

The quadratic model observed that, between grain yield and planting density (Table 5),
with the significant regression equation y = −1.44 × 10−6x2 + 0.2498x(R2 = 0.367) in Taihe,
the agronomic optimal planting density (AOPD) was 8.6 × 104 plants ha−1 based on the
equation, and yield at the AOPD was 10,768.3 kg ha−1 (Tabel 5). The 95% CI broadened
from 7.6~9.7 × 104 plants ha−1 between the lower and upper limit in Taihe. The significant
regression equation in Hefei was y = −1.41 × 10−6x2 + 0.2257x(R2 = 0.5801). The AOPD
was 8.0 × 104 plants ha−1, and the yield at the AOPD was 9025.6 kg ha−1. The 95% CI
broadened from 6.9~9.0 × 104 plants ha−1 between the lower and upper limit in Hefei.
Correspondingly, these results suggested that the simulated grain yield in Taihe was 19.3%
higher than in Hefei.

Table 5. Quadratic equations that best fit the yield–density relations, agronomic optimal planting
density (AOPD), 95% confidence interval (CI) of the AOPD, yield at the AOPD, and at the upper and
lower limits of AOPD.

Site Equation R2

Planting Density Yield

AOPD
95% CI

AOPD
95% CI

Lower Upper Lower Upper
104 Plants ha−1 kg ha−1

Taihe y = −1.44 × 10−6x2 + 0.2498x 0.3670 8.6 7.6 9.7 10,768.3 10,610.8 10,610.8
Hefei y = −1.41 × 10−6x2 + 0.2257x 0.5801 8.0 6.9 9.0 9025.6 8870.1 8870.1
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3.3. Difference in DMA and DMT

The aboveground dry matter accumulation of different sites and different planting
densities are shown in Figure 3. The DMA weight after the silking stage in Taihe accounted
for 54.1~62.9% in 2017 and 55.2~69.6% in 2018; the values in Hefei were 54.3~63.5% in 2016
and 50.0~59.0% in 2018. There was a significant difference in the DMA of different sites and
planting densities. Taihe had a higher DMA than Hefei. As planting density increased, the
DMA increased. However, D4 and D5 treatments decreased the DMT and the contribution
of DMT before the silking stage to the grain stage and enhanced the contribution of dry
matter at the post-silking stage to the grain weight more than other treatments (Table 6).
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Table 6. DMT from vegetative organs to grain and accumulation amount at the post-silking stage.

Site Year Treatment
DMT before the

Silking Stage
(kg ha−1)

Contribution of DMT
before the Silking Stage to

Grain (%)

DMA at the
Post-Silking Stage

(kg ha−1)

CDMGW
(%)

Taihe

2017

D2 1932.1 23.3 6360.2 76.7

D3 1918.2 18.6 8412.6 81.4

D4 1808.4 15.0 10,245.9 85.0

D5 2884.4 25.1 8595.2 74.9

D6 3418.1 31.5 7424.2 68.5

D7 3423.7 36.7 5916.2 63.3

2018

D2 2858.0 34.6 5392.4 65.4

D3 3554.5 35.5 6467.7 64.5

D4 2053.2 15.7 11,052.3 84.3

D5 1707.4 13.1 11,343.0 86.9

D6 3760.0 37.2 6335.8 62.8

D7 3768.9 38.0 6159.0 62.0
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Table 6. Cont.

Site Year Treatment
DMT before the

Silking Stage
(kg ha−1)

Contribution of DMT
before the Silking Stage to

Grain (%)

DMA at the
Post-Silking Stage

(kg ha−1)

CDMGW
(%)

Hefei

2016

D1 1029.9 21.4 3777.6 78.6

D2 1420.6 21.1 5311.5 78.9

D3 1832.6 21.8 6592.1 78.2

D4 1279.9 13.8 8025.8 86.2

D5 1959.5 20.8 7473.5 79.2

D6 2862.6 32.0 6074.5 68.0

D7 3387.7 40.7 4938.2 59.3

2017

D2 2120.3 34.0 4114.1 66.0

D3 1910.8 27.8 4968.8 72.2

D4 1427.2 18.3 6363.7 81.7

D5 1502.7 20.4 5871.6 79.6

D6 2672.1 39.1 4168.7 60.9

D7 2891.2 43.3 3792.2 56.7

3.4. Differences in Resource Utilization Efficiency

The ranges of solar radiation, AT10, and Prec. during the growing season of maize
in Taihe and Hefei are shown in Table 7. The range of solar radiation in Taihe was
1441.8~2028.3 MJ m−2, with an average of 1792.0 MJ m−2, which was 7.8% higher than that
of 1340.4~1989.84 MJ m−2 in Hefei.

Table 7. Climatic resources of different sites.

Climatic Resources Regions Ranges

Solar radiation (MJ m−2)
Taihe 1441.8~2028.3
Hefei 1340.4~1989.84

Accumulated temperature ≥ 10 ◦C (◦C) Taihe 1515.6~1968.6
Hefei 1715.4~2027.8

Precipitation (mm) Taihe 358.3~881.1
Hefei 469.8~1055.2

Differently to solar radiation, AT10 during the growing season of maize was observed
as Taihe < Hefei, with mean values of 1788.4 ◦C and 1861.9 ◦C, respectively, and the value
in Taihe was 3.9% lower than in Hefei. Similarly, the Prec. showed the same trend as AT10.
The Prec. values were 582.1 mm and 672.5 mm, respectively, and the value in Taihe was
13.4% lower than in Hefei. In summary, compared to Hefei, Taihe exhibited significantly
higher solar radiation but lower AT10 and Prec. values.

The climatic resource utilization efficiency of different planting densities and regions
is shown in Figure 4. In this study, the results showed that D4 and D5 treatments had the
highest resource utilization efficiency, and their results were significantly higher than D1
and D2 (Figure 4). We calculated the mean values of RUE, TUE, and PUE from the D3 to
D5 treatments in Taihe and Hefei. Taihe had higher RUE, TUE, and PUE values, which
were 12.9%, 24.6%, and 26.7% higher than those in Hefei, respectively (Figure 5).
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Figure 5. Comparison of climate resource utilization efficiencies between Taihe and Hefei. Note: 
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stepwise multiple linear regression model was used to analyze solar radiation, AT10, and 
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The correlation between solar radiation, AT10, precipitation, and grain yield was
analyzed. A positive relationship between solar radiation and grain yield (R = 0.349,
p < 0.01) and a negative relationship with AT10 (R = −0.535, p < 0.01) were found, while
there was no significant relationship between precipitation and grain yield (R = −0.147,
p = 0.217). A stepwise multiple linear regression model was used to analyze solar radiation,
AT10, and grain yield. The regression equation was y = 0.550R−0.562AT10 + 14,593.6
(R = 0.379). In conclusion, the grain yield was positively affected by solar radiation and
negatively affected by AT10.

3.5. Inter-Annual Differences in Yield and Climate

Results showed that solar radiation was positively correlated with yield, while AT10
was negatively correlated with it. Different sites had different climatic conditions, which
also varied in different years. We selected grain yield values at planting densities of
6 × 104 plants ha−1 (D3), 7.5 × 104 plants ha−1 (D4), and 8 × 104 plants ha−1 (D5) and
averaged them, then calculated the deviation of the average yield in different years. The
deviation rates of yield, solar radiation, and AT10 in different years and different regions
are shown in Figure 6.

The deviation of grain yield in Taihe was from −0.8 to 26.0%, and it was −12.9 to
4.0% in Hefei (Figure 6A). In 2015, as solar radiation increased, the grain yield increased in
Taihe, which may be because, during the critical period of the flowering stage, there was no
occurrence probability of Tmax ≥ 35 ◦C (Figure 6C). In 2020, the results were the same as in
2015. In these two cases, the grain yield was positively affected by solar radiation, which
indicated that with a lower occurrence probability of Tmax ≥ 35 ◦C, the grain yield increased
or decreased as solar radiation increased or decreased. Conversely, in other years with a
higher occurrence probability of Tmax ≥ 35 ◦C (28.6% in 2014, 47.6% in 2017, 57.1% in 2018,
and 14.3% in 2021), no matter the variation in solar radiation, the grain yield decreased.
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Figure 6. Deviation of grain yield, solar radiation, and accumulated temperature ≥10 °C and the 
probability of a maximum temperature of ≥35 °C during the 40 and 60 days after planting in Taihe 
and Hefei regions. Note: Figure (A) represents the deviation in Taihe, Figure (B) represents the de-
viation in Hefei, and Figure (C) represents the probability of a maximum temperature of ≥35 °C. 
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Figure 6. Deviation of grain yield, solar radiation, and accumulated temperature ≥10 ◦C and the
probability of a maximum temperature of ≥35 ◦C during the 40 and 60 days after planting in Taihe
and Hefei regions. Note: Figure (A) represents the deviation in Taihe, Figure (B) represents the
deviation in Hefei, and Figure (C) represents the probability of a maximum temperature of ≥35 ◦C.

The average occurrence probability of Tmax ≥ 35 ◦C in Hefei was 40.5% (Figure 6C),
which was higher than the average value of 27.2% in Taihe. In Hefei, for example, in
2017, the occurrence probability of Tmax ≥ 35 ◦C was 69.6% (Figure 6C). The Tmax ≥ 35 ◦C
lasted for 23 days during the 28- and 60-day durations after planting, and in particular,
Tmax ≥ 39 ◦C lasted for 7 days, which resulted in a 16.3% decrease in grain yield compared
to the other three years.

Overall, the results indicate that regardless of solar radiation being higher or lower, as
the rate of Tmax ≥ 35 ◦C increased, the grain yield decreased. When the rate of Tmax ≥ 35 ◦C
was at a lower level, with an increase in solar radiation, the grain yield also increased.

4. Discussion
4.1. Change in Planting Density to Adapt to Climate Change and Improve Yield

In Taihe and Hefei, the solar radiation and accumulated temperature are abundant,
and to make full use of climate resources, improving planting density is an effective way
to narrow the grain yield gap between actual grain yield and potential grain yield and to
increase the grain yield overall [11,36,37]. In this study, the results indicated that as the
planting density increased, the grain yield also increased, but when the planting density
exceeded the optimal density, the yield decreased, which was consistent with previous
research [38]. The optimal planting densities in the two sites were different. The AOPD
was 8.6 × 104 plants ha−1 in Taihe, which was higher than that of 8.0 × 104 plants ha−1

in Hefei. However, the AOPDs in these two sites were lower than that in the north-
west in China (10.5 × 104~12 × 104 plants ha−1) and equivalent to that in the southwest
(8.0 × 104 plants ha−1), which may be due to the differences in soil properties and climatic
conditions [31,38].

The simulated maximum yields in Taihe and Hefei were 10,768.3 kg ha−1 and 9025.6 kg ha−1

at the AOPD, respectively, while the actual grain yields were 7115.4 kg ha−1 and 5654.3 kg ha−1,
which were calculated from the actual yields in twenty-one counties in SHHH and four
counties SE (Figure 7). The actual grain yields achieved 66.1% and 62.6% of the simulated
maximum grain yields, which may be owing to the lower actual planting density with the
value of 6 × 104 plants ha−1. Previous studies showed that in the western corn belt of the
United States, the average farm yield could achieve over 80% of the simulated potential
yield by the Hybrid-Maize Model [39]. However, in China, the average farmer’s yield only
attained 51% of China’s record yield [40], which may be due to the difference in planting
density caused by farmer decision-making. Changing farmer attitudes toward the value of
optimal planting density could increase farm yields by 12.3% [41]. In this study, the actual
density only received 69.7% and 75.9% of the AOPDs; by increasing the actual planting den-
sity to the optimal density, the yields could increase by 51.3% and 59.6%. Other research had
shown that when the planting density was 19% lower than AOPD, the grain yield would
decrease by 39% [38]. Planting density was the most important factor to affect grain yield,
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more so than others, such as planting, harvesting date, fertilization, and tillage practice [42].
Changing the planting density within a certain range (7.5 × 104~12 × 104 plants ha−1)
could narrow the grain yield gap [43], which may be because proper planting density
establishes an optimum canopy structure [37,44]. An optimum canopy structure, such as a
proper leaf area index, can better adapt to solar radiation and accumulated temperature
and can result in a higher climatic resource utilization rate [45–47].
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Lower planting density induced lower RUE, TUE, and PUE values. Reasonably
increasing the planting density was an effective agronomic measure for enhancing the
resource utilization efficiency of maize. In this study, D4 and D5 treatments had higher RUE,
TUE, and PUE values than other treatments, which was similar to previous findings [48].
When the planting density was in the range of 6.9~8.6 × 104 plants ha−1, the maize
population could make full use of the climatic resources, resulting in a higher grain yield,
and this result is consistent with the simulated results. A lower planting density results
in a lower LAI, which cannot match or take advantage of the abundant solar radiation
and temperature resources, causing a waste of solar radiation [1] and a decrease in DMA.
In this study, lower planting density produced lower DMA, especially DMA at the post-
silking stage. Moreover, when the planting density was too large, the LAI became too
high, causing self-shading [45], and the DMT before the silking stage was higher than
optimal planting density, the contribution of dry matter at the post-silking stage to the
grain weight was higher, which resulted in yield loss. Optimal planting density could
promote rapid canopy closure and improve the potential capacity of the crop canopy to
capture climatic resources [49]. Sub-optimal and up-optimal densities had a negative
impact on the efficiency with which the crop or plant converts intercepted radiation into
grain sink capacity [50]. In this study, D4 and D5 treatments had higher DMA at the post-
silking stage and higher CDMGW. Overall, in the Taihe and Hefei sites, a proper increase
in planting density could be an effective way to increase the grain yield and narrow the
grain gap via a higher climatic resource utilization efficiency.

4.2. Heat Resource Has a Negative Effect on the Grain Yield

The yields sometimes varied among different ecological areas with the same planting
density [31]. Many studies reported that climatic conditions and cultivation management
measures affected yield and its components differently between different regions [51]. In
this study, Taihe produced a significantly higher grain yield than Hefei by 9.7~23.6%, which
may be induced by the difference in kernel number per ear. Previous studies reported
that kernel number accounted for most of the variation in grain yield [52,53], and kernel
number was the main numerical component contributing to grain yield variations across
densities [54], which was similar to our result.

In this study, the RUE, TUE, and PUE values in Taihe were significantly higher than
those in Hefei. Regression analysis showed that grain yield was not limited by precipitation
due to the ample amount of precipitation, which was different from the Northern Huang-
Huai-Hai Plain of China and other ecological areas in the world [48,55], while AT10 had
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a negative effect on the grain yield, and was the main factor affecting the grain yield,
compared to the solar radiation. It has been reported that the total radiation and thermal
time during the growth period would positively affect the grain yield in the northern maize
area, and regional radiation was the main factor affecting maize production compared to
the thermal time [23], which was different from our finding. The difference may be owing
to the higher occurrence rate of Tmax ≥ 35 ◦C. In the Taihe and Hefei regions, the climatic
conditions were different from those in northern China. Maximum temperatures exceeding
35 ◦C often occurred, and the occurrence probabilities 40~60 days after planting were
about 27.2% in Taihe and 40.5% in Hefei, which may result in a high-temperature disaster
risk during the flowering of summer maize. The impact of high temperature on yield
relates to the timing of the occurrence [3]. During the flowering stage, high temperatures
induce death of the flower and failure in pollination, and pollen viability determines kernel
number [56], which may be the reason for the difference in kernel numbers per ear between
the two sites, resulting in a reduction in grain yield. The WOFOST model predicted that
under climate conditions in the future, the decrease in yield might be partially alleviated
by changes in phenology and sowing dates [57]. In Ethiopia, researchers formulated
that under such climate conditions, changes in hybrid variety and nitrogen fertilization
management may improve grain yield [58]. In the future, heat waves will become more
frequent, longer, and more intense [2]. Previous studies revealed that the annual mean
temperature increase in the Huang-Huai-Hai region during 1979–2014 was 0.37 ◦C per 10 a,
and the probability of concurrent drought and heat events increased from the northeast to
the southwest in the Huang-Huai-Hai region, which mainly occurred during the vegetative
period [2,59]. Extreme heat during the silking stage decreases the photosynthetic capacity,
shortens grain-filling duration, and decreases grain-filling rates. When high temperature
coincides with tasseling and early grain filling stage, yield decreases dramatically, and
farmers can hardly alleviate this situation [2]. Overall, regardless of higher solar radiation
or lower radiation, as the rate of maximum temperature exceeding 35 ◦C increased, grain
yield decreased. When the rate of maximum temperature exceeding 35 ◦C decreased, with
an increase in solar radiation, the grain yield increased.

Improving climatic resource utilization efficiency and increasing local grain yield are
still the main objectives in China. In this study, we formulated the agronomic measurements
to increase grain yield and clarified the main limiting climatic factors. Due to global climate
change, severe weather events will occur more frequently. In order to adapt to local climatic
factors and maximize the utilization efficiency of climatic resources, it is necessary to
formulate cultivation measurements with regional characteristics. In Taihe, which belongs
to SHHH, measures to increase the planting density can be used to increase production,
while in Hefei, which belongs to SE, due to the lower planting density and kernel number
per ear compared to SHHH, the measures of increasing planting density and planting
large-ear maize hybrid varieties may be used to improve yield. Similarly, the demand for
new crop varieties with excellent comprehensive traits is even more urgent due to global
warming. High-temperature tolerance of maize varieties should be used as an important
breeding index in these two regions. However, our experimental sites were not sufficient.
In the future, we will arrange more experimental sites on a larger scale to more accurately
guide local corn production.

5. Conclusions

This study determined the AOPD in Taihe and Hefei sites and increased the planting
density from 6.0× 104 plants ha−1 to 8.6× 104 plants ha−1 in Taihe and 7.9 × 104 plants ha−1

in Hefei, which could enhance the grain yield by 51.3% and 59.6%, respectively. D4 and
D5 treatments had higher RUE, TUE, and PUE values than the other treatments. As
for the different sites, the RUE, TUE, and PUE values in Taihe were 12.9%, 24.6%, and
26.7% higher than those of Hefei. Solar radiation had a positive effect on the grain yield,
while AT10 had a negative effect on the grain yield. Compared to solar radiation AT10
was the main climatic factor affecting the grain yield, which may be due to the high
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occurrence probability of Tmax ≥ 35 ◦C. Ultimately, in order to adapt to local climatic
factors and maximize the utilization efficiency of climatic resources, it is necessary to
formulate cultivation measurements with regional characteristics. In the future, increasing
planting density and alleviating heat stress may enhance grain yield.
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SHHH Southern Huang-Huai-Hai maize region
SE Hilly maize area in the southeast
AOPD Agronomic optimal planting density
Tmean The mean temperature
Tmax The maximum temperature
Prec. Precipitation
AT10 Accumulated temperature ≥ 10 ◦C
RUE Solar radiation utilization efficiency
TUE Temperature utilization efficiency
PUE Precipitation utilization efficiency
DMA Dry matter accumulation
DMT Dry matter translocation
CDMGW The contribution of dry matter at the post-silking stage to the grain weight
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