
Citation: Martins, G.D.; Xavier,

L.C.M.; de Oliveira, G.P.; de Lourdes

Bueno Trindade Gallo, M.; de Abreu

Júnior, C.A.M.; Vieira, B.S.; Marques,

D.J.; da Silva, F.V. Using Geospatial

Information to Map Yield Gain from

the Use of Azospirillum brasilense in

Furrow. Agronomy 2023, 13, 808.

https://doi.org/10.3390/

agronomy13030808

Academic Editors: Jitka Kumhálová,

Jan Lukáš, Pavel Hamouz and Jose

Antonio Dominguez-Gómez

Received: 3 February 2023

Revised: 3 March 2023

Accepted: 6 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Using Geospatial Information to Map Yield Gain from the Use
of Azospirillum brasilense in Furrow
George Deroco Martins 1,* , Laura Cristina Moura Xavier 2,*, Guilherme Pereira de Oliveira 3,
Maria de Lourdes Bueno Trindade Gallo 4 , Carlos Alberto Matias de Abreu Júnior 2, Bruno Sérgio Vieira 5 ,
Douglas José Marques 5 and Filipe Vieira da Silva 1

1 Instutute of Geography, Unversidade Federal de Uberlândia, Monte Carmelo 38500-000, BR-MG, Brazil
2 Post Graduate Program in Agriculture and Geospatial Information, Institute of Agrarian Sciences,

Unversidade Federal de Uberlândia, Monte Carmelo 38500-000, BR-MG, Brazil
3 Lallemand Soluções Biológicas LTDA, Patos de Minas 38706-420, BR-MG, Brazil
4 Cartography Departament, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista,

São Paulo 19060-900, Brazil
5 Institute of Agrarian Sciences, Unversidade Federal de Uberlândia, Monte Carmelo 38500-000,

BR-MG, Brazil
* Correspondence: deroco@ufu.br (G.D.M.); xavier.lauramoura@gmail.com (L.C.M.X.)

Abstract: The application of biological products in agricultural crops has become increasingly promi-
nent. The growth-promoting bacterium Azospirillum brasilense has been used as an alternative to
promote greater yield in maize crops. In the context of precision agriculture, interpreting geospatial
data has allowed for monitoring the effect of the application of products that increase the yield of
corn crops. The objective of this work was to evaluate the potential of Kriging techniques and spectral
models through images in estimating the gain in yield of maize crop after applying A. brasilense.
Analyses were carried out in two commercial areas treated with A. brasilense. The results revealed
that models of yield prediction by Kriging with a high volume of training data estimated the yield
gain with a root-mean-square error deviation (RMSE%), mean absolute percentage error (MAPE%),
and R2 to be 6.67, 5.42, and 0.88, respectively. For spectral models with a low volume of training data,
yield gain was estimated with RMSE%, MAPE%, and R2 to be 9.3, 7.71, and 0.80, respectively. The
results demonstrate the potential to map the spatial distribution of productivity gains in corn crops
following the application of A. brasilense.

Keywords: biological product; geospatial data analysis; yield gain distribution map

1. Introduction

Synthetic fertilizers are used in maize cultivation to meet the nitrogen (N) demand. The
most widely used synthetic fertilizer is urea, which has the advantage of easy availability
of N for plant uptake. However, the utilization of urea by plants is low, ranging from 42%
to 49%, due to losses of N to the environment. These losses can occur in two ways. One
way is via microbial immobilization, in which soil microorganisms absorb the nutrient to
meet their needs and, after the end of their life cycle, mineralize and release the N back
to the soil, mainly in the form of NO2 and NO3. The other way is by the volatilization of
ammonia, which returns N to the atmosphere. These losses mainly occur when urea is used
as a source of N under inadequate humidity and temperature conditions [1].

Among the alternatives for reducing the consumption of synthetic fertilizers by maize
crops is the use of diazotrophic bacteria, which can fix atmospheric N and make it available
to plants in labile forms. The fixed N becomes available to plants by direct excretion of the
bacteria or by mineralization of dead bacteria; thus, the rhizosphere is colonized by the
bacteria [2]. Azospirillum is one of the genera that can associate with grassroots; its efficiency
in biological N fixation is up to 78% higher than other genera found near rice roots [3].
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Azospirillum includes more than 14 species. Azospirillum brasilense is the most important
in agriculture and there are several biological growth-promoting products that have this
bacterium as an active ingredient. The effects of A. brasilense on the development of grasses
have been studied in recent years in terms of crop yield and the physiological causes that
possibly increase yield. Physiological causes include antagonism to pathogens, production
of phytohormones, increased photosynthetic rate, assistance in the absorption of water
and nutrients, and biological nitrogen fixation [3]. However, research results have been
inconsistent concerning the real yield gain from the use of biologicals, such as A. brasilense,
given the negligible statistical significance evident in the comparison of yield between
treated and untreated areas [4].

Owing to a symbiotic relationship between the plant and bacteria, the increase in crop
yield after the application of biological products is sometimes so subtle that classical models,
such as analysis of variance (ANOVA), are unable to demonstrate differences in productivity
between treatment and control groups in various situations. This occurs because such
models do not account for factors that can affect crop yield, such as physiological variables
and the spatial dependence of yield among the population of plants in a given plot [5]. In
addition, it is important to note that ANOVA is a test of statistical significance and not
practical relevance. Therefore, a statistically insignificant difference does not necessarily
imply practical relevance. Given the importance of the use of products based on A. brasilense,
it is believed that studies related to the manipulation of geospatial information in agriculture
present a range of solutions through geostatistical techniques and spectral models, which
can offer more accurate and robust information about the yield of crops, such as corn.

Geostatistical tools have been used to estimate spatial relationships between crop
production and soil parameters under organic farming field conditions [6]. From the yield
gain surfaces generated by Kriging, the authors showed significant relationships between
the amount of organic material in the soil and the most and least productive regions.

In recent studies, spectral models based on machine learning and Moderate Resolution
Imaging Spectroradiometer (MODIS) [7], Landsat 8 [8], and aerially surveyed [9] images
were used to estimate yield. These models showed higher accuracy with the use of images
taken in the phenological stage between R2 and R3, representing the period from 12 to
18 days after fertilization, where the crop presents a significant biomass gain. On the
other hand, neural networks (multilayer perceptron, MLP) are used more frequently in
studies related to yield estimation in corn crops, both through images from remotely piloted
aircraft [10] and from orbital sensors [11]. The latter study used MLP based on a back-
propagation algorithm to estimate yield through MODIS and Global Land Surface Satellite
images. The authors estimated yield with mean absolute percentage error (MAPE) at <10%
and root mean square error (RMSE) at 700 kg/ha in most cases.

As observed in these experiments, work with prediction models based on machine
learning was highly accurate in predicting corn yields [7,12,13]. In one of these studies,
the possibility of predicting maize yield with RMSE deviation (RMSE%) was 84% from
Bayesian neural networks and Landsat multispectral images [7]. In another study, maize
yield was estimated with an R2 of 0.64 from algorithms based on random forests and
aerially surveyed multispectral images [13].

It is possible to map the spatial distribution of maize using interpolators, such as
Kriging and spectral prediction models, based on machine-learning algorithms in different
treatment and management conditions. Furthermore, it is difficult to demonstrate the
actual yield of maize crops after the application of biological products through statistical
analysis. Thus, it remains unanswered whether it is possible to map areas of yield gain
and loss after the application of biostimulants based on A. brasilense to maize crops using
geospatial data manipulation techniques.

This study aims to evaluate the potential of techniques based on geospatial information
data, such as Kriging and spectral models, to estimate the yield gain of maize under field
conditions with the application of A. brasilense. It is worth noting that our method was
applied to a commercial area in a tropical region, but it can be replicated in areas of
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different sizes and climatic and management conditions, providing an alternative way to
demonstrate the actual yield gain of maize yield after the application of a biostimulant
(A. brasilense).

2. Method

We evaluated the potential of spatial data processing techniques in determining the
yield gain of corn crops after applying A. brasilense. At first, in a high-sample-density
scenario, we explored the possibility that generating yield gain was evident using an
interpolator based on Kriging. Then, we presented a solution to estimate the yield gain from
spectral prediction models based on machine learning in conditions of lower sample density.

Notably, the two proposals were developed for use in different real-life agricultural
production conditions. In general, we assume that the spatialization of the locations of
yield gain can be helpful in decision making for management in specific crop locations
based on regions of higher and lower yield gain. Specifically, the Kriging data reveal that
the simulation of the yield gain surfaces can be applied in cultures with high degrees of
mechanization and density of yield data because the technique allows surface simulation
with a high degree of detailing from the interpolation of a large sample set of variables.
With the image-based yield prediction models (spectral models), the objective is to define a
methodology for mapping the areas of gain and loss in a totally remote way that applies to
the majority of crop areas, since the models are built with few georeferenced yield samples.
This condition represents a large portion of the crops in the southern hemisphere, where
information about crop yield is often limited to the average yield of the plot and stratified
samples of the area.

We defined the methodology of this research considering the following steps: (1) ac-
quisition of yield data; (2) generation of yield prediction models from Kriging and spectral
models based on orbital-image (PlanetScope) and machine-learning algorithms, consider-
ing two treatments (control and application of A. brasilense); and (3) generation of yield
gain surfaces from differences between the two treatments.

2.1. Study Area

This study involved corn harvest in southwestern Brazil in a commercial area in
partnership between a rural producer and a company (Lallemand, Midi-Pyrénées, France).
Experimental areas Br1 and Br2 are located in the municipality of Patos de Minas, in the
mesoregion of Alto Paranaíba, Minas Gerais, Brazil (Figure 1). The study area has a red
latosol with an average altitude of 938 m, flat and undulated relief, and an average annual
precipitation of 950 mm. The mesoregion of Alto Paranaíba is one of the primary grain
producers in the state of Minas Gerais. Crop production focuses on corn and soybean
crops due to the high technological development of this region [14]. One factor that drives
production is temperature [15]. The mesoregion of Triângulo Mineiro/Alto Paranaíba has
a tropical climate with mild and dry winter seasons. The region’s average temperature
varies from 23 to 28 ◦C during the summer and from 16 to 21 ◦C during the winter. These
temperatures favor developing corn as a second-crop [16].

2.2. Experimental Outline

For Br1 and Br2, the experiments were performed using hybrid AG8088 PRO2, with
spacing between plant lines of 0.5 m and plant distribution of three plants per meter.
Thus, the spacing between plants was approximately 0.33 m, with an approximate density
of 60,000 plants per hectare. Strips alternated between those without the application of
A. brasilense (control group; STD) and those with the application of bioinoculant based
on A. brasilense LBCC 0850 (treatment group, TS; 5 × 10−8 CFU/mL, 500 mL/ha) (Fig-
ure 2B,E). At the harvest stage, field yield data were measured using a CASE IH Axial Flow
6150 harvester.



Agronomy 2023, 13, 808 4 of 12Agronomy 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. (A) Location of the experiments in the municipality of Patos de Minas, MG e (B) Br1 top 
and Br2 bottom. 

2.2. Experimental Outline 
For Br1 and Br2, the experiments were performed using hybrid AG8088 PRO2, with 

spacing between plant lines of 0.5 m and plant distribution of three plants per meter. Thus, 
the spacing between plants was approximately 0.33 m, with an approximate density of 
60,000 plants per hectare. Strips alternated between those without the application of A. 
brasilense (control group; STD) and those with the application of bioinoculant based on A. 
brasilense LBCC 0850 (treatment group, TS; 5 × 10−8 CFU/mL, 500 mL/ha) (Figure 2B,E). At 
the harvest stage, field yield data were measured using a CASE IH Axial Flow 6150 
harvester. 

 
Figure 2. Data of corn yield. (A,D)—Spatial distribution of corn yield samples after harvest 
differentiated by the application of A. brasilense (TS) or without treatment (STD), for areas Br1 and 

Figure 1. (A) Location of the experiments in the municipality of Patos de Minas, MG e (B) Br1 top
and Br2 bottom.

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. (A) Location of the experiments in the municipality of Patos de Minas, MG e (B) Br1 top 
and Br2 bottom. 

2.2. Experimental Outline 
For Br1 and Br2, the experiments were performed using hybrid AG8088 PRO2, with 

spacing between plant lines of 0.5 m and plant distribution of three plants per meter. Thus, 
the spacing between plants was approximately 0.33 m, with an approximate density of 
60,000 plants per hectare. Strips alternated between those without the application of A. 
brasilense (control group; STD) and those with the application of bioinoculant based on A. 
brasilense LBCC 0850 (treatment group, TS; 5 × 10−8 CFU/mL, 500 mL/ha) (Figure 2B,E). At 
the harvest stage, field yield data were measured using a CASE IH Axial Flow 6150 
harvester. 

 
Figure 2. Data of corn yield. (A,D)—Spatial distribution of corn yield samples after harvest 
differentiated by the application of A. brasilense (TS) or without treatment (STD), for areas Br1 and 
Figure 2. Data of corn yield. (A,D)—Spatial distribution of corn yield samples after harvest differ-
entiated by the application of A. brasilense (TS) or without treatment (STD), for areas Br1 and Br2,
respectively. (B,E)—Yield data after filtering outliers for simulation of yield surfaces by Kriging for
areas Br1 and Br2, respectively. (C,F)—Yield data for yield simulation by images for areas Br1 and
Br2, respectively.

2.3. Acquisition of Yield Values

The yield data were directly obtained from the vector files of harvest provided by
the machinery, by measuring the yield from measurements of mass and volume of the
harvested product (Figure 2A,D). The harvester had load cells to measure the harvested
load. Yield was estimated in tons per hectare at each meter of harvest.
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The yield measurements were associated with a GNSS receiver, machine displacement,
and cutting width systems. Additional sensors were also present in the sensor platform of
the machines. These devices included humidity sensors, rotation sensors, and inclinometers
that assisted the internal calibrations of the mechanisms of generation of georeferenced
yield data.

The Differential Global Positioning System (DGPS) was used for positioning by GNSS.
In this system, the relative positioning of the harvester occurs based on the correction of
information obtained by a GPS receiver by the use of data from one or more fixed GPS
receivers. In Brazil, a network of support towers receives the GPS signals and transmits the
corrected signals through radio transmitters. For agricultural activities in which continuous
positioning in real-time is required, the DGPS positioning provides coordinates with an
accuracy of 1 to 3 m [17].

2.4. Filtering of Yield Data

Before generating surfaces and yield estimation models, the yield data were filtered for
each area to eliminate outliers. A previously described method based on the Density-Based
Spatial Clustering of Applications with Noise algorithm [18] was used for filtering. In
addition, null yield data, plot border points, transition lines from one treatment to another,
and locations where yield was within a confidence interval of +/− three standard deviations
from the average yield of the area were excluded. The means, variation coefficients,
minimum and maximum values, and grain yield asymmetries were determined to verify
the normality of the measurements using Minitab version 19.2020 statistical software.

2.5. Generation of Yield Gain Surfaces by Kriging

The objective was to evaluate the application of a geostatistical technique (interpolation
by Kriging) to perform yield inference considering different treatment scenarios in the
study areas.

It is worth noting that the purpose of this analysis was to simulate the yield of the
particular area, considering two situations: yield of an area that was not treated (STD)
or treated with the application of A. brasilense (TS). For each area, two yield surfaces
were generated considering different locations for interpolation. Initially, 80% of the
points contained in the locations where treatment was not applied were considered for
interpolation. Subsequently, 80% of the points contained in the locations where treatment
was applied were considered (Figure 2B,E). The 20% of the remaining data distributed in
each treatment were used to validate the models.

Before generating the interpolated surfaces, a semivariogram analysis was performed
to define the mapping functions that best reproduced the yield structure analyzed. The
spatial dependence between the data was modeled based on the semivariogram. This
allowed the interpolation of productivity values at unsampled locations. Through the
covariances, the statistical relationships existing between the spaced samples of succes-
sive predetermined values were measured, allowing the determination of the best linear
combination of nearby sample values to estimate a value at an unknown location [7].

2.6. Generation of Yield Gain Surfaces from Spectral Models

Similar to the previous step, the spectral models were generated considering the yield
of the area that was untreated or treated with A. brasilense.

2.6.1. Image Acquisition

High-resolution multispectral orbital images were obtained through remote orbital
sensors from the PlanetScope satellite constellation two months before harvest during the
floury grain production stage.

The choice of this phase is justified due to the greater correlation between the image
bands and yield for this period compared to other phenological phases. The tests were per-
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formed in the preliminary stages of defining the final proposed method, such as described
previously [19].

Regarding the sensor characteristics, PlanetScope satellite images have a spatial res-
olution of 3 m and radiometric resolution of 12 bits. The Bayer Mask CCD type PS2
sensor used in this constellation of satellites captures the wavelengths of blue (455–515 nm),
green (500–590 nm), red (590–670 nm), and near-infrared (780–860 nm). The images are
configured in the Universal Transverse Mercator projection system and World Geodetic
System-84 horizontal datum and correction level 3B. The atmospherically corrected images
are converted to surface reflectance.

2.6.2. Generation of Spectral Models for Yield Prediction

The values of band surface reflectance and multispectral index brightness were ex-
tracted through the generation of regions of interest using part of the points of the point-type
vector files (Figure 2C,F). Each georeferenced yield value was related to the respective
digital number in the image. It is important to note that the 100 sampling locations were
randomly selected with a minimum distance of 5 m between adjacent locations. After
selecting the points, we calculated the Pearson model between yield and spectral values
from the images with the respective derived vegetation index.

We used the original bands of the PlanetScope imagery and the Normalized Difference
Vegetation Index to generate the prediction models. We only used the original bands and
index as predictor variables to avoid overfitting the generated models, which can occur
when the number of parameters used in the regression is high.

Analogous to the Kriging step, yield surfaces were generated considering two scenar-
ios: algorithms structured with yield and reflectance values derived only from areas that
received treatment and from areas that did not receive treatment. Notably, the prediction
models for Br1 and Br2 were not used to estimate yield outside the plot from which the
training samples were extracted. Therefore, 80% and 20% of the samples were used for the
training and validation of the algorithms, respectively.

In this step, the machine-learning algorithm used to generate the yield prediction
models was the MLP Neural Network type. It was configured with three neurons in
an intermediate layer. The learning rate was 0.3 and momentum was 0.2. This step
was performed using Weka version 3.9.5 software (https://waikato.github.io/weka-wiki/
downloading_weka/, accessed on 1 August 2021).

2.7. Model Validation

For validation and analysis of model accuracy, two metrics were used: MAPE%
(Equation (1)):

MAPE (%) = ((∑|ŷ_i − y_i|)/y_i)/n × 100 (1)

where ŷ_i is the predicted value, y_i is the value observed in the field, and n is the total
number of elements, and RMSE%) (Equation (2)):

RMSE(%) = (
√

((∑(ŷ_i − y_i)2)/n) × 100)/((∑y_i)/n) (2)

where ŷ_i are the predicted values, y_i are the values measured in the field, and n is the
total number of observations.

2.8. Generation of Yield Gain Surfaces

The yield gain surfaces were generated by subtraction between those simulated with
the control and with the application of A. brasilense. To compare the surfaces generated,
subtraction between the yield gain surfaces by Kriging and multispectral models was
performed. The similarity between them was evaluated by Pearson’s correlation.

https://waikato.github.io/weka-wiki/downloading_weka/
https://waikato.github.io/weka-wiki/downloading_weka/


Agronomy 2023, 13, 808 7 of 12

3. Results

Figure 3 presents the frequency diagram and descriptive statistics values from the
yield data of the samples presented in Figure 2.
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Figure 3. Frequency diagram and descriptive statistics for study areas Br1 and Br2.

According to Figure 3, Br2 presented a higher yield and lower coefficient of variation
(9249.64 Kg; 10.11%) than Br1 (8802.05 Kg; 11.10%). For both trials, from the samples used
for Kriging and image models, a higher yield was observed in the sites where treatment was
applied. From the samples used for Kriging, the productivities of the TS plots presented
normality, with no normality in the STD data.

Figure 4 and Table 1 present data from the adjusted Kriging models and descriptive
data of the semivariograms, such as the nugget effect, range, and path.
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Table 1. Descriptive data of semivariograms adjusted for BR1 and BR2 for STD and TS.

Br1 (STD/TS) Br2 (STD/TS)

Nugget effect 0.25/0.01 0.22/0.01
Reach 4.68/0.87 0.55/0.77

Plateau 0.80/0.65 0.50/0.70

For the STD areas, the semivariograms fit to theoretical Gaussian and spherical models
for the TS areas all obtained a lower error in the 110◦ direction. The semivariograms of the
STD areas showed higher values than the TS areas for the nugget effect, range, and path,
where the highest values were for STD Br1 (0.25, 4.68, and 0.80, respectively).

Figure 5 shows the performance graphs of the prediction models (RMSE%, MAPE%,
and R2) by Kriging (Kriging Method) and by MLP from images obtained by remote sensing
(RS). The yields obtained in the field and the abscissa axis are presented in the ordinate
axis, the yield estimated by the models.
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When analyzing the Kriging performances, the models generated from samples from
STD sites had a minimum RMSE% and MAPE% of 6.75 and 5.42, respectively, for Br2,
compared to 7.32 and 6.04, respectively, for models generated from samples from TS sites.
The prediction performances by MLP/RS indicated that the models generated from samples
from STD sites had a minimum RMSE% and MAPE% of 9.30 and 7.71, respectively, for Br2.
For the models generated from samples of the TS sites, the minimum RMSE% and MAPE%
were 9.34 and 7.79, respectively, for Br1.
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The correlation coefficients between estimated and measured yield for the models of
estimation by Kriging varied from 0.70 to 0.88, respectively, whereas for the TS and STD
sites in the Br2 area, maximum values were 0.88 and 0.82, respectively. For the models
generated by neural networks, in Br2, the TS and STD treatments obtained the highest
correlation coefficients (0.8 and 0.72, respectively).

Figure 6 shows the maps of corn yield gain by applying A. brasilense generated by the
Kriging method and MLP/RS, and the comparison between the surfaces.
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Analyses of the data of yield gain surfaces in Figure 6 indicated a more significant
yield gain of surface generated by the MLP/RS method when A. brasilense was applied.
In a general context, Kriging data revealed the distribution of areas that showed a gain
mostly over the places where the treatments were applied. In contrast, the MLP technique
indicated the yield gain throughout the entire area. The difference reflects the lower
densification of points used for surface generation from the spectral model. There is an
overestimation of the real value of yield gain due to the different amounts of samples used
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by different models in the generation of surfaces, culminating in similarities of 53.04% (Br1)
and 56.08% (Br2) in the correlation between the methods.

4. Discussion

Regarding the behavior of regionalized variables (yield) when analyzing the samples
separately (i.e., points derived from the TS and STD treatments), stationarity is evident.
This is because in places under different management conditions, the expected yield values
vary regularly in the surrounding area. In the analysis of the yield points considering the
areas as a whole, the function presents characteristics of little stationarity (anisotropy). This
condition is caused by the variability resulting from the different management techniques,
in which A. brasilense is applied in alternate strips [20].

Spatial behaviors were evaluated by semivariograms adjusted to the Gaussian model
in the cases of STD, and spherical for TS. The findings indicated the spatial dependence
of all factors. Even with yield samples as a lower coefficient of variation, the Gaussian
semivariogram infers that the yield of the STD area is an event with an apparent continuity
greater than the yield defined by TS. In other words, the modeling of corn yield for these
conditions cannot be modeled by parametric mathematical functions (linear regression).
The difficulty of modeling STD plots is due to the variability and trend of yield conditioned
to environmental factors, given that without treatment conditions, the crop is subject to
biotic and abiotic factors [21].

For the plots treated with ST, the adjustment of spherical semivariograms with little
dispersion in the plateau’s position reflects a normality condition in the probability dis-
tribution function (probability frequency diagrams, Figure 3) of the treated areas. This
condition occurs given the application of A. brasilense, which was applied in the same
amount along the TS plots, which reduced the variability caused by biotic and abiotic
factors in the planting area [22].

Regarding biotic factors (exposure to pests, fungi, and insects) and abiotic factors
(including climate, soil parameters, and topography), it is important to note that they were
practically identical for both control and treatment locations. In this context, the only
difference between the two sites was defined by management practices (an abiotic factor).
This factor was decisive in the variability of yield and, consequently, in the modeling and
performance of yield gain surfaces. We observed that applying A. brasilense to the crop
resulted in lower variability in yield and reduced susceptibility to typical biotic factors
affecting maize cultivation in tropical regions.

Regarding yield prediction, the models generated by Kriging were more accurate
and less biased than those generated by images because they were modeled with a larger
number of training samples. The precision and accuracy of Kriging are related to the
distance and continuity between pairs of samples [23]. For the present study, the high
density of yield data favored the generation of accurate and precise models.

The models generated by images had lower RMSE%, MAPE%, and R2 because they
were trained on a considerably smaller contingent of yield samples. Furthermore, it should
be considered that, unlike Kriging, the accuracy and precision of the models depend on the
correlation between the bands and derived indices with yield and the spatial, spectral, and
radiometric resolutions of the sensor [24].

The highest RMSE% and MAPE% errors observed in Br1 were associated with the fact
that the area presented a higher coefficient of variation in yield (Figure 3). Another factor to
consider is the spectral mixture, given the larger spacing between rows for this area, which
is evidence of a greater response from the exposed soil. This condition occurs because the
images used in the generation of the models were taken at the phenological stage of R1
in the corn crop, the phase in which the crop stabilized the vegetative development, and
closing of the inter-row is defined.

The discrepancies between the yield gain maps generated by the different techniques
are due to the nature of the modeling used in each technique. In the case of Kriging, yield
is estimated as a function of spatial inference and as a function of distance and variance
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between pairs of samples. In contrast, for images, the yield distribution is inferred from the
spectral response of pixels over the planting area.

5. Conclusions

With the increasing demand for the use of biostimulants in agricultural crops in
search of increasingly sustainable and less environmentally harmful agriculture, based on
techniques in geospatial data processing, we propose a methodology to show the gain in
maize yield after applying biostimulants. Three conclusions can be made.

In conditions where it is not possible to evidence statistical differences between the
yield of the control areas, based on the research methodology, it is possible to spatialize
the yield gain following the application of A. brasilense. In conditions of mechanized
harvesting with a high amount of georeferenced yield information, given the high accuracy
and precision, we recommend using Kriging to generate the yield gain surfaces. Finally,
under a few sample conditions, yield prediction models based on high spatial resolution
images can be used to simulate yield gain surfaces with satisfactory precision and accuracy.

To achieve greater precision and accuracy, future studies should consider two aspects.
The first is the possibility of generating the surfaces of yield gain from Kriging techniques.
In this scenario, the models should consider agricultural variables not correlated to yield,
that is, measures of agronomic parameters different from the variables currently available
in the output file of the harvesters, where only agricultural variables highly correlated
between themselves are presented. Secondly, for models generated by images, we highlight
the need for sensors with higher spatial, spectral, and radiometric resolutions.
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