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Abstract: Canopy chlorophyll content (CCC) is closely related to crop nitrogen status, crop growth
and productivity, detection of diseases and pests, and final yield. Thus, accurate monitoring of
chlorophyll content in crops is of great significance for decision support in precision agriculture. In
this study, winter wheat in the Guanzhong Plain area of the Shaanxi Province, China, was selected
as the research subject to explore the feasibility of canopy spectral transformation (CST) combined
with a machine learning method to estimate CCC. A hyperspectral canopy ground dataset in situ
was measured to construct CCC prediction models for winter wheat over three growth seasons from
2014 to 2017. Sensitive-band reflectance (SR) and narrow-band spectral index (NSI) were established
based on the original spectrum (OS) and CSTs, including the first derivative spectrum (FDS) and
continuum removal spectrum (CRS). Winter wheat CCC estimation models were constructed using
univariate regression, partial least squares (PLS) regression, and random forest (RF) regression based
on SR and NSI. The results demonstrated the reliability of CST combined with the machine learning
method to estimate winter wheat CCC. First, compared with OS-SR (683 nm), FDS-SR (630 nm) and
CRS-SR (699 nm) had a larger correlation coefficient between canopy reflectance and CCC; secondly,
among the parametric regression methods, the univariate regression method with CRS-NDSI as the
independent variable achieved satisfactory results in estimating the CCC of winter wheat; thirdly, as
a machine learning regression method, RF regression combined with multiple independent variables
had the best winter wheat CCC estimation accuracy (the determination coefficient of the validation
set (Rv

2) was 0.88, the RMSE of the validation set (RMSEv) was 3.35 and relative prediction deviation
(RPD) was 2.88). Thus, this modeling method could be used as a basic method to predict the CCC of
winter wheat in the Guanzhong Plain area.

Keywords: precision agriculture; winter wheat; canopy chlorophyll content; canopy spectral
transformation; narrow-band spectral index; hyperspectral remote sensing

1. Introduction

Chlorophyll, carotenoid, and anthocyanin are the three most important pigments in
plants [1]. Chlorophyll is the most abundant and important component for green plants to
absorb photosynthetically active radiation [2–4]. Moreover, chlorophyll content is closely
related to the crop nitrogen status, crop growth and productivity, detection of diseases and
pests, and final yield [5–8]. Thus, accurate monitoring of chlorophyll content in crops is of
great significance for decision support in precision agriculture.

The traditional methods for determining chlorophyll content include spectrophotome-
try, high-performance liquid chromatography, and atomic absorption by field sampling and
laboratory analysis, which are laborious, destructive to leaves, and time-consuming [9–12].
Several rapid and accurate monitoring studies of plant canopy chlorophyll content (CCC)
were carried out using hyperspectral remote sensing technology. However, when using
hyperspectral remote sensing data, the redundancy of hyperspectral data and the autocor-
relation between spectra will increase significantly, leading to certain data disasters [13].
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Additionally, it brings new difficulties to data transmission and processing. In response to
the emergence of these problems, previous researchers have established some traditional
vegetation indices (VIs) and developed a series of narrow-band spectral indices (NSI) to
monitor physiological and biochemical parameters. Dash et al. [14] specifically targeted the
medium resolution imaging spectrometer (MERIS) sensor mounted on the Envisat satellite
launched by ESA in 2004, and proposed the MERIS Terrestrial Chlorophyll Index (MTCI)
for monitoring the chlorophyll content of crops; Broge et al. [15] analyzed the winter wheat
canopy hyperspectral data based on different nitrogen levels and suggested the ratio vege-
tation index (RVI) could effectively predict the CCC. However, these VIS were determined
according to specific spectral reflectance. Due to the influence of many factors such as year,
crop variety, climate, etc., VIs cannot be directly promoted; they must be calibrated and
optimized for specific data sets. Many researchers have carried out a lot of research on the
optimization of VIs [16–18]. Zhang et al. [19] used random band combinations to optimize
the published vegetation index to estimate the chlorophyll content (CCC) of the winter
wheat canopy through the original spectral (OS) and first-order differential (FD) processing.
The research results showed the exponential expression formula R1/(R2 × R3) was an
effective choice for monitoring crop agronomic parameters. A large number of studies on
maize, wheat, rice, cotton, and barley showed NSI could improve the explanatory power of
canopy N concentration by 19–43% compared with the published VIs [20–22].

However, previous studies relied on the original spectrum (OS) to extract NSIs. Be-
cause the detection of winter wheat canopy reflectance and the selection of sensitive bands
may be affected by external factors such as atmospheric conditions and soil background,
the applicability and reliability of the final monitoring model were compromised. Some
researchers attempted to weaken the influence of external factors by spectral transformation
based on OS [19,23–25]. Canopy spectral transformation is mainly a mathematical transfor-
mation of OS to expand the difference between spectral curves under different conditions,
so as to improve the sensitivity of sensitive bands. The studies by Li et al. [26] showed
that the log-transformed spectrum (LOGS) and continuum removal spectrum (CRS) could
improve the remote sensing estimation effects of nitrogen to different degrees compared
to the OS. Ta et al. [27] made three transformations on the OS of apple tree leaves, includ-
ing the reciprocal transformed spectrum (RS), first-order differential spectrum (FODS),
and CRS, combining transformations with machine learning methods to estimate the leaf
chlorophyll content. The results showed the random forest regression model had the best
prediction accuracy for the first growth period (R2 = 0.96, RMSE = 0.95). Although NSI
and spectral transformation technology have been successfully applied in previous studies
and achieved satisfactory results. However, due to the influence of different crop varieties,
growth environment, and growth period, NSI cannot be directly applied. In other words,
NSI can only be used after being localized. Thus, the contribution of spectral conversion
technology and NSI to the accuracy of the CCC estimation of winter wheat in Guanzhong
Plain of Shaanxi Province is worth exploring.

Recently, it has been very popular to combine machine learning with remote sensing
data to estimate crop parameters [28–30]. Yuan et al. [31] used the partial least squares
regression, an artificial neural network, random forest regression, and support vector
machine regression to monitor the leaf area index of the soybean. The results indicated
that the random forest regression could display a more accurate result. The work of
Wang et al. [32] revealed random forest regression of the whole growth season based on
the first derivative spectrum providing reasonable accuracy for each growth stage.

In this study, we focused on the relationship between the winter wheat CCC and
spectral reflectance, investigating the possibility of estimating CCC by combining CST with
the machine learning method. The main objectives were to: (1) analyze the correlation
between CCC and sensitive-band reflectance (SR) and NSI under different spectral transfor-
mations; (2) construct CCC estimation models with SRs and NSIs by univariate regression,
partial least squares (PLS) regression, and random forest (RF) regression based on different
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spectral transformations; and (3) compare the models constructed under objective (2) to
find an effective model for estimating the winter wheat CCC during the growing season.

2. Materials and Methods
2.1. Experimental Setup

The winter wheat study was conducted in Qian County (108◦07′ E, 34◦38′ N; average
altitude: 830 m), and experiment station No.1 was located at the Northwest A&F University
(108◦03′ E, 34◦17′ N; average altitude: 454 m) in Yangling, Shaanxi Province, China from
2014 to 2017 (Figure 1). The whole experiment area belongs to the dry farming area in the
southern part of the Loess Plateau, and the climate type belongs to the warm temperate zone
semi-humid climate. The annual average rainfall is 630 mm, and the precipitation is highly
seasonal, mostly in July, August, and September. The soil types in both stations were loam.
Winter wheat in the Guanzhong Plain area was sown in mid-October and harvested the
following year in mid-June. All cultivars were Xiaoyan 22 [33], a common local variety. Each
treatment was repeated twice, and nitrogen fertilizer, phosphate fertilizer, and potassium
fertilizer were applied in each treatment as urea, superphosphate, and potassium chloride,
respectively. All fertilizers were applied as basic fertilizer before sowing, and no additional
fertilizer was applied during the growing season. In addition, four, three, and ten field trials
were set up during 2014–2015, 2015–2016, and 2016–2017, respectively, in Qian County. The
tillage system at both sites were monoculture. The management method was the same as
that for local conventional winter wheat. Table 1 summarizes the experimental design.
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2.2. Canopy Spectral Reflectance Measurement

The canopy spectral reflectance was measured during the main growing season using
an SVC HR-1024I portable passive spectrometer developed by the Spectra Vista Company
(Poughkeepsie, NY, USA). The portable spectrometer can detect canopy spectral reflectance
in the wavelength range of 350–2500 nm. The field of view was 25◦ and the height to
the canopy was 1.3 m. The white calibration panel was performed before and after the
measurement [34], and the sensor was pointed vertically downward during the observation.
All measurements of canopy spectral reflectance were performed during sunny, windless,
and cloudless weather between 10:30 and 14:00 to reduce the error caused by changing
illumination conditions. Two sampling points in the diagonal direction of each plot were
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selected to take canopy spectral reflectance measurements. The mean value of 10 repetitions
was regarded as the final canopy spectral reflectance of each sampling point. The canopy
reflectance of each plot was the average of the two sampling points. Real-time kinematic
(RTK) was used to mark the coordinates of the sampling sites.

Table 1. Summary of the conditions utilized in the winter wheat growth experiments.

Site Plot Area
(m2) Sowing Time Nitrogen Rate

(kg·ha−1)

Phosphorus
(P2O5) Rate
(kg·ha−1)

Potassium
(K2O) Rate
(kg·ha−1)

Sampling Date

Qian 36 1 October 2014 0, 37.5, 75, 112.5,
150, 187.5

0, 22.5, 45, 67.5,
90, 112.5

0, 15, 30, 45,
60, 75

28 March (GS3), 12 April
(GS5), 26 April (GS6),

9 May (GS7), 26 May (GS8).
(2015)

No.1 12 2 October 2014 0, 30, 60, 90,
120, 150

0, 15, 30, 45,
60, 75

14 March (GS2), 29 March
(GS3), 13 April (GS5),
11 May (GS7), 26 May

(GS8). (2015)

Qian 36 4 October 2015 0, 37.5, 75, 112.5,
150, 187.5

0, 22.5, 45, 67.5,
90, 112.5

0, 15, 30, 45,
60, 75

18 April (GS6), 9 May
(GS6), 6 June (GS9). (2016)

No.1 12 5 October 2015 0, 30, 60, 90,
120, 150

0, 15, 30, 45,
60, 75

14 March (GS2), 29 March
(GS3), 13 April (GS5),
11 May (GS7), 26 May

(GS8). (2016)

Qian 90 1 October 2016 0, 30, 60, 90,
120, 150

0, 22.5, 45, 67.5,
90, 112.5

0, 22.5, 45, 67.5,
90, 112.5

26 March (GS3), 14 April
(GS5), 28 April (GS6),
17 May (GS7), 26 May

(GS8). (2017)

No.1 12 1 October 2016 0, 30, 60, 90,
120, 150

0, 15, 30, 45,
60, 75

25 March (GS3), 17 April
(GS5), 20 May (GS8). (2017)

Note: Qian and No.1 represent Qian County and experiment No.1 station of Northwest A&F University, respec-
tively. GS2: tillering, GS3: booting, GS5: heading, GS6: flowering, GS7: filling, GS8: ripening, GS9: senescence.

2.3. CCC Measurement

After collecting the canopy spectral reflectance, the CCC was measured. Ten wheat
plants with the same growth potential were selected near the spectral sampling point, and
the relative chlorophyll content of canopy leaves was measured using SPAD-502, which was
developed by the Agriculture and Horticulture Bureau, Ministry of Agriculture, Forestry
and Fisheries, Japan. Six measurements from the petiole to the tip were taken and averaged
as the SPAD values of each canopy leaf. The average SPAD values of the 10 leaves were
used as the CCC of the sampling points. The CCC of each plot was determined using the
average of the two sampling points.

2.4. Calibration and Validation

The CCC was separated into calibration and validation sets in ascending order in
a 3:1 ratio to ensure that the range of CCC was balanced [35]. Consequently, 662 and
165 calibration and validation samples were collected, respectively. Table 2 lists the CCC
statistical characteristics of the samples. The calibration and validation sets were used
to build the CCC estimate models and assess the accuracy of these models. Both the
calibration and validation sets obeyed anormal distribution. Across the total growth stages,
the CCC varied from 5.78 to 56.43, with a mean value of 45.88. The coefficient of variation
(CV) was 21.19%, indicating a moderate degree of dispersion [36].

2.5. Methods
2.5.1. Canopy Spectral Transformation (CST)

The reflectance curves of the visible (VIs) and near-infrared (NIR) bands were closely
correlated with the CCC and canopy structure of crops [37]. Thus, the canopy spectral
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reflectance at 350–1350 nm was selected to estimate the CCC in this study. The Savitzky–Golay
smoothing filtering process with a second-order polynomial and nine smoothing points curves
were applied to all the canopy reflectance to filter the noise, and the canopy reflectance was
resampled to a spectral interval of 1 nm to obtain the OS [38,39]. Finally, the first derivative
spectrum (FDS) [40] and continuum removal spectrum (CRS) [41] were determined based on
the OS.

Table 2. Statistics of CCC characteristics of winter wheat in the whole growth period.

Data Sets Number of Samples Maximum Values Minimum Values Mean Median SD CV (%)

Calibration set 662 56.43 5.78 45.88 49.41 9.73 21.21
Validation set 165 55.63 7.98 45.88 49.38 9.66 21.05

Whole 827 56.43 5.78 45.88 49.40 9.72 21.19

Derivative transformation is the most commonly used transformation form in crop
hyperspectral research. Derivative transformation of OS can not only weaken or eliminate
the impact of environmental background and atmospheric effects, but also improve the
contrast of absorption characteristics of crop biochemical components to varying degrees.
The FDS can eliminate the influence noise in the crop canopy spectrum and highlight the
characteristic position in the canopy spectrum. The difference method was used to calculate
the FDS of the original spectrum, and (1) was the specific calculation formula in this paper.

R′ i =
Ri+1 − Ri−1

2
(1)

where i refers to the wavelength of band i, Ri refers to the original spectral reflectance
corresponding to wavelength i, and R′ i refers to the reflectance of FDS corresponding to
wavelength i.

Kokaly and Clark first proposed continuum removal, also known as envelope removal.
The continuum removal spectrum (CRS) was defined as the ratio of the original spectral
reflectance to the continuum reflectance of the corresponding band [42]. The CRS can
effectively remove spectral information noise and improve the responsiveness of crop
nitrogen and chlorophyll [43]. Therefore, the CRS was used as a spectral transformation to
perform relevant operations on winter wheat OS in this study.

2.5.2. Canopy Hyperspectral Narrow-Band Spectral Index (NSI)

Hyperspectral remote sensing data from an SVC HR-1024I spectrometer contains a
large amount of spectral information. In this study, the simplest and most common vegeta-
tion indices at 350–1350 nm were selected; the difference spectral index (DSI), ratio spectral
index (RSI), normalized difference spectral index (NDSI), and soil-adjusted spectral index
(SASI) were calculated between any two bands of the OS, FDS, and CRS [44]. The calcula-
tions are listed in Table 3. The software Matlab2017a, a commercial mathematics software
produced by MathWorks (Natick, MA, USA), was used to accomplish the extraction of
narrow-band spectral index (NSI).

Table 3. NSI and computational formulas.

NSI Computational Formulas

RSI Ri/Rj
DSI Ri − Rj

NDSI
(

Ri − Rj

)
/
(

Ri + Rj

)
SASI 1.5×

(
Ri − Rj

)
/
(

0.5 + Ri + Rj

)
where i and j are the hyperspectral wavelength/nm, and Ri and Ri represent the hyperspectral reflectance
corresponding to the wavelengths of i and j.
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2.5.3. Modeling Methods

In this study, univariate regression, partial least squares (PLS) regression, and random
forest (RF) regression were applied to estimate the winter wheat CCC.

Univariate regression means a method in which only one independent variable cor-
related with one dependent variable [45]. In this paper, sensitive-band reflectance (SR)
and narrow-band spectral index (NSI) were used as independent variables to build the
CCC univariate regression model, respectively, and the exponential, linear, logarithmic,
polynomial, and power functions were involved.

Partial least squares (PLS) regression is a regression approach [46] for assessing multi-
variate statistical data. It maximizes the covariance between the latent variable (LV) and
response variable by reducing the input data to certain independent latent variables [47].
The number of LV was determined using the standard error of the leave-one-out cross-
validation [48,49]. PLS accounts for strongly linearly dependent independent variables
when the number of samples is fewer than the number of variables [50]. The software
Matlab2017a, a commercial mathematics software produced by MathWorks (Natick, MA,
USA), was used to accomplish the modeling and parameter optimization.

Random forest (RF) regression, an integrated modern machine learning regression
algorithm based on classification trees, was proposed by Breiman [51] in 2001. The predicted
results were averaged by integrating decision trees after the samples were constantly
regressed and sampled several times to generate a training set. The algorithm must
primarily optimize two essential parameters: ntree (number of decision trees) and mtry
(number of segmentation nodes). In this study, ntree was set to 500, and mtry was set to
1/3 of the number of independent variables [52–54]. The RF regression was conducted
based on the RF program package in R statistical software.

2.5.4. Accuracy Testing

The coefficient of determination (R2), root mean square error (RMSE), and relative
prediction deviation (RPD) were used to test the effects of the CCC estimation models.
R2 represents the degree of agreement between the predicted and measured values. The
RMSE reflects the degree of deviation between the predicted and measured values. RPD is
measured by the relative deviation between the predicted and measured values [55], which
is the ratio between the standard deviation of the validation set and the RMSE [56]. The
higher R2, RPD, and lower RMSE indicate a better effect of the model [57]. It is believed
that the model with RPD < 1.4 is unable to estimate the sample. When 1.4 < RPD < 2.0, it is
considered that the model can roughly estimate the sample, and the predictive ability is
acceptable. The model has an excellent predictive ability when RPD > 2.0 [58]. In this study,
Rc

2, RMSEc and Rv
2, RMSEv represent R2 and RMSE in the calibration and validation

datasets, respectively.

3. Results
3.1. Sensitive-Band Reflectance (SR)-CCC Estimation Models
3.1.1. Correlations between Winter Wheat Canopy Reflectance and CCC

The canopy reflectance of winter wheat at the VIS band was more correlated with
CCC than with NIR wavelengths, and the correlation coefficient between CSTs and CCC
was higher than that of OS (Figure 2). There was a negative association between OS and
CCC at 350–725 nm but a positive correlation at 726–1350 nm. The correlation coefficient
between FDS and the CCC changed significantly at 350–1350 nm. It was moderately better at
555–635 nm than at other wavelengths. The CRS exhibited a substantial negative correlation
with the CCC at 350–762 nm, while the correlation coefficient changed dramatically at
762–1350 nm. Based on the highest correlations, SRs at 683, 630, and 699 nm were selected
as the sensitive bands for OS, FDS, and CRS, and the correlation coefficients were −0.81,
−0.87, and −0.89, respectively.
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3.1.2. SR-CCC Estimation Models

SRs were used to predict the CCC (Figure 3) and the model validations were shown in
Figure 4. The validation accuracy of FDS at 630 nm was similar to OS at 683 nm. The CRS
at 699 nm enhanced the prediction accuracy of the CCC substantially compared to the OS
model. The Rc

2 in the unary quadratic prediction models was 0.80 and the Rv
2 was 0.83. It

evaluated the highest estimation accuracy with an RPD of 2.42. The scatter-distribution
between the predicted and measured the CCC was closer to the 1:1 line (Figure 4).
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3.2. Narrow-Band Spectral Indices (NSI)-CCC Estimation Models
3.2.1. Correlation Analysis between NSI and CCC

The correlation equipotential maps between the NSI and CCC were constructed
(Figure 5). The optimal band combinations of 12 spectral indices were selected, as shown
in Table 4, when the correlation coefficient was the largest. All the correlation coefficients
between NSIs and the CCC passed the significance test at the 0.01 level. The results
showed that the optimal band combinations were principally located at 550–750 nm, and
the absolute values of correlation coefficients were between 0.86 and 0.92. The correlation
between the NSI and the CCC was significantly higher than that between the SR.
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Table 4. Optimal band combinations of NSI for estimating CCC.

Spectral Transformation Spectral Indices Correlation Coefficient

OS

DSI (R595, R695) −0.91 **
RSI (R564, R701) −0.87 **

NDSI (R565, R700) −0.88 **
SASI (R596, R695) −0.91 **

FDS

DSI (R609, R639) −0.86 **
RSI (R741, R1314) 0.91 **

NDSI (R686, R724) 0.91 **
SASI (R609, R639) −0.86 **

CRS

DSI (R351, R706) −0.91 **
RSI (R564, R702) −0.87 **

NDSI (R366, R698) −0.89 **
SASI (R353, R720) 0.92 **

Note: ** represents significance level p < 0.01.

3.2.2. NSI-CCC Estimation Models

Here, the CCC was determined by the NSIs of the CSTs. First, based on OS, the
calibration and validation of OS-DSI (R595, R695) had the same accuracy as OS-SASI (R596,
R695), with slightly greater prediction accuracy than OS-RSI (R564, R701) and OS-NDSI (R565,
R700). The Rc

2s in the unary quadratic prediction models were 0.82. In the validation set,
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the Rv
2s were 0.84. RMSEvs were 4.00 and RPDs were 2.41 for OS-DSI (R595, R695) and

OS-SASI (R596, R695). OS-DSI (R595, R695) and OS-SASI (R596, R695) were better than the
other OS-NSIs in predicting CCC, and the predicted and measured CCC values were close
to the 1:1 line (Figures 6 and 7).
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Subsequently, as shown in Figures 8 and 9, the calibration and validation accuracies
of FDS-DSI (R609, R639) were comparable to that of FDS-SASI (R609, R639). FDS-RSI (R741,
R1314) and NDSI (R686, R724) significantly enhanced the prediction accuracy of the CCC
compared to the FDS-DSI (R609, R639) and FDS-SASI (R609, R639) models. The Rc

2s in the
unary quadratic prediction models were 0.82 and 0.83, respectively (Figure 8). The Rv

2s
in the validation samples were 0.84 and 0.84. The RMSEvs were 3.91 and 3.96; the RPDs
were 2.47 and 2.44 for FDS-RSI (R741, R1314) and NDSI (R686, R724), respectively. FDS-RSI
(R741, R1314) was superior to the other models in predicting CCC based on FDS-NSI, with
predicted and measured CCC closer to the 1:1 line.
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Finally, using the CRS-NDSI (R366, R698) to predict the CCC could account for 84% of
the variability in the CCC (Figure 10). The high Rv

2 (0.87), RPD (2.73), and low RMSEv
(3.53) also showed better performance of CRS-NDSI (R366, R698). This model was superior
to other models in predicting CCC-based CRS-NSI and the predicted and measured CCC
values were close to the 1:1 line (Figure 11).
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3.3. PLS-CCC and RF-CCC Estimation Models

CCC estimation models were established using multivariate analysis based on the
PLS and RF regression. In this study, all SRs and NSIs based on CSTs were regarded as
multivariate parameters. All the models had Rc

2s larger than 0.80 (Table 5). The prediction
accuracy of the FDS-RF-CCC model was the same as that of the CRS-RF-CCC model, and
the Rc

2 was 0.97. However, the FDS-RF-CCC in the validation set had superior Rv
2 (0.88)

and RPD (2.88), as well as a lower RMSEv (3.35). The FDS-RF-CCC performed the best of
all models with the predicted and measured CCC closer to the 1:1 line (Figure 12).

3.4. Model Precision Comparison

Compared to OS-SR (683 nm) and FDS-SR (630 nm), CRS-SR (699 nm) significantly
enhanced CCC estimation accuracy. The Rc

2, Rv
2, and RPD increased to 0.80, 0.83, and 2.42,

respectively, and the RMSEv was 3.99 (Figures 3 and 4). Of all the univariate models, the
CRS-NDSI-CCC model had the best performance (Rc

2 = 0.84, Rv
2 = 0.87, RMSEv = 3.53,

and RPD = 2.73).
Among the multivariate spectrum parameter regression models, FDS stood out from

the CSTs and had good potential for predicting the CCC. In the RF regression, the FDS-RF-
CCC model yielded the highest prediction accuracy in both the calibration and validation
sets (Rc

2 = 0.97, Rv
2 = 0.88, RMSEv = 3.35, and RPD = 2.88). In the PLS regression, the

FDS-PLS-CCC model showed the best performance in predicting the CCC, with Rc
2, Rv

2,
RMSEv, and RPD being 0.86, 0.88, 3.43, and 2.82, respectively, which were slightly poorer
than the FDS-RF-CCC model.

The RPD values of all CCC estimating models were shown in Figure 13. Except for the
OS-SR-CCC, FDS-SR-CCC, FDS-DSI-CCC, and FDS-SASI-CCC models, the RPDs of all the
other estimation models were more than 2.0, indicating that the majority of the estimation
models had accurate predictive abilities. Overall, when all of the models in this study were
compared using statistical indicators such as R2, RMSE, and RPD, an integrated strategy
based on FDS and RF regression demonstrated the highest accuracy in CCC estimations,
followed by the FDS-PLS-CCC model.
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Table 5. Rc
2 of PLS-CCC and RF-CCC models.

Models OS-PLS-CCC FDS-PLS-CCC CRS-PLS-CCC OS-RF-CCC FDS-RF-CCC CRS-RF-CCC

Rc2 0.84 0.86 0.85 0.96 0.97 0.97
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4. Discussion

Chlorophyll in plants absorbs light energy and is involved in photosynthesis to pro-
duce chemical energy. Effective monitoring of chlorophyll content is of great importance to
control the fertilization of plants, detect the health status of plants, and estimate yield. Many
studies have been conducted on the rapid and accurate monitoring of canopy chlorophyll
content (CCC) using remote sensing [59–61]. This study primarily focused on the influence
of VIS and NIR reflectance (350–1350 nm) on estimating CCC, extracting SR and NSI by
CST to construct the CCC estimation models to provide scientific methods and technical
guidance for planting winter wheat in the Guanzhong Plain area.

4.1. Extraction of SR and NSI

In this study, a hyperspectral canopy ground dataset in situ was measured to estimate
the CCC of winter wheat and yielded significant results. To the best of our knowledge, due
to the effect of canopy chlorophyll, the reflectance of crops is strongly absorbed near the
red band and forms an absorption valley, while the strong reflection near the near-infrared
band reaches a high reflection peak. The red-edge position (REP) is located at the position
where the curve slope changed the most during the transition from the red band to the near
red band [62]. Based on OS, FDS, and CRS, we determined the NSI (DSI, RSI, NDSI, and
SASI) to select the most suitable for estimating CCC. As shown in Table 4, almost all bands
used to construct NSI contained a band near REP (680–760 nm), indicating the REP had a
significant response to CCC. This may be because REP was located in the middle of the
strong absorption band of the red-edge band of the vegetation and the strong reflection
area of the NIR, which effectively expanded the response of green vegetation to CCC.
Previous studies on chlorophyll correlation have also highlighted the importance of the
red-edge bands [63,64], and our results were in agreement. In addition, REP is also very
important in estimating various physical and chemical parameters of crop plants [65–69].
Li et al. [70] showed the mSR (mSR705) index constructed using the red-edge band had
the best performance among all spectral indices for evaluating nitrogen concentration in
winter wheat. Su et al. [71] found the normalized spectral index (NDSI705,783) based on
the Sentinel-2 remote sensing image, including the red-edge band, could predict the leaf
area index of maize more accurately. Therefore, it can be predicted that the introduction of
the red-edge band in the estimation and inversion of physical and chemical parameters of
crops will improve the efficiency and capability of these methods in the future.

4.2. Canopy Spectral Transformation (CST)

Previous studies had revealed more sensitive features could be provided and the
accuracy of estimating the physical and chemical parameters of crop plants could be greatly
improved by transforming OS [41,72]. Ren et al. [73] improved the response characteristics
of the winter wheat canopy spectrum to low-temperature stress by FDS, which is because
FDS can effectively eliminate the background noise of soil and consider overlapping spectral
features [58]. In estimating the nitrogen concentration of leaves, CRS could maximize the
prediction accuracy [74] and effectively extend the difference in absorption intensity [41].
In this study, SR and NSI were extracted based on the OS, FDS, and CRS. As shown in
Figures 3 and 4, CRS achieved the best performance in the CCC estimation model based
on the SR. As demonstrated in Figures 6–11, in CCC estimation models based on NSIs,
the NDSI-CCC model extracted based on CRS had the best accuracy. This was better than
FDS and OS, and was consistent with the results of Ramoelo et al. [75]. Among the CCC
prediction models, FDS-RF-CCC exhibited the best accuracy in CCC estimation, which
was constructed based on the FDS. Overall, the results showed CST could provide more
sensitive features than OS, and it was possible by transforming OS to estimate the physical
and chemical parameters of the plants.
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4.3. Canopy Chlorophyll Content (CCC) Estimation Models

The modeling results of this study showed NSI could generally improve the accuracy
of the CCC estimation model (Figures 6–11). The best hyperspectral NSI (NDSI (R366, R698))
based on CRS showed a 4% higher variability than the best SR (CRS (699 nm)). Multivariate
regression had significant advantages compared to the CCC univariate estimation model
(Table 5). The multivariate estimation models PLS-CCC and RF-CCC based on FDS had the
best prediction accuracy (Table 5). However, by analyzing the results of the accuracy of the
validation models, it was found the PLS-CCC model was slightly worse than the RF-CCC
model, which was consistent with the conclusion of Wang et al. [76] in estimating the leaf
area index of rice. The main reason was that the PLS regression model was not as robust
as the RF regression model. As one of the widely used machine learning methods, the
RF regression model can better cope with disturbances and outliers owing to its internal
mechanism of majority voting. When using the RF regression model, overfitting did not
occur easily as long as we adjusted the key parameters precisely, which was more suitable
for solving some nonlinear problems than the PLS regression model [45].

Most of the RPD values in Figure 13 were greater than 2.0, indicating the CCC pre-
diction models based on different multivariate regression methods were excellent. In this
study, it was found that FDS and RF regression together overcame the limitations of the
univariable regression technique and provided a practical method for monitoring the CCC
of winter wheat by comparing the prediction accuracy of all models. The FDS-RF-CCC
had the best performance (Rv

2 = 0.88, RMSEv = 3.35, and RPD = 2.88) and was a promising
method. Although the CRS-NDSI-CCC model (RPD = 2.73) can also be used to predict CCC
when the prediction accuracy requirement is not particularly accurate, it is still necessary
to use the new prediction model (FDS-RF-CCC) proposed in this paper to better meet the
needs of precision agriculture in the Guanzhong Plain area.

4.4. Future Works

In this study, the CST was used in combination with univariate, PLS, and RF regression
methods to analyze the performance of the winter wheat CCC models. The combination
of FDS and RF regression explained the wavelengths that were helpful in creating the
model with the best predictive accuracy for the winter wheat CCC. The FDS-RF-CCC
model proposed in this study can be used to quantitatively estimate winter wheat CCC
in the Guanzhong Plain area. Most previous studies have shown a strong link between
crop chlorophyll content and nitrogen content, having used this relationship to estimate
crop nitrogen [67,77–79]. Homolová et al. [5] strongly supported the hypothesis that optical
remote sensing of chlorophyll content could be used as a substitute for nitrogen estimation
based on a moderate to good relationship between nitrogen and chlorophyll. Schlem-
mer et al. [67] pointed out that the chlorophyll content establishes a certain relationship
between remote sensing observations and canopy state variables, and this relationship was
used to indicate the nitrogen concentration of corn and the ability of photosynthesis. It
was also confirmed there was a very close relationship between chlorophyll content and
nitrogen concentration [6]. As a result of the quantitative estimation of winter wheat CCC,
this study provides a technical method for field crop nitrogen assessment, as well as a
theoretical basis for precise agricultural nitrogen management in the future.

However, the FDS-RF-CCC model was constructed based on specific winter wheat
varieties in the Guanzhong Plain area. Whether this model can be successfully applied and
is suitable for estimating CCC in different varieties needs to be further investigated.

5. Conclusions

Canopy chlorophyll content (CCC) is closely related to crop nitrogen status crop
growth, detection of diseases and pests, and final yield. Thus, accurate monitoring of
chlorophyll content in crops is of great significance for decision support in precision agricul-
ture. In this study, winter wheat in the Guanzhong Plain area of Shaanxi Province, China,
was selected as the research subject to explore the feasibility of canopy spectral transfor-
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mation (CST) combined with a machine learning method to estimate CCC. The results
showed the reliability of CST combined with machine learning method to estimate winter
wheat CCC. Compared with OS-SR (683 nm), FDS-SR (630 nm) and CRS-SR (699 nm) had a
larger correlation coefficient between canopy reflectance and CCC. Among the parametric
regression methods, the univariate regression method with CRS-NDSI as the indepen-
dent variable achieved satisfactory results in estimating the CCC of winter wheat. As a
machine learning method, RF regression combined with multiple independent variables
showed the best winter wheat CCC estimation accuracy. The FDS-RF-CCC had the best
accuracy in estimating CCC, providing a promising method for rapid and nondestructive
estimation of winter wheat CCC. Future research should focus on further optimization of
the FDS-RF-CCC model and apply this model to the precision nitrogen management of
winter wheat.

Author Contributions: Conceptualization, X.C.; methodology, X.C.; software, X.C.; validation, X.C.,
Q.C., and F.L.; formal analysis, X.C. and B.S.; investigation, X.C., K.F. and Z.L.; resources, Q.C.; data
curation, X.C. and B.S.; writing—original draft preparation, X.C.; writing—review and editing, X.C.;
visualization, X.C.; supervision, Q.C. and F.L.; project administration, F.L.; funding acquisition, Q.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (41701398).

Data Availability Statement: Data sharing is not application to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vina, A.; Gitelson, A.A. Sensitivity to foliar anthocyanin content of vegetation indices using green reflectance. IEEE Geosci. Remote

Sens. Lett. 2010, 8, 464–468. [CrossRef]
2. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms

for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [CrossRef] [PubMed]
3. Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar

information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [CrossRef]
4. Yue, J.; Feng, H.; Yang, G.; Li, Z. A comparison of regression techniques for estimation of above-ground winter wheat biomass

using near-surface spectroscopy. Remote Sens. 2018, 10, 66. [CrossRef]
5. Homolová, L.; Malenovský, Z.; Clevers, J.G.; García-Santos, G.; Schaepman, M.E. Review of optical-based remote sensing for

plant trait mapping. Ecol. Complex. 2013, 15, 1–16. [CrossRef]
6. Cartelat, A.; Cerovic, Z.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al.

Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum
L.). Field Crop. Res. 2005, 91, 35–49. [CrossRef]

7. Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic
capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [CrossRef]

8. Meggio, F.; Zarco-Tejada, P.J.; Núñez, L.C.; Sepulcre-Cantó, G.; González, M.; Martin, P. Grape quality assessment in vineyards
affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices. Remote Sens. Environ. 2010, 114,
1968–1986. [CrossRef]

9. Pfündel, E.E.; Ghozlen, N.B.; Meyer, S.; Cerovic, Z.G. Investigating UV screening in leaves by two different types of portable UV
fluorimeters reveals in vivo screening by anthocyanins and carotenoids. Photosynth. Res. 2007, 93, 205–221. [CrossRef]

10. Romera-Fernández, M.; Berrueta, L.; Garmón-Lobato, S.; Gallo, B.; Vicente, F.; Moreda, J. Feasibility study of FT-MIR spectroscopy
and PLS-R for the fast determination of anthocyanins in wine. Talanta 2012, 88, 303–310. [CrossRef]

11. Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive estimation of anthocyanin content in grapevine
leaves. Am. J. Enol. Vitic. 2009, 60, 87–92. [CrossRef]

12. Li, Z.; Li, Y.; Xing, A.; Zhuo, Z.; Zhang, S.; Zhang, Y.; Huang, Y. Spatial prediction of soil salinity in a semiarid oasis: Environmental
sensitive variable selection and model comparison. Chin. Geogr. Sci. 2019, 29, 784–797. [CrossRef]

13. Yang, H.; Yin, H.; Li, F.; Hu, Y.; Yu, K. Machine learning models fed with optimized spectral indices to advance crop nitrogen
monitoring. Field Crop. Res. 2023, 293, 108844. [CrossRef]

14. Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [CrossRef]
15. Broge, N.; Mortensen, J. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance

data. Remote Sens. Environ. 2002, 81, 45–57. [CrossRef]
16. Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating above-ground biomass of potato using random forest and optimized hyperspectral

indices. Remote Sens. 2021, 13, 2339. [CrossRef]

http://doi.org/10.1109/LGRS.2010.2086430
http://doi.org/10.1078/0176-1617-00887
http://www.ncbi.nlm.nih.gov/pubmed/12749084
http://doi.org/10.1016/j.rse.2008.10.019
http://doi.org/10.3390/rs10010066
http://doi.org/10.1016/j.ecocom.2013.06.003
http://doi.org/10.1016/j.fcr.2004.05.002
http://doi.org/10.1111/gcb.13599
http://doi.org/10.1016/j.rse.2010.04.004
http://doi.org/10.1007/s11120-007-9135-7
http://doi.org/10.1016/j.talanta.2011.10.045
http://doi.org/10.5344/ajev.2009.60.1.87
http://doi.org/10.1007/s11769-019-1071-x
http://doi.org/10.1016/j.fcr.2023.108844
http://doi.org/10.1080/0143116042000274015
http://doi.org/10.1016/S0034-4257(01)00332-7
http://doi.org/10.3390/rs13122339


Agronomy 2023, 13, 783 15 of 17

17. Yang, H.; Li, F.; Hu, Y.; Yu, K. Hyperspectral indices optimization algorithms for estimating canopy nitrogen concentration in
potato (Solanum tuberosum L.). Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102416. [CrossRef]

18. Hasituya; Li, F.; Elsayed, S.; Hu, Y.; Schmidhalter, U. Passive reflectance sensing using optimized two-and three-band spectral
indices for quantifying the total nitrogen yield of maize. Comput. Electron. Agric. 2020, 173, 105403. [CrossRef]

19. Zhang, X.; Sun, H.; Qiao, X.; Yan, X.; Feng, M.; Xiao, L.; Song, X.; Zhang, M.; Shafiq, F.; Yang, W.; et al. Hyperspectral estimation
of canopy chlorophyll of winter wheat by using the optimized vegetation indices. Comput. Electron. Agric. 2022, 193, 106654.
[CrossRef]

20. Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize
nitrogen status with red edge-based spectral vegetation indices. Field Crop. Res. 2014, 157, 111–123. [CrossRef]

21. Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Bocchi, S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral
radiometry. Field Crop. Res. 2009, 111, 119–129. [CrossRef]

22. Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy
rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [CrossRef]

23. Zhang, J.; Sun, H.; Gao, D.; Qiao, L.; Liu, N.; Li, M.; Zhang, Y. Detection of canopy chlorophyll content of corn based on continuous
wavelet transform analysis. Remote Sens. 2020, 12, 2741. [CrossRef]

24. Ji, S.; Gu, C.; Xi, X.; Zhang, Z.; Hong, Q.; Huo, Z.; Zhao, H.; Zhang, R.; Li, B.; Tan, C. Quantitative Monitoring of Leaf Area Index
in Rice Based on Hyperspectral Feature Bands and Ridge Regression Algorithm. Remote Sens. 2022, 14, 2777. [CrossRef]

25. Li, C.; Wang, Y.; Ma, C.; Ding, F.; Li, Y.; Chen, W.; Li, J.; Xiao, Z. Hyperspectral estimation of winter wheat leaf area index based
on continuous wavelet transform and fractional order differentiation. Sensors 2021, 21, 8497. [CrossRef]

26. Li, F.; Chang, Q. Estimation of winter wheat leaf nitrogen content based on continuum removed spectra. Trans. Chin. Soc. Agric.
Mach. 2017, 48, 174–179.

27. Ta, N.; Chang, Q.; Zhang, Y. Estimation of Apple Tree Leaf Chlorophyll Content Based on Machine Learning Methods. Remote
Sens. 2021, 13, 3902. [CrossRef]

28. Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine
learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [CrossRef]

29. Zhang, J.; Tian, H.; Wang, D.; Li, H.; Mouazen, A.M. A novel approach for estimation of above-ground biomass of sugar beet
based on wavelength selection and optimized support vector machine. Remote Sens. 2020, 12, 620. [CrossRef]

30. Jiao, Q.; Sun, Q.; Zhang, B.; Huang, W.; Ye, H.; Zhang, Z.; Zhang, X.; Qian, B. A random forest algorithm for retrieving canopy
chlorophyll content of wheat and soybean trained with PROSAIL simulations using adjusted average leaf angle. Remote Sens.
2021, 14, 98. [CrossRef]

31. Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from
unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017,
9, 309. [CrossRef]

32. Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A random forest machine learning approach for the retrieval of leaf
chlorophyll content in wheat. Remote Sens. 2019, 11, 920. [CrossRef]

33. Zhang, H.; Song, G.; Ji, W.; Hu, Y. Gene induction by drought stress in wheat variety Xiaoyan 22 and their expression analysis.
J. Agric. Biotechnol. 2009, 17, 670–676.

34. Zhao, H.; Song, X.; Yang, G.; Li, Z.; Zhang, D.; Feng, H. Monitoring of nitrogen and grain protein content in winter wheat based
on Sentinel-2A data. Remote Sens. 2019, 11, 1724. [CrossRef]

35. Sarathjith, M.; Das, B.; Wani, S.; Sahrawat, K.L. Dependency measures for assessing the covariation of spectrally active and
inactive soil properties in diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2014, 78, 1522–1530. [CrossRef]

36. Wilding, L. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Proceedings of the Soil Spatial
Variability, Las Vegas, NV, USA, 30 November–1 December 1984; pp. 166–194.

37. Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops.
Geophys. Res. Lett. 2005, 32, L08403. [CrossRef]

38. Yang, F.-F.; Liu, T.; Wang, Q.-Y.; Du, M.-z.; Yang, T.-L.; Liu, D.-Z.; LI, S.-J.; Liu, S.-P. Rapid determination of leaf water content for
monitoring waterlogging in winter wheat based on hyperspectral parameters. J. Integr. Agric. 2021, 20, 2613–2626. [CrossRef]

39. Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972,
44, 1906–1909. [CrossRef]

40. Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model
based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [CrossRef]

41. Ding, Y.; Li, M.; Zheng, L.; Sun, H. Estimation of tomato leaf nitrogen content using continuum-removal spectroscopy analysis
technique. In Proceedings of the Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and
Applications IV, Kyoto, Japan, 9 November 2012; p. 852719.

42. Luo, L.; Chang, Q.; Gao, Y.; Jiang, D.; Li, F. Combining Different Transformations of Ground Hyperspectral Data with Unmanned
Aerial Vehicle (UAV) Images for Anthocyanin Estimation in Tree Peony Leaves. Remote Sens. 2022, 14, 2271. [CrossRef]

43. Yan, Y.; Liu, X.; Ou, J.; Li, X.; Wen, Y. Assimilating multi-source remotely sensed data into a light use efficiency model for net
primary productivity estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 11–25. [CrossRef]

http://doi.org/10.1016/j.jag.2021.102416
http://doi.org/10.1016/j.compag.2020.105403
http://doi.org/10.1016/j.compag.2021.106654
http://doi.org/10.1016/j.fcr.2013.12.018
http://doi.org/10.1016/j.fcr.2008.11.004
http://doi.org/10.1016/j.isprsjprs.2013.01.008
http://doi.org/10.3390/rs12172741
http://doi.org/10.3390/rs14122777
http://doi.org/10.3390/s21248497
http://doi.org/10.3390/rs13193902
http://doi.org/10.1186/s13007-019-0394-z
http://doi.org/10.3390/rs12040620
http://doi.org/10.3390/rs14010098
http://doi.org/10.3390/rs9040309
http://doi.org/10.3390/rs11080920
http://doi.org/10.3390/rs11141724
http://doi.org/10.2136/sssaj2014.04.0173
http://doi.org/10.1029/2005GL022688
http://doi.org/10.1016/S2095-3119(20)63306-8
http://doi.org/10.1021/ac60319a045
http://doi.org/10.1016/j.jag.2020.102111
http://doi.org/10.3390/rs14092271
http://doi.org/10.1016/j.jag.2018.05.013


Agronomy 2023, 13, 783 16 of 17

44. Thorp, K.R.; Tian, L.; Yao, H.; Tang, L. Development of vegetation indices for hyperspectral data. In Proceedings of the 2002
ASAE Annual Meeting; p. 1. Available online: https://elibrary.asabe.org/abstract.asp?aid=9542 (accessed on 10 February 2023).

45. Chen, X.; Li, F.; Wang, Y.; Shi, B.; Hou, Y.; Chang, Q. Estimation of winter wheat leaf area index based on UAV hyperspectral
remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 40–49.

46. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.
[CrossRef]

47. Nigon, T.; Yang, C.; Paiao, G.D.; Mulla, D.; Knight, J.; Fernández, F. Prediction of Early Season Nitrogen Uptake in Maize Using
High-Resolution Aerial Hyperspectral Imagery. Remote Sens. 2020, 12, 1234. [CrossRef]

48. Chauchard, F.; Cogdill, R.; Roussel, S.; Roger, J.; Bellon-Maurel, V. Application of LS-SVM to non-linear phenomena in NIR
spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom. Intell. Lab. Syst. 2004, 71,
141–150. [CrossRef]

49. Singh, K.P.; Malik, A.; Basant, N.; Saxena, P. Multi-way partial least squares modeling of water quality data. Anal. Chim. Acta
2007, 584, 385–396. [CrossRef]

50. Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of six algorithms to monitor wheat leaf
nitrogen concentration. Remote Sens. 2015, 7, 14939–14966. [CrossRef]

51. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
52. Larivière, B.; Van den Poel, D. Predicting customer retention and profitability by using random forests and regression forests

techniques. Expert Syst. Appl. 2005, 29, 472–484. [CrossRef]
53. Li, X. Using “random forest” for classification and regression. Chin. J. Appl. Entomol. 2013, 50, 1190–1197.
54. Li, Q.; Ma, L.; Liu, S.; Wufu, A.; Li, Y.; Yang, S.; Yang, X. Plant litter estimation and its correlation with sediment concentration in

the Loess Plateau. PeerJ Prepr. 2019, 7, e27891v1.
55. Yu, R.; Zhu, X.; Bai, X.; Tian, Z.; Jiang, Y.; Yang, G. Inversion reflectance by apple tree canopy ground and unmanned aerial vehicle

integrated remote sensing data. J. Plant Res. 2021, 134, 729–736. [CrossRef]
56. Shi, T.; Cui, L.; Wang, J.; Fei, T.; Chen, Y.; Wu, G. Comparison of multivariate methods for estimating soil total nitrogen with

visible/near-infrared spectroscopy. Plant Soil 2013, 366, 363–375. [CrossRef]
57. Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists,

Inc.: Eagan, MN, USA, 1987.
58. Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determi-

nation of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930.
[CrossRef]

59. Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A.; Noland, T.L.; Nesbitt, N.; Arabian, J. Evaluating leaf chlorophyll content prediction
from multispectral remote sensing data within a physically-based modelling framework. ISPRS J. Photogramm. Remote Sens. 2015,
102, 85–95. [CrossRef]

60. Horler, D.; Dockray, M.; Barber, J.; Barringer, A. Red edge measurements for remotely sensing plant chlorophyll content. Adv.
Space Res. 1983, 3, 273–277. [CrossRef]

61. Li, D.; Cheng, T.; Zhou, K.; Zheng, H.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W. WREP: A wavelet-based technique for extracting the red
edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J. Photogramm.
Remote Sens. 2017, 129, 103–117. [CrossRef]

62. Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [CrossRef]
63. Clevers, J.G.P.W.; De Jong, S.M.; Epema, G.F.; Van Der Meer, F.D.; Bakker, W.H.; Skidmore, A.K.; Scholte, K.H. Derivation of the

red edge index using the MERIS standard band setting. Int. J. Remote Sens. 2002, 23, 3169–3184. [CrossRef]
64. Das, P.K.; Choudhary, K.K.; Laxman, B.; Rao, S.K.; Seshasai, M. A modified linear extrapolation approach towards red edge

position detection and stress monitoring of wheat crop using hyperspectral data. Int. J. Remote Sens. 2014, 35, 1432–1449.
[CrossRef]

65. Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and
chlorophyll content. Sensors 2011, 11, 7063–7081. [CrossRef] [PubMed]

66. Delegido, J.; Verrelst, J.; Meza, C.; Rivera, J.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of
green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [CrossRef]

67. Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and
chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [CrossRef]

68. Tian, Y.; Yao, X.; Yang, J.; Cao, W.; Hannaway, D.; Zhu, Y. Assessing newly developed and published vegetation indices for
estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance. Field Crop. Res. 2011, 120,
299–310. [CrossRef]

69. Hansen, P.; Schjoerring, J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized
difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [CrossRef]

70. Li, F.; Wang, L.; Liu, J.; Wang, Y.; Chang, Q. Evaluation of leaf N concentration in winter wheat based on discrete wavelet
transform analysis. Remote Sens. 2019, 11, 1331. [CrossRef]

71. Su, W.; Hou, N.; Li, Q.; Zhang, M.; Zhao, X.; Jiang, K. Retrieving leaf area index of corn canopy based on Sentinel-2 remote
sensing image. Trans. Chin. Soc. Agric. Mach. 2018, 49, 151–156.

https://elibrary.asabe.org/abstract.asp?aid=9542
http://doi.org/10.1016/S0169-7439(01)00155-1
http://doi.org/10.3390/rs12081234
http://doi.org/10.1016/j.chemolab.2004.01.003
http://doi.org/10.1016/j.aca.2006.11.038
http://doi.org/10.3390/rs71114939
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.eswa.2005.04.043
http://doi.org/10.1007/s10265-020-01249-1
http://doi.org/10.1007/s11104-012-1436-8
http://doi.org/10.1016/j.soilbio.2008.04.003
http://doi.org/10.1016/j.isprsjprs.2015.01.008
http://doi.org/10.1016/0273-1177(83)90130-8
http://doi.org/10.1016/j.isprsjprs.2017.04.024
http://doi.org/10.1080/01431168308948546
http://doi.org/10.1080/01431160110104647
http://doi.org/10.1080/01431161.2013.877616
http://doi.org/10.3390/s110707063
http://www.ncbi.nlm.nih.gov/pubmed/22164004
http://doi.org/10.1016/j.eja.2012.12.001
http://doi.org/10.1016/j.jag.2013.04.003
http://doi.org/10.1016/j.fcr.2010.11.002
http://doi.org/10.1016/S0034-4257(03)00131-7
http://doi.org/10.3390/rs11111331


Agronomy 2023, 13, 783 17 of 17

72. Liu, N.; Xing, Z.; Zhao, R.; Qiao, L.; Li, M.; Liu, G.; Sun, H. Analysis of Chlorophyll Concentration in Potato Crop by Coupling
Continuous Wavelet Transform and Spectral Variable Optimization. Remote Sens. 2020, 12, 2826. [CrossRef]

73. Ren, P.; Feng, M.-C.; Yang, W.-D.; Wang, C.; Liu, T.-T.; Wang, H.-Q. Response of winter wheat (Triticum aestivum L.) hyperspectral
characteristics to low temperature stress. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2014, 34, 2490–2494.

74. Rollin, E.; Milton, E. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information.
Remote Sens. Environ. 1998, 65, 86–92. [CrossRef]

75. Ramoelo, A.; Skidmore, A.K.; Schlerf, M.; Mathieu, R.; Heitkönig, I.M. Water-removed spectra increase the retrieval accuracy
when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS J. Photogramm. Remote Sens. 2011, 66, 408–417.
[CrossRef]

76. Wang, L.; Chang, Q.; Li, F.; Yan, L.; Huang, Y.; Wang, Q.; Luo, L. Effects of growth stage development on paddy rice leaf area
index prediction models. Remote Sens. 2019, 11, 361. [CrossRef]

77. Rongting, J.; Weiming, S.; Yuan, W.; Zhang, H.; Ju, M. Nondestructive estimation of bok choy nitrogen status with an active
canopy sensor in comparison to a chlorophyll meter. Pedosphere 2020, 30, 769–777.

78. Walters, D.T. Diagnosis of nitrogen deficiency in maize and the influence of hybrid and plant density. In Proceedings of the North
Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 19–20 November 2003.

79. Baret, F.; Houles, V.; Guerif, M. Quantification of plant stress using remote sensing observations and crop models: The case of
nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs12172826
http://doi.org/10.1016/S0034-4257(98)00013-3
http://doi.org/10.1016/j.isprsjprs.2011.01.008
http://doi.org/10.3390/rs11030361
http://doi.org/10.1093/jxb/erl231

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Canopy Spectral Reflectance Measurement 
	CCC Measurement 
	Calibration and Validation 
	Methods 
	Canopy Spectral Transformation (CST) 
	Canopy Hyperspectral Narrow-Band Spectral Index (NSI) 
	Modeling Methods 
	Accuracy Testing 


	Results 
	Sensitive-Band Reflectance (SR)-CCC Estimation Models 
	Correlations between Winter Wheat Canopy Reflectance and CCC 
	SR-CCC Estimation Models 

	Narrow-Band Spectral Indices (NSI)-CCC Estimation Models 
	Correlation Analysis between NSI and CCC 
	NSI-CCC Estimation Models 

	PLS-CCC and RF-CCC Estimation Models 
	Model Precision Comparison 

	Discussion 
	Extraction of SR and NSI 
	Canopy Spectral Transformation (CST) 
	Canopy Chlorophyll Content (CCC) Estimation Models 
	Future Works 

	Conclusions 
	References

