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Abstract: Agriculture is closely associated with food and water. Agriculture is the first source of food
but the biggest consumer of freshwater. The population is constantly increasing. Smart agriculture is
one of the means of achieving food and water security. Smart agriculture can help improve water
management and increase agricultural production, thus counteracting rapid population growth
requirements. Soil moisture estimation is a critical step in agricultural water management. Soil
moisture measurement techniques in situ are point measurements, labor-intensive, time-consuming,
tedious, and expensive. We propose, in this research, a new approach to predict soil moisture
over vegetation-covered areas from Sentinel-2 images based on a convolutional neural network
(CNN). CNN architecture (3) consisting of six convolutional layers, one pooling layer, and two
fully connected layers has achieved the highest prediction accuracy. Three well-known criteria
including coefficient of determination (R2), mean absolute error (MAE), and root mean square error
(RMSE) are utilized to measure the accuracy of the proposed algorithm. The Red Edge 3, NIR,
and SWIR 1 are the most appropriate Sentinel-2 bands for retrieving soil moisture in vegetation-
covered areas. Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation
Index (NDVI) are the best indicators. The use of the indicator is more proper than the use of
the single Sentinel-2 band as input data for the proposed CNN architecture for predicting soil
moisture. However, using combinations “that consist of some number of Sentinel-2 bands” as
input data for CNN architecture is better than using each indicator separately or all of them as
a group. The best values of the performance metrics were achieved using the sixth combination
(R2 = 0.7094, MAE = 0.0277, RMSE = 0.0418) composed of the Red, Red Edge 1, Red Edge 2, Red
Edge 3, NIR, and Red Edge 4 bands as input data to the CNN architecture (3), as well as by using the
fifth combination (R2 = 0.7015, MAE = 0.0287, RMSE = 0.0424) composed of the Red Edge 3, NIR,
Red Edge 4, and SWIR 1 bands.

Keywords: smart agriculture; remote sensing; soil moisture content; Sentinel-2; Google Earth Engine;
artificial intelligence; convolutional neural network

1. Introduction

The world population is constantly increasing and, in 2050, is expected to reach about
9.725 billion [1]. The agricultural sector is the major contributor of the production of
the food that people eat [2]. With the growth in the global population, annual world
agricultural production in 2050 is supposed to be 60 percent higher than it was in 2005 [3],
which will intensify pressures on natural resources [4]. Global food production depends
on the availability of water [5]. Under future climate conditions, global food production is
projected to decrease [6]. In the future, the intensifying competition for water resources
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is projected to increase [7]. Hence, increasing agricultural production simultaneously
with achieving the optimal use of water resources is considered vital to feed and drink
9.725 billion in the future.

Agriculture is the largest consumer of water around the world, at 70 percent of all
freshwater withdrawals [8]. Agricultural water-use efficiency can be increased by optimiz-
ing irrigation scheduling [9]. Irrigation scheduling aims to determine and apply the exact
amount of water at the perfect time [10]. Irrigation scheduling techniques depend on soil
moisture measurements [11]. Soil moisture usually refers to the amount of water stored in
the upper centimeters of soil [12] and is spatially and temporally highly variable [13]. Soil
moisture strongly impacts plant growth and hence agricultural productivity [14]. Soil mois-
ture estimation is necessary for accurate irrigation water management [15]. Gravimetric,
neutron probe, time-domain reflectometer (TDR), frequency domain reflectometer (FDR),
and tensiometer methods are the most commonly used to estimate the soil moisture content
in situ [16]. Traditional in situ soil moisture measurement methods possess relatively high
precision, but the spatial representativeness for point-based measurements is limited [17].
Furthermore, implementing such methods is destructive, costly, and labor-intensive [18].

Satellite remote sensing of soil moisture is vital and significant [19]. A good deal
of research work has been conducted on the electromagnetic spectrum from the optical
to the microwave region; as a result, researchers have developed several remote sensing
methods for investigating soil moisture [20]. Optical methods are especially valuable for
the remote sensing of soil moisture since the reflected solar radiation is the strongest passive
signal available to satellites [21]. The spectral reflectance decreases with increasing soil
moisture [22]. Ref. [23] utilized MODIS data to retrieve soil moisture content at a depth
of 20 cm in Sanjiang Plain, China (R2 ranged from 0.10 to 0.50). Ref. [24] successfully
estimated the soil moisture (0–20 cm) using Landsat data. Based on Landsat 8 data,
Ref. [25] developed two indices to estimate soil moisture at a depth of 20 cm, the Triangle
Soil Moisture Index (R = 0.57, RMSE = 0.084) and the Modified Triangle Soil Moisture
Index (R = 0.65, RMSE = 0.087). Ref. [26] used a linear regression model to determine
surface soil moisture (0–20 cm) from Landsat 8 satellite images (R2 = 0.564). In optical
remote sensing, the short-wave infrared (SWIR) bands are better suited for monitoring soil
moisture than the visible and NIR bands [21,27,28]. The SWIR 1 band is more sensitive than
the SWIR 2 band for plants and soil moisture content [29], while Ref. [30] mentioned that
the SWIR 2 band is better than the SWIR 1 band for describing soil moisture contents. High-
resolution Sentinel-2 optical images are a good data source for estimating soil moisture
(r = 0.80) over agricultural areas and thus support farm managers in decision-making on
irrigation scheduling [31]. Ma et al. [32] proposed an algorithm to retrieve soil moisture
content from Sentinel-1 and Sentinel-2 data over vegetation-covered regions, wherein
R2 ranged from 0.472 to 0.665 and RMSE ranged from 0.039 to 0.078. Using an artificial
neural network (ANN), Ref. [33] developed an approach to estimate soil moisture based
on Sentinel-1 and Sentinel-2 data, and the accuracy of soil moisture estimation ranged
from (R = 0.307, RMSE = 0.095) to (R = 0.785, RMSE = 0.062). Sentinel-2 data are more
suitable for retrieving soil moisture over wheat-covered areas [34]. Using the random forest
regression algorithm, the use of all Sentinel-2 bands achieved the highest coefficient of
determination and the lowest RMSE by comparison to the use of individual bands [35].
Sentinel-2 bands are proper to retrieve soil moisture; the coefficients of determination
(R2) for Blue, Green, Red, NIR, SWIR 1, and SWIR 2 are 0.191, 0.493, 0.575, 0.600, 0.732,
and 0.738, respectively [36]. Red Edge bands are the most sensitive for estimating soil
moisture in vegetation-covered areas, followed by the SWIR bands [37]. The Red Edge
1, Red Edge 2, Red Edge 3, NIR, and Red Edge 4 bands are suitable for land moisture
mapping [29]. In vegetation-covered areas, using Red Edge bands improve the soil moisture
estimation accuracy [37]. Vegetation water content is a significant parameter in retrieving
soil moisture from satellite imagery [38,39]. One effective method for the retrieval of
vegetation water content is the combination of near-infrared (NIR) and short-wave infrared
(SWIR) bands [40]. Several indices are based on the NIR and SWIR bands [41–44]. NIR
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and SWIR bands are proper for soil moisture prediction [45]. Based on the NIR-Red
spectral space, [46] developed a new simple method for soil moisture monitoring, and [25]
introduced two effective and real-time soil moisture indices. Google Earth Engine (GEE) is
a computing platform developed and designed to enable and empower everyone to use
Google’s massive computational capabilities [47]. GEE is an indispensable source for the
acquisition and processing of satellite images [48].

Artificial intelligence is one of the fields of computer science that aims at simulating
human intelligence processes [49]. Machine learning is a branch of artificial intelligence [50]
capable of extracting knowledge from big data [51]. Machine learning aims to develop
algorithms that can automatically learn, improve, and generalize from a given set of
examples, in order to make predictions or decisions without being explicitly programmed
to do so [52]. Deep learning is a class of machine learning algorithms [53]. Convolutional
neural network (CNN) is one of the most popular classes of deep learning methods [54].
CNN architecture comprises an input data layer, one or more hidden layers, and an
output data layer [55]. Commonly, hidden layers of a CNN consist of convolutional layers,
pooling layers, normalization layers, and fully connected layers [56]. CNN performs well
in unstructured data and achieves good results [57]. A CNN has a powerful ability for
automatic feature extraction [58]. CNN has achieved great success in soil moisture retrieval
accuracy (R2 = 0.8664) over agricultural areas from Sentinel-1 images [19].

As a result of the former review, accurate soil moisture estimation is a prerequisite
for achieving proper irrigation water management. The most common disadvantages of
in-situ soil moisture measurement methods are that they are: point measurements, labor-
intensive, time-consuming, tedious, and expensive. Thus, the present research aims to
provide a new approach for remotely sensing the moisture content in the soil. The main
goal of our proposed approach is the integration of artificial intelligence techniques and
satellite imagery data to serve the agricultural sector. In the present work, we propose CNN
architecture for predicting or estimating soil moisture (0–20 cm) from Sentinel-2 images.

2. Materials and Methods
2.1. Study Field Description and Data Collection

In-situ soil moisture observations are necessary to build and validate the soil moisture
prediction model. The International Soil Moisture Network (ISMN) is a global open-source
database for in situ soil moisture data (https://ismn.geo.tuwien.ac.at/en/ (accessed on 9
July 2022)). ISMN includes multiple networks distributed around the world. ISMN is a
suitable means for validating and improving algorithms for soil moisture retrieval from
Satellite images [59,60]. In this study, we utilized in-situ soil moisture data of the OzNet
and WegenerNet networks from 28 March 2017 to 1 November 2020.

OzNet is a hydrological monitoring network established within the Murrumbidgee
River catchment in South-Eastern Australia. The location of the Murrumbidgee catchment
has significant spatial variability in the climate (ranging from semiarid to humid), the
texture of soil (ranging from sandy to clayey), and land use (dryland farming, irrigated
farming, remnant vegetation, and urban areas). This catchment comprises 38 soil moisture-
monitoring stations, with a concentration of sites in three subareas: Kyeamba Creek,
Adelong Creek, and Yanco Region. Three Campbell Scientific water content reflectometers
(CS615, CS616, and Stevens Hydra Probe) were installed at stations to measure in-situ soil
moisture. Moreover, Time Domain Reflectometry (TDR) probes were installed and used
to calibrate the reflectometers. Soil moisture was continuously measured and recorded
every 20 min at three depths (0–30, 30–60, and 60–90 cm). Plus, each station measures air
temperature, soil temperature, soil suction, precipitation, wind speed, relative humidity,
and ancillary data. Only 17 soil moisture-monitoring stations were selected and used in
this study, 6 in Kyeamba Creek and 11 in Yanco Region. For more detailed information
on the OzNet network, see [61,62]. The OzNet network data are freely accessible via
(http://www.oznet.org.au/ (accessed on 9 July 2022)).

https://ismn.geo.tuwien.ac.at/en/
http://www.oznet.org.au/
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WegenerNet Feldbach Region is a high-resolution meteorological observation network
established within the Feldbach region in South-Eastern Styria, Austria. The climate in
Feldbach is affected by both continental and Mediterranean climates. Winters are cold,
whereas summers are hot and rainy. The main land uses in the Feldbach region are
agriculture and forestry. WegenerNet Feldbach Region network comprises 155 stations
within a limited area of approximately 22 × 16 km. This network includes 12 soil moisture-
monitoring stations: Stations No. 6, 15, 19, 27, 34, 50, 54, 77, 78, 84, 85, and 99. The
dominant soil type for all station sites is sandy loam, except for station No. 19, where the
soil type is silty clay. Inside each station, Stevens Hydra Probe II was used to measure soil
moisture at a depth of 0–20 cm. In addition, each station measures relative humidity, air
temperature, diode temperature, precipitation, pF-value, soil temperature, soil conductivity,
and ancillary data. All data of the WegenerNet network are freely accessible via (http://
www.wegenernet.org/ (accessed on 9 July 2022)). We used level 2 half-hourly data version
7 in this study. Additional information and a detailed explanation of the WegenerNet
Feldbach Region network are provided in [63–65]. Figure 1 shows the locations of the
OzNet and WegenerNet stations used in the present research. In this research, the surface
measurements, 0–30 cm at OzNet Network and 0–20 cm at WegenerNet Network, were
considered only as input (Y-values) for modeling the soil moisture content.

2.2. Sentinel-2 Imagery and Pre-Processing

Retrieving soil moisture over vegetation-covered areas from Sentinel-2 images is the
main objective of this research. Sentinel-2 optical mission comprises a constellation of
two identical satellites, Sentinel-2A and Sentinel-2B. Sentinel-2A was launched on 23rd
June 2015, while Sentinel-2B was launched on 7th March 2017. The launch of Sentinel-2A
and Sentinel-2B helped to halve revisit time from 10 to 5 days. Depending on the spectral
band, the spatial resolutions of Sentinel-2 data are 10, 20, and 60 m. Sentinel-2 satellite
provides multi-spectral data with 13 spectral bands, as highlighted in Table 1. All these
bands were used in this study: except Band 1 (Aerosols), Band 9 (Water Vapor), and Band
10 (SWIR-Cirrus), as these bands are dedicated mainly to atmospheric corrections and
cloud screening [66]. All the Sentinel-2 data used in this study are Level-2A products,
which means per-pixel radiometric measurements are provided in surface reflectance
with all parameters to transform them into radiances. Google Earth Engine (GEE) is a
free platform (https://earthengine.google.com/ (accessed on 13 September 2022)). GEE
provides online access to Sentinel-2 level-2A data that is pre-processed using Sen2Cor.
Level-2A processing comprises a scene classification and an atmospheric correction applied
to Level-1C orthoimage products [67,68].

Table 1. Sentinel-2 spectral bands.

Band Description Center Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

B1 Aerosols 443 20 60
B2 Blue 490 65 10
B3 Green 560 35 10
B4 Red 665 30 10
B5 Red Edge 1 705 15 20
B6 Red Edge 2 740 15 20
B7 Red Edge 3 783 20 20
B8 NIR 842 115 10

B8a Red Edge 4 865 20 20
B9 Water Vapor 945 20 60

B10 SWIR-Cirrus 1380 30 60
B11 SWIR 1 1610 90 20
B12 SWIR 2 2190 180 20

http://www.wegenernet.org/
http://www.wegenernet.org/
https://earthengine.google.com/
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The current study included 29 soil moisture-monitoring stations. Each ground station
covers a small area of land compared to the area covered by the Sentinel-2 image. In ArcGIS,
we created a shapefile for each station separately. The shapefile is square, and the center
of this shapefile is the installation position of the soil moisture sensor. All shapefiles are
of the same size. Therefore, the downloaded Sentinel-2 images have the same volume
(32× 32× 10), where 32 represents the height (Rows), 32 represents the width (Columns),
and 10 represents the Sentinel-2 bands (Channels). Every Sentinel-2 image consists of
ten bands: Blue, Green, Red, Red Edge 1, Red Edge 2, Red Edge 3, NIR, Red Edge 4,
SWIR 1, and SWIR 2. Using the created shapefiles, the total number of Sentinel-2 images
downloaded from GEE is 5422 images, as shown in Figure 1. Now, the images are ready for
training and testing are: Sentinel-2 images (X-values) and in-situ soil moisture (Y-values).

2.3. Establishment and Evaluation of the CNN Prediction Model

Convolutional neural network (CNN) is a widely used tool in research domains. CNN
has the potential to analyze and understand satellite images. The proposed CNN architec-
ture comprises an image input layer, hidden layers, and an output layer. Hidden layers
contain convolutional, nonlinearity, pooling, and fully connected layers. The convolutional
layer is mainly responsible for automatic feature extraction. The nonlinearity layer in a
CNN applies element-wise nonlinearity using an activation function. Activation functions
play a crucial role in the performance of a convolutional neural network. CNN allows
using different activation functions for each layer. The proper choice of activation function
improves the ability of the CNN model to learn the training dataset, hence the learning
efficiency. The activation functions used in this study are: tanh, sigmoid, relu, and linear.
The pooling layer aims to decrease the input image size and only keep the most significant
features. The outputs of convolutional and pooling layers are the inputs for the fully
connected layers. Flatten layer is needed between the convolutional or pooling layers
and the fully connected layers to transform the data into a one-dimensional (1D) array of
numbers. Fully connected layers, also call as dense layers, connect every neuron in one
layer to every neuron in the next layer. Finally, the final layer is the output layer and has
one neuron with a sigmoid activation function. For more detailed information about the
design of CNN architectures, see [69,70].

Our overarching objective in this paper is to provide a CNN architecture able to retrieve
or predict soil moisture with high accuracy and high efficiency from Sentinel-2 images.
Identifying the best-performing architecture is an important step but the hardest. We
designed three CNN architectures of different sizes in this study, as illustrated in Figure 2.
In the three architectures (1, 2, and 3), pooling and fully connected layers are the same.
The main differences between CNN architectures are the number of both convolutional
layers and convolutional filters. The proper choice of activation functions can improve the
performance of the CNN architecture for prediction. For this reason, we have done several
experiments and tests to choose the best. Activation functions shown in Figure 2 were best
suited for this type of data.

In general, the prediction accuracy of the algorithm depends on inputs and selecting
the proper algorithm for these inputs. CNN is an appropriate technique for unstructured
data types. CNN has great potential for automatic feature extraction. Hence, selecting and
determining the best inputs is a crucial step in achieving the highest prediction accuracy. In
this study, we first need to identify the impact of using Sentinel-2 bands as input data for
CNN on soil moisture retrieval. Further, several indices derived from optical observations are
used extensively for retrieving soil moisture. The most common are: Normalized Difference
Vegetation Index (NDVI = (NIR−Red)/(NIR + Red)) [71], Global Vegetation Moisture In-
dex (GVMI = ((NIR + 0.1)− (SWIR 2 + 0.02))/((NIR + 0.1) + (SWIR 2 + 0.02))) [41,44],
and Normalized Difference Water Index (NDWI = (NIR− SWIR 1)/(NIR + SWIR 1)) [42,43].
We, therefore, need to explore the influence of these indices on soil moisture retrieval. Third,
we made several new combinations of Sentinel-2 bands, attempting to know the effect of
using these combinations on soil moisture retrieval efficiency.
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The total number of Sentinel-2 images used to run the CNN model is 5422. In practice,
we randomly split the dataset into two parts for fitting the model: 80% training set and
20% test set. In this study, we implemented the proposed CNN algorithm with Python
programming language. The prediction accuracy of the CNN algorithm was measured
using the coefficient of determination (R2), mean absolute error (MAE), and root mean
square error (RMSE). The following equations illustrate these measures:

R2 = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−y)2

MAE = 1
n

n
∑

i=1
|yi − ŷi|

RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

where (n) is the number of datasets, (yi) is the actual value, (ŷi) is the predicted value of
(yi), and (yi) is the mean of the (y) values.

The modeling process was performed on a Windows workstation (Windows 10) with
Intel Xeon Gold 5218 Processors (16-Cores, 16M Cache), 128 GB of RAM, and NVIDIA
Quadro P4000 graphics cards (8 GB of RAM).

3. Results and Discussion

A comparison between CNN architecture (1), CNN architecture (2), and CNN archi-
tecture (3) indicated that CNN architecture (3) is the most suitable for Sentinel-2 data, as
will be seen later in this paper. We, therefore, suffice with presenting the results of CNN
architecture (3).

3.1. Influence of Using Sentinel-2 Bands

Figure 3 summarizes the results of using Sentinel-2 bands as input data for CNN
algorithm (CNN architecture (3)) on soil moisture retrieval accuracy. Scatter plots in the
figure illustrate relations between in-situ soil moisture and predicted soil moisture by the
proposed CNN algorithm. Initially, each band separately was used as input data for the
CNN, and then all Sentinel-2 bands together (10 bands) were used.

All in all, we noticed that Sentinel-2 bands have a significant positive effect on soil
moisture retrieval. The largest of them was the Red Edge 3 band, but the smallest of them
was the Blue band. The coefficients of determination (R2) for Blue, Green, Red, Red Edge
1, Red Edge 2, Red Edge 3, NIR, Red Edge 4, SWIR 1, and SWIR 2 were 0.5192, 0.5425,
0.5796, 0.5458, 0.5664, 0.6098, 0.5967, 0.5877, 0.6093, and 0.5829, respectively. With the use
of all Sentinel-2 bands as input data to the CNN model, the values of performance metrics
manifestly improved (R2 = 0.6799, MAE = 0.0282, RMSE = 0.0439).

The obtained results showed that the SWIR 1 band is more sensitive than visible
and NIR bands for estimating soil moisture. This result is in agreement with the results
reported by [21,27,28]. Further, the SWIR 1 band is better suited than the SWIR 2 band
for determining soil moisture contents. This result is in agreement with [29] but is in
disagreement with [30]. Red Edge 3, followed by SWIR 1, and then NIR are suitable bands
for estimating soil moisture in vegetation-covered areas. This result is similar to the result
found by [37]. The least sensitive band to retrieve soil moisture is Blue. This result is
similar to the observation of [36]. Using all Sentinel-2 bands as input data to the CNN
model is better than using individual Sentinel-2 bands for retrieving soil moisture from
Sentinel-2 images. This result is consistent with the results of [35], who showed that the
use of all Sentinel-2 bands achieved a prediction accuracy higher than the use of individual
bands. Soil moisture indirectly affects vegetation canopy water content. Red edge and
SWIR are the most important spectral bands [72]. The Red Edge 3 and the SWIR 1 bands
play an important role in estimating canopy water content [73]. Thus, these bands can
better retrieve soil moisture over vegetation-covered areas than other bands. Thus, this is
what we concluded from this research paper.
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3.2. Influence of Using NDVI, GVMI, and NDWI

Figure 4 illustrates the findings of using indicators as input data for CNN architec-
ture (3) on the retrieval accuracy of soil moisture. The best indicators for soil moisture
retrieval were NDWI (R2 = 0.6573), followed by NDVI (R2 = 0.6469), and then GVMI
(R2 = 0.6324). Compared to NDWI, there was a slight decline in the values of the per-
formance metrics (R2 = 0.6449, MAE = 0.0301, RMSE = 0.0462) with the use of all
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indicators as input data to CNN architecture (3). Further, there was a decrease in the
values of the performance metrics from (R2 = 0.6799, MAE = 0.0282, RMSE = 0.0439)
to (R2 = 0.6603, MAE = 0.0284, RMSE = 0.0452) due to using both Sentinel-2 bands
(10 bands) and indicators (three indicators) instead of using all Sentinel-2 bands (10 bands)
as input data for the CNN architecture (3). An explanation for this decrease is that the
accuracy of the CNN algorithm depends on the quality of the input data. Appropriate
features increase accuracy [74]. Repeated features negatively affect the efficiency of the
CNN algorithm [75]. These indicators were derived from the original bands. Thus, when
using both indicators and bands together as input data to a CNN model, these indicators
can be considered a form of repetition to bands indirectly.
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The obtained results indicated that the indicator (NDWI, NDVI, or GVMI) is better
than the original or single Sentinel-2 band as input data to CNN architecture for soil
moisture retrieval. This result is when the input data is a single input (either a band or an
indicator). This is because the indicator is usually designed by combining two or more
bands. Therefore, it may contain more information than a band. This result is dissimilar
to the finding of [72], who stated that by the random forest regression algorithm, the use
of the original Sentinel-2 band achieved higher prediction accuracy than the use of the
indicator. However, using all Sentinel-2 bands (10 inputs) is more proper than indicators as
input data for CNN for retrieving moisture in the soil.

3.3. Influence of Using Combinations

Our above results demonstrated that the more information the input layer contains,
the better the accuracy of soil moisture retrieval. The indicator, which merges two or more
bands, was better than the single band. Further, using all Sentinel-2 bands was the best.
We created six new combinations of Sentinel-2 bands to study the integrations between
different Sentinel-2 bands and determine the best inputs among them. These combinations
were created based on the results of using the single Sentinel-2 bands as input data to the
CNN architecture (3).
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The first combination consisted of the Green, Red, and NIR bands (top three 10-m bands).
The second combination consisted of the Red Edge 3, Red Edge 4, and SWIR 1 bands (top
three 20-m bands). The third combination consisted of the NIR, SWIR 1, and SWIR 2 bands
(According to [40–45]). The fourth combination consisted of the Green, Red, NIR, SWIR 1,
and SWIR 2 bands (top three 10-m bands and SWIR bands). The fifth combination consisted
of the Red Edge 3, NIR, Red Edge 4, and SWIR 1 bands (best four bands in this paper). The
sixth combination consisted of the Red, Red Edge 1, Red Edge 2, Red Edge 3, NIR, and Red
Edge 4 bands (According to [25,29,37,46]).

Figure 5 shows the results of using combinations inferred. Changing the number of
Sentinel-2 bands used as input data to CNN architecture (3) influenced the prediction accu-
racy. The values of the performance metrics were significantly improved by using these com-
binations. The values of the performance metrics reached (R2 = 0.6344, MAE = 0.0301,
RMSE = 0.0469), (R2 = 0.6491, MAE = 0.0297, RMSE = 0.046), (R2 = 0.6661,
MAE = 0.0294, RMSE = 0.0448), R2 = 0.6847, MAE = 0.0282, RMSE = 0.0436,
R2 = 0.7015, MAE = 0.0287, RMSE = 0.0424, and (R2 = 0.7094, MAE = 0.0277,
RMSE = 0.0418) for the first, second, third, fourth, fifth, and sixth combinations, respectively.
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The results indicate that bands at 20 m spatial resolution are better than bands at
10 m spatial resolution. Merging NIR and SWIR bands increased the accuracy of soil
moisture retrieval. This result is consistent with the results of [40,45]. Combining SWIR
bands with bands at 10 m spatial resolution improved this result from (R2 = 0.6344,
MAE = 0.0301, RMSE = 0.0469) to (R2 = 0.6847, MAE = 0.0282, RMSE = 0.0436). The
integration of Red Edge 3, NIR, Red Edge 4, and SWIR 1 bands positively affected soil
moisture retrieval accuracy. Combining the Red, NIR, and Red Edge bands was successful
and even achieved the highest accuracy of soil moisture retrieval from Sentinel-2 images.
In our view, we believe that the main reason for the success of the sixth combination is
the addition of the Red Edge bands. The Red Edge bands are suitable and significant for
estimating biophysical parameters [76–80]. Biophysical parameters are an indicator of the
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status and health of the plant. Therefore, in vegetation-covered areas, Red Edge bands can
improve soil moisture retrieval accuracy. This result is similar to the findings of [37].

We conclude from the above reported results that selecting specific bands and using
them as input data for the CNN model is better than using indicators or a single Sentinel-2
band and also is better than using all Sentinel-2 bands at once. This result is consistent
with the observations of [19]. The perfect three inputs for the CNN architecture (3) are the
fourth combination, the fifth combination, and the sixth combination.

3.4. Comparison of Different CNN Architectures

As pointed out earlier, we used three CNN architectures (CNN architecture (1), CNN
architecture (2), and CNN architecture (3)) of different sizes (Figure 2). Further, to select
the best CNN architecture in terms of size, we used the best three inputs (the fourth
combination, the fifth combination, and the sixth combination) as input data to the three
CNN architectures (1, 2, and 3).

Table 2 summarizes the impact of different CNN architectures on the prediction ac-
curacy. The prediction accuracy of the CNN architecture was negatively affected by the
decrease in the number of convolutional layers or/and also the number of filters in a
convolution layer. As a result of using the CNN architecture (1), there was a significant
reduction in performance metrics from (R2 = 0.6847, MAE = 0.0282, RMSE = 0.0436),
(R2 = 0.7015, MAE = 0.0287, RMSE = 0.0424), and (R2 = 0.7094, MAE = 0.0277,
RMSE = 0.0418) to (R2 = 0.5999, MAE = 0.0335, RMSE = 0.0491), (R2 = 0.6123,
MAE = 0.0332, RMSE = 0.0483), and (R2 = 0.6128, MAE = 0.033, RMSE = 0.0483) for

the fourth, fifth, and sixth combinations, respectively. While the use of the CNN architecture (2)
caused a decline in the values of the performance metrics to (R2 = 0.6541, MAE = 0.0291,
RMSE = 0.0456), (R2 = 0.67, MAE = 0.0289, RMSE = 0.0446), and (R2 = 0.6706,
MAE = 0.0289, RMSE = 0.0445) for the fourth, fifth, and sixth combinations, respectively.

Based on these findings, CNN architecture (3) is the most appropriate architecture in terms
of size for Sentinel-2 data.

Table 2. Performance metrics of all architectures.

Input Data Architecture R2 MAE RMSE

Fourth Combination
Green, Red, NIR, SWIR 1,

and SWIR 2 bands

CNN architecture (1) 0.5999 0.0335 0.0491

CNN architecture (2) 0.6541 0.0291 0.0456

CNN architecture (3) 0.6847 0.0282 0.0436

Fifth Combination
Red Edge 3, NIR, Red

Edge 4, and SWIR 1 bands

CNN architecture (1) 0.6123 0.0332 0.0483

CNN architecture (2) 0.67 0.0289 0.0446

CNN architecture (3) 0.7015 0.0287 0.0424

Sixth Combination
Red, Red Edge 1, Red

Edge 2, Red Edge 3, NIR,
and Red Edge 4 bands

CNN architecture (1) 0.6128 0.033 0.0483

CNN architecture (2) 0.6706 0.0289 0.0445

CNN architecture (3) 0.7094 0.0277 0.0418

These results show that the prediction accuracy is affected by the size of the CNN
architecture. The increase in the number of convolution layers and the number of filters in
convolutional layers are the main reasons for the superiority of the CNN architecture (3).
The depth of the network highly affects the prediction accuracy of the algorithm [81,82].
Experimental results have shown that the number of layers has a significant impact on
CNN performance, suggesting that deeper convolutional networks have better overall
performance [83,84]. CNN model generally contains a large number of parameters [85]. The
significant parameters affecting CNN accuracy are the number of convolution layers [82]
and the number of filters in convolutional layers [86]. Increasing the number of filters used
increases the accuracy of the algorithm [87].
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Ultimately, CNN architecture (3) is the best architecture that fits this type of data.
Further, the best inputs for CNN architecture (3) to achieve accurate prediction of soil
moisture from Sentinel-2 images are the fourth combination (R2 = 0.6847, MAE = 0.0282,
RMSE = 0.0436), the fifth combination (R2 = 0.7015, MAE = 0.0287, RMSE = 0.0424),
and the sixth combination (R2 = 0.7094, MAE = 0.0277, RMSE = 0.0418). These results
indicate that using CNN is better than using ANN [33] for estimating surface soil moisture
from Sentinel data. Sentinel-2 data can be used to estimate surface soil moisture over
vegetation-covered areas, and this helps decision-makers in water management.

To evaluate and demonstrate the performance of the proposed CNN model in a
continuous period, Figure 6 shows the long-term soil moisture time series derived from the
CNN architecture (3) at three stations in three different sites, and the input data is the sixth
combination. Three stations were selected, the first station is Kyeamba 12 in a Kyeamba
site, the second station is Yanco 04 in a Yanco site, and the third station is WegenerNet 78
in a WegenerNet site. The available input data for the selected Kyeamba 12 and Yanco
04 stations were started in December 2018, while the available input data for the selected
WegenerNet 78 were started in March 2017.
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From Figure 6, we conclude that the proposed algorithm has succeeded in predict-
ing long-term soil moisture. The results obtained using the sixth combination as input
data for CNN architecture (3) were (MAE = 0.0568, RMSE = 0.0682) at Kyeamba 12,
(MAE = 0.021, RMSE = 0.0286) at Yanco 04, and (MAE = 0.0286, RMSE = 0.0344) at We-
generNet 78. The reported results in the figure indicate that the algorithm is less sensitive
to low soil moisture. This is the reason for the high values (MAE and RMSE) at Kyeamba
12, as most of the soil moisture values at the Kyeamba 12 site are less than (0.28 m3/m3).
The main reason for this is that the number of soil moisture data at low values was not
enough. Therefore, we anticipate that increasing the amount of soil moisture data at low
values will help to increase the algorithm’s sensitivity to low soil moisture.

4. Conclusions

Water is central, sacred, and vital to all life. Agriculture is the prime source of food for
all living organisms but is considered the main and the biggest user of freshwater. Further,
smart agriculture is a major key player in achieving food and water security for the world
population. Satellites and artificial intelligence are among the available technologies that
can help to achieve smart agriculture. Soil moisture estimation is the first step required to
implement smart irrigation in agriculture. Accurate soil moisture estimates help determine
the proper timing and amount of irrigation.

We aim, in this paper, to integrate artificial intelligence techniques and Sentinel-2
imagery data to provide a new approach for determining soil moisture without actual
contact with soil and in a short time. We propose a CNN architecture for predicting
soil moisture over vegetation-covered areas from Sentinel-2 images. The results of this
study indicate that CNN architecture (3) is the most suitable architecture. Output always
depends on the input. The best inputs to the proposed CNN algorithm for soil moisture
retrieval from Sentinel-2 images are the sixth combination composed of the Red, Red Edge
1, Red Edge 2, Red Edge 3, NIR, and Red Edge 4 bands; followed by the fifth combination
composed of the Red Edge 3, NIR, Red Edge 4, and SWIR 1 bands; and then the fourth
combination composed of the Green, Red, NIR, SWIR 1, and SWIR 2 bands. Using the
sixth combination as input data to the CNN architecture (3) achieved the best values of
the performance metrics (R2 = 0.7094, MAE = 0.0277, RMSE = 0.0418). Results also
show that both Red Edge 3 and SWIR 1 bands are considered more sensitive than the other
Sentinel-2 bands for estimating soil moisture. Furthermore, the NDWI is more sensitive
than NDVI and GVMI. Using the combinations “that consist of some number of Sentinel-2
bands” as input data for CNN architecture is better than using each band separately or all of
them at once and is also better than the use of indicators either separately or in combination.
Eventually, we need to use two- or three-times the number of Sentinel-2 images used in
this research to improve this algorithm and obtain accurate measurements from the CNN
model for the precision of field measurements. We will seek to illustrate and prove this in
future research.
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