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Abstract: Weather is an essential component of natural resources that affects agricultural production
and plays a decisive role in deciding the type of agricultural production, planting structure, crop
quality, etc. In field agriculture, medium- and long-term predictions of temperature and humidity
are vital for guiding agricultural activities and improving crop yield and quality. However, existing
intelligent models still have difficulties dealing with big weather data in predicting applications, such
as striking a balance between prediction accuracy and learning efficiency. Therefore, a multi-head
attention encoder-decoder neural network optimized via Bayesian inference strategy (BMAE-Net) is
proposed herein to predict weather time series changes accurately. Firstly, we incorporate Bayesian
inference into the gated recurrent unit to construct a Bayesian-gated recurrent units (Bayesian-GRU)
module. Then, a multi-head attention mechanism is introduced to design the network structure of
each Bayesian layer, improving the prediction applicability to time-length changes. Subsequently, an
encoder-decoder framework with Bayesian hyperparameter optimization is designed to infer intrinsic
relationships among big time-series data for high prediction accuracy. For example, the R-evaluation
metrics for temperature prediction in the three locations are 0.9, 0.804, and 0.892, respectively, while
the RMSE is reduced to 2.899, 3.011, and 1.476, as seen in Case 1 of the temperature data. Extensive
experiments subsequently demonstrated that the proposed BMAE-Net has overperformed on three
location weather datasets, which provides an effective solution for prediction applications in the
smart agriculture system.

Keywords: deep-learning neural network; weather time series prediction; Bayesian inference
mechanism; multi-head attention encoder-decoder; hyperparameter optimization

1. Introduction

Agriculture is essential for people’s livelihoods and is vital for the world’s food supply.
The yield of crops is directly dependent on natural resources and is closely related to
changing weather patterns. Weather resources affect the agricultural production environ-
ment, crop-planting layouts, crop yield, and even food trade security. Especially in field
agriculture, the land is exposed to the outdoor environment, and weather changes directly
affect the crops’ growth.

Accurate agricultural environment prediction can guide farming operations and pro-
vide good crop-growing conditions. In an environment of global weather changes, the
frequent occurrence of extreme weather causes crop damage and yield reduction. Weather
prediction can also guide producers in coping with the greenhouse effect, natural disaster
prevention, etc. [1]. While the performance of current weather time series prediction mod-
els cannot be accommodated using different time durations and locations, the ability to
generalize data to other regional datasets needs to be improved. Meanwhile, as the model’s
complexity increases, many hyperparameters need to be adjusted, significantly reducing
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its operational efficiency; therefore, it needs to be more lightweight because it is otherwise
challenging to deploy in practical applications [2,3].

Traditionally, weather prediction is performed by establishing partial differential
equations (PDEs) to simulate the physical processes of atmospheric changes and applying
numerical means to solve differential equations and, thus, achieve predictions. In recent
decades, the prediction performance of this method has gradually improved; now, not only
temperature changes but also precipitation and hurricane tracks can be predicted [4]. As
the demand for prediction accuracy has become higher, scientists have further improved
accuracy by fine-tuning the physical parameters and improving the power core, but this
elicits high computational costs [2].

The rapid development of IoT sensor technology and cloud storage technology has
brought convenience to agricultural production. By collecting real-time information, agri-
cultural IoT provides timely control of the agricultural production process and establishes
a high-quality, high-yielding, and efficient agricultural production management model
to ensure the quantity and quality of agricultural products [5]. Sensor devices can col-
lect various environmental factors in farmland in real time, sort them in chronological
order, and form specific time series data—for example, meteorological data, soil data, and
environmental data—in modern intelligent agricultural greenhouses [6–9]. Time series
forecasting uses data mining and data analysis methods to extract a correlation between
data, predict changes in the future, and then provide production planning and designation
decisions. For example, meteorological researchers predict temperature, humidity, and
wind direction based on historical meteorological data, cloud images, and environmental
monitoring equipment to provide information for production and people’s daily life [10].
In the modern smart agricultural greenhouse [11,12], the temperature, air humidity, soil
humidity, and light intensity are monitored, and the environmental data are modeled
and predicted. The greenhouse environment is regulated to provide a better crop-growth
environment and improve crop quality and yield. Therefore, time series forecasting has
important practical significance and research value, and more accurate forecasting is an
essential research direction of time series forecasting.

With the advent of big data, time series data present nonlinear characteristics and
randomness, which puts forward new requirements for time series forecasting [13]. An
important and meaningful area of research is how to model time series and reliably predict
the development trend accurately.

Traditional forecasting methods analyze time series data based on probability and
statistics. However, they are limited by prior knowledge, and the model prediction accuracy
and generalization are not good enough. When the data are nonlinear and contain noise,
it is difficult for traditional time series forecasting methods to achieve good nonlinear
fitting for such complex data. Meanwhile, data-driven machine learning is developing
rapidly. Machine learning digs out hidden data rules from historical data to realize the
prediction of time series data. However, machine learning is often insufficient when the
data are limited and incomplete. Deep neural networks have recently been widely used,
especially for multi-step prediction. Standard deep neural network (DNN) models, such
as convolution neural networks (CNN), long short-term memory (LSTM), gated recurrent
units (GRU), encoder-decoder, and transformer models, have been commonly used in
computer vision [14], image classification [15], time series prediction [16], natural language
processing [17], and other fields. Compared to methods for building PDEs, deep learning
demonstrates powerful modeling capabilities with large datasets that can be deployed
on modern computer systems. However, neural networks are prone to learning pseudo-
relationships in the data because of the lack of consideration of physical constraints.

From the above survey, the following can be seen:

(1) It is well known that time series data have the characteristics of solid volatility and
randomness, and their complex features require the model to have strong feature
extraction capabilities. At the same time, there are errors in the process of reading
data by sensors because the noise in the environment may change the readings, which
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will significantly affect the prediction performance, requiring a deep neural network
for in-depth mining.

(2) Most traditional models are used for single-step prediction, and the encoded vector
information will be lost when the input sequence is too long. Therefore, the existing
models cannot achieve medium- and long-term forecasting and are limited in practical
application and early warning.

In response to the above two problems, a multi-head attention encoder-decoder neural
network, optimized via Bayesian inference strategy (BMAE-Net), has been designed to
predict weather time series changes accurately. The overall contribution of this framework
is threefold:

(1) The existing prediction models cannot accommodate different prediction steps, and
there are differences in the prediction performance of the models at extra prediction
steps. Therefore, we integrated Bayesian variational inference into the GRU and
multi-headed attention layers to effectively improve the causal inference capability to
model weather time series. The model can adapt to different prediction steps and still
maintain excellent performance, i.e., it maintains an advantage in the time dimension.

(2) The existing models must be more robust across different datasets, especially in
weather prediction. The temperature varies significantly from location to location; the
same model has variable prediction accuracy on time series data from different areas.
Therefore, this paper introduces a codec framework that uses Bayesian-GRU as the
encoder and decoder and incorporates a Bayesian multi-head attention (BMA) layer
in between to construct the BMAE-Net. This framework achieves better prediction
performance on different regional datasets and exceeds the baseline model in terms of
spatial dimensionality and generalizability.

(3) It is time-consuming and laborious to tune the parameters by hand and the model
needs self-adaptability. Relying on a Bayesian optimization strategy, the model can
automatically search for the globally optimal hyperparameter results and adaptively
adjust them. The model considers the learning efficiency, stability, and the total
number of parameters, which renders it more suitable for IoT-based practical sensor
deployment applications and offers broader application prospects [18].

Subsequent chapters of this paper are organized as follows: Section 2 summarizes
related work on time series prediction and Bayesian theory. Section 3 expounds on the
general architecture of the model and describes the process details. Then, Section 4 presents
the experimental results and analysis. Finally, the conclusions of this study are summarized,
and future research is discussed.

2. Related Works
2.1. Data-Driven Time Series Forecasting Models

Traditional time series forecasting methods include statistical methods, machine learn-
ing, and deep neural networks. Statistical methods mainly use mathematical analysis
methods to describe time series data and establish mathematical models through statistical
probability methods to collect historical event trends. Traditional time series forecasting
methods include the autoregressive model, autoregressive moving average (ARMA) model,
differential autoregressive moving average (ARIMA) model, etc. Zeng et al. [19] combined
ARMA with a backpropagation (BP) neural network to design a combined optimization
model for wind power prediction. Wang et al. [20] used ARIMA to predict short-term cloud
coverage, while Chen [21] used a generalized autoregressive conditional heteroskedasticity
model to predict power generation. However, these statistical models require the data to
be a stationary time series. The model parameters must rely on human experience, so they
are unsuitable for fitting nonlinear series.

Compared with statistical methods, machine learning continuously adjusts parameters
through an internal iteration of the model, which is more suitable for nonlinear fitting
problems, such as the backpropagation (BP) model. For example, Xiao [22] designed a
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rough set BP model for the premise prediction of short-term load to overcome the effect
of noise on prediction accuracy. In addition, multilayer perceptron (MLP) [23], support
vector machine (SVM) [24], and hidden Markov models [25] have all been used in time
series forecasting.

With the development of computer technology, DNNs that can process complex
information have been established. Many capabilities, such as fault detection, speech recog-
nition, natural language processing (NLP), and disease diagnosis, have shown excellent
performance [26]. Recurrent neural networks (RNN) structurally consider the timing of the
data, establish connections in the hidden layer, and have a better nonlinear fitting ability.
Nevertheless, traditional RNNs suffer from the problem of vanishing gradients, so it is chal-
lenging to capture long-term dependencies. Long short-term memory networks (LSTMs)
and gated recurrent units (GRUs) have overcome this limitation in recent years [27]. An
LSTM network has multiple gated structures to improve the gradient disappearance and
long-term dependence problems of traditional RNNs. Li [28] fused multi-feature atten-
tion, temporal attention, and LSTM to propose an attention-aware LSTM model for soil
temperature and humidity prediction. GRUs reduce the number of gated units based on
LSTM, have a more straightforward network structure and fewer training parameters than
LSTM, and improve the operation speed while achieving the same effect. Jin [29] integrated
empirical model decomposition and gated recurrent units to design a combined model
for premise prediction of temperature, humidity, and wind speed for decision-making in
precision agricultural production. Although machine learning has achieved good results in
nonlinear fitting, its noisy data prediction performance still needs improvement.

2.2. Attention-Based Encoder-Decoder Prediction Methods

The encoder-decoder framework was first applied to text processing and consisted of
two parts, the encoder, and the decoder, also known as end-to-end or sequence-to-sequence
systems. The encoder is responsible for mapping the input sequence data into a fixed-
length encoding vector, while the decoder is responsible for decoding the encoding vector
into an output sequence [30] that consists of multilayer CNN, RNN, LSTM, and GRU
networks. Because of its unique structure and powerful feature extraction capabilities, the
encoder-decoder model is widely used in machine translation, time series prediction, and
other fields [31–33]. However, it also has a problem with information loss, and the model
performance will gradually decrease with any increase in the input time series length.

Therefore, the researchers incorporated the attention mechanism into the neural net-
work. The essence of the attention mechanism is to assign weights to sequences, selecting
and assigning higher weights to important feature information and filtering out irrelevant
feature information. The attention mechanism clarifies the relationship between input
and output and enhances the interpretability of the model. It also reduces computational
effort because the more information there is to be learned, the more complex the model
becomes and the higher the computational power needed for the computer. Meanwhile,
the attention mechanism alleviates the vanishing disappearance and gradient explosion.
Recently, the attention mechanism has been widely used for time series prediction. Du [34]
proposed a temporal attention encoder-decoder model for multivariate time series fore-
casting. Jin [35] combined wavelet decomposition and a bidirectional LSTM network and
integrated the attention mechanism to predict the temperature and humidity of the smart
greenhouse. Nandi [36] established a model based on the self-attention mechanism and an
encoder-decoder framework to approach long-term air temperature forecasting tasks.

Transformer [37] is a model proposed by Vaswani et al. that is entirely based on
the attention mechanism to capture global dependencies. It replaces the standard RNN
network structure with a self-attention structure that allows parallel computation and was
first applied to NLP. More recently, the transformer model has demonstrated powerful
capabilities in temporal sequence prediction, especially in long sequence prediction. In
recent years, the transformer model has demonstrated significant advantages in time series
prediction. However, as the input sequence length increases, the computational complexity
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of the classical Transformer is too high. To reduce the computational cost, scholars have
proposed a series of variants based on attention mechanisms, such as sparse attention [38],
ProbSparse attention [39], and LogSparse attention [40].

2.3. Bayesian Optimization Theory for Time Series Prediction

The Bayesian theorem is intended to deal with uncertainty. Unlike traditional machine
learning, the Bayesian theorem derives the posterior distribution, based on the prior
distribution and the likelihood function. The Bayesian theorem can be viewed as an
information processing system, where the input is the prior distribution and likelihood
function, and the output is the posterior distribution of the model. This information theory-
based interpretation allows the Bayesian theorem to be more widely applied to time series
prediction methods, such as Bayesian neural networks and Bayesian optimizers.

The Bayesian neural network uses Bayesian theory and the variational inference
method to introduce an a priori probability into the weight and bias of the neural network.
It continuously adjusts the prior probability through backpropagation, thereby extracting
the distribution features implicit in the data. It is an inference neural network with un-
certainty [41,42]. In ordinary neural networks, fully connected networks are mainly used
for data fitting, and the model’s internal parameters are determined values. Although
this is convenient for model training, it is prone to overfitting [43]. Unlike a traditional
neural network, a Bayesian neural network has a random number that obeys the posterior
probability distribution. Thus, using the Bayesian inference method by introducing weights
related to conditional probability distributions, Bayesian neural networks can solve the
common problem of overfitting seen in classical neural networks [44]. Steinbrener [45]
used a variational Bayesian approach to construct a Bayesian linear layer, using it to model
the current information along the Pacific coastline to predict the maximum tsunami height.
Jin [46] combined Bayesian variational inference with an autoencoder. The model used
planar flow to transform the internal features of the variational autoencoder, to propose
a temperature predictor that overcomes noise and improves the dynamic adaptability of
the model. Park [47] proposed a Bayesian spatiotemporal model to deal with the missing
data problem in agrometeorological data. The Bayesian theorem is also used to perform
parametric optimization. In recent years, Bayesian optimization has become more and
more widely used in solving black-box function problems and has become a mainstream
method of hyperparametric optimization [48–50]. Dairy et al. [51] reviewed the literature
on using Bayesian networks in agricultural research. They showed that Bayesian networks
can reason regarding incomplete information and incorporate prior knowledge, so they are
well-suited for agricultural research.

Based on the attention mechanism and encoder-decoder framework, we incorporated
the Bayesian theorem to construct a BMAE-Net for predicting the weather.

3. Materials and Methods

For this work, we designed a multi-head attention encoder-decoder neural network,
optimized via Bayesian inference strategy (BMAE-Net) to accurately predict weather time
series changes. The proposed model innovated on the backbone network with an encoder-
decoder framework. Then, a multi-head attention mechanism has been adopted to design
a novel network structure among neuron layers, improving the network’s compatibility
performance for different duration predictions. Subsequently, Bayesian inference theory
was introduced into several essential processes of the proposed model, including neural
unit designing, network layer connection, and hyperparameter optimization, to improve
the learning efficiency and forecasting accuracy comprehensively. A depiction of the model
can be seen in Figure 1.
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Figure 1. The overall framework of the BMAE-Net.

3.1. Bayesian-GRU Module

In a traditional recurrent neural network, the GRU has both the feedback mechanism
and the chain structure of hidden units of a traditional RNN and the gate control mechanism
of LSTM. At the same time, the number of parameters is fewer, and the feature extraction
capacity is more potent. The traditional GRU forward propagation process is as follows [52]:

zt = σ(Wz[ht−1, xt] + bz) (1)

rt = σ(Wr[ht−1, xt] + br) (2)

h̃t = tanh(Wh[rt � ht−1, xt] + bh) (3)

ht = (1− zt)� h̃t + zt � ht−1 (4)

where xt is the input data and zt and rt are the output of the update gate and reset gate,
respectively. zt is used to control the amount of data that the previous memory information
can continue to retain until the current moment. rt is used to control how much of the
past information is to be forgotten. ht−1 indicates the state information of the previous
moment, h̃t is the current candidate hidden state information, and ht is the current hidden
state information; Wr, Wz, and Wh are the weights of the reset gate, the update gate and
hidden state; br, bz, and bh are the biases.

Based on its uncertainty estimate, the problem of model overfitting is improved. The
Bayesian gated recurrent unit (Bayesian-GRU) is used to sample the network weights
through probability density distribution and then optimize the distribution parameters,
instead of setting a certain weight in the traditional neural network. In the Bayesian-GRU,
Wr and br no longer have a specific value, but instead have a sampling point that obeys
a Gaussian distribution, with mean µz and standard deviation σz. The Bayesian-GRU
network structure is shown in Figure 2.
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Figure 2. Bayesian-GRU structure. The blue box in the figure shows our proposed Bayesian-GRU
module, the pink box shows the input temperature data, xt , and the output, yt, predicted by the
model, and the blue circle, ht, shows the hidden state information at the current moment. Wt and
bt are the weights and biases within the GRU, which we incorporated into the Bayesian variational
inference (as shown in the green box). Wt and bt are no longer specific values; we transformed them
by translation and scaling, using a Gaussian distribution with mean µ and standard deviation σ.

We assume that W(n) is the n-th sampling weight and b(n) is the bias, both conforming
to the Gaussian distribution. The Gaussian distribution meets the requirement that the
mean is µ and standard deviation is σ for the translation and scaling transformation.

W(n) = N (0, 1)× log(1 + σ) + µ (5)

b(n) = N (0, 1)× log(1 + σ) + µ (6)

The definition of the loss function is as follows:

Loss = log(q(ω|θ))− log(p(ω)) (7)

where p(ω) is a priori distribution and q(ω|θ) is posterior distribution; this allows the
Bayesian-GRU to learn the distribution features. Since the target given during training is
a series of fixed values, the loss function consists of a combination of deterministic and
uncertainty errors. The loss function of the Bayesian-GRU is as follows:

Loss = α×mse(ŷ, y) +
1
α
× [log(q(ω|θ))− log(p(ω))] (8)
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where ŷ is the predicted value of the output under the current weight sampling, and α is
the weight coefficient, which is equal to the product of the number of training samples and
the batch size.

3.2. Bayesian Multi-Head-Attention Module

As the input sequence length increases, the feature information extracted earlier
will be overwritten, resulting in the loss of feature information and a decrease in the
model’s predictive power. This work improves the existing encoder-decoder framework
and proposes a Bayesian multi-head-attention module to solve the information loss problem.
This module addresses the prediction of different prediction intervals and enhances the
feature extraction ability of the model.

Multi-head attention is a variant of the additive attention-based mechanism. The
attention mechanism can be described as a mapping of a query to a series of key-value
pairs, with scaled dot product attention at its core, where query, key and value are vectors,
and the output is a weighted sum of values, indicating the relevance of the query and
the current key pair. We construct the structure of the Bayesian multi-head attention
mechanism by transforming the linear layer of multi-head attention into a Bayesian linear
layer, as shown in Figure 3.
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The Bayesian attention layer consists of a multilayer multi-head attention mechanism.
We defined d = m/h, q = k = v = H, where h is the number of heads. First, the encoder
output H is first linear transformed, and then the input of the i-th head is Qi, Ki, Vi ∈ Rt×d:

Qi = ωiqq
ωiq = N (0, 1)× log

(
1 + ρq

)
+ µq

(9)

Ki = ωikk
ωik = N (0, 1)× log(1 + ρk ) + µk

(10)

Vi = ωivv
ωiv = N (0, 1)× log(1 + ρv ) + µv

(11)

where µi, ρi, µk, ρk, µv, ρv is the parameter to be learned. The attention weight calculation
process is as follows:

AttentionWeight = so f tmax
(

QKT
√

d

)
. (12)
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The output of the i-th head headi ∈ Rt×d is as follows:

headi = Attention(Q, K, V) = so f tmax

(
QiKT

i√
d

)
Vi (13)

where headi is the weighted Bayesian encoder output. The output of the h header is
concatenated together and is then subjected to Bayesian-linear variation, to obtain the
encoding vector, C ∈ Rt×m:

C = ωc·concat[head0; head1; . . . ; headq] (14)

ωc = N (0, 1)× log(1 + ρc ) + µc (15)

where µc, ρc is the parameter to be learned. Bayesian multi-head-attention uses multiple
queries to select features in the input information through parallel computing. The essence
of Bayesian multi-head attention is to introduce several independent attention mechanisms
in parallel, using different weight matrices to linearly transform the query to obtain multiple
queries, which can extract the important features in the sequence and prevent overfitting.

The heads of each attention focus on different parts of the input information. The dis-
tributed multi-head attention mechanism saves computing resources, reduces computing
costs, and improves the computing efficiency of the model.

3.3. Bayesian Encoder-Decoder Framework

Based on the encoder-decoder model, Bayesian-GRU and Bayesian multi-head-attention
are integrated to form a sequence-to-sequence (seq-to-seq) Bayesian encoder and decoder
framework.

• Data preprocessing. First, a sliding window is applied to the data, X = [x1, x2, · · · , xn]
T

is assumed to be time series data, with a feature length of n. The input length is t, the
output length is τ, and the step size is s.

• Encoder layer. The Bayesian-GRU is selected as the basic unit of the encoder. After the
data are pre-processed, it is transmitted to the Bayesian-GRU for feature encoding. In
the BMAE-Net, the Bayesian encoder layer outputs the hidden states at each time step
to obtain H = [h1, h2, · · · , ht]

T ∈ Rt×m.
• Bayesian multi-head attention layer. The output obtained from the Bayesian encoder

is input to the Bayesian multi-head attention layer, and the attention score is calculated
and weighted by Bayesian multi-head attention to obtain Equation (12). Finally, the
encoding vector C = ωc × concat[head0; head1; . . . ; headq] is obtained by splicing and
linear transformation.

• Decoder layer. The Bayesian decoder is the same as a Bayesian encoder, which also
consists of multiple layers of Bayesian-GRU. The encoding vector is input to the
Bayesian decoder, and after passing through the layers, the hidden state of the last
time step in the Bayesian decoder is output. A nonlinear transformation is performed
to obtain the prediction sequence:

Ỹ= [ỹ1, ỹ2, . . . ỹτ ]
T= Relu

(
ωyh· + by

)
(16)

ωy = N (0, 1)× log
(
1 + ρy

)
+ µy (17)

where µy, ρy is the parameter to be learned, and τ is the prediction length of the target
sequence. Relu is the activation function, with the following expression:

Relu(x) =
{

x, x > 0
0, x ≤ 0

. (18)
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During model training, the model optimizes the hyperparameters, based on the
prediction results and expectations. When an optimal set of hyperparameters is obtained,
the optimization process is stopped, and the parameters are applied to the prediction.

3.4. Bayesian-Based Hyperparameter Optimization

Many parameters in the encoder-decoder multi-head attention model directly impact
the model’s performance. As the complexity of the model increases, hyperparameter se-
lection becomes a challenging problem, while the correct choice of hyperparameters can
ensure the model’s good performance. This paper introduces a Bayesian optimization
algorithm (BOA) for hyperparameter optimization. The BOA is an efficient global optimiza-
tion algorithm, where an objective optimization function is used during the optimization
process to optimize the results continuously. The objective optimization function can be
expressed as:

f (ω) =

√
∑m

i=1(ŷi(ω)− yi)
2

m
(19)

where yi represents the true value, ŷi(ω) represents the predicted value, and m is the length
of the input time series. The objective function is minimized as:

ω∗ = argmin
ω∈W

f (ω) (20)

where W is the set of all parameters, ω∗ denotes the best parameter obtained, and ω is a set
of hyperparameter combinations.

In the parameter tuning process, a Gaussian function is chosen as the distribution
assumption for the prior function. Then, the next point in the posterior process is chosen
for evaluation, using the acquisition function. The Gaussian process is an extension of the
multidimensional Gaussian distribution and can be defined using the mean and covariance:

f (ω) ∼ GP(µ(ω), K(ω, ω′)) (21)

where µ(ω) is the mean value of f (ω) and K(ω, ω′) is the covariance matrix of f (ω).
Initially, it can be expressed as follows:

K =

k(ω1, ω1) . . . k(ω1, ωi)
...

. . .
...

k(ωi, ω1) · · · k(ωi, ωi)

. (22)

During the search for optimal parameters, the above covariance matrix changes con-
tinuously during the iterations. When new samples are added to the set, the covariance
matrix is updated to:

K′ =
(

K kT

k k(ωi+1, ωi+1)

)
(23)

k = [k(ωi+1, ω1), k(ωi+1, ω2), · · · , k(ωi+1, ωi)]. (24)

The posterior probabilities can be obtained from the updated covariance matrix:

P( fi+1

∣∣∣Di+1, ωi+1) ∼ N(µi+1(ω), σ2
i+1(ω)) (25)

where D is the observed data, µi+1(ω) is the mean value of f (ω) at step i + 1, and σ2
i+1(ω)

is the variance of f (ω) at step i + 1.
By evaluating the mean and covariance matrices, the values of the sampled functions

from the joint posterior distribution are found to be faster for the final parameters and
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reduce the wasting of resources. We choose the upper confidence bounds (UCB), as the
sampling function:

UCB(ω) = µ(ω) + λσ(ω) (26)

ωi+1 = argmaxUCB = argmaxµ(ω) + λi+1σi(ω) (27)

where λ is a constant, ωi+1 is the hyperparameter chosen at step i + 1, and µ(ω) and σ(ω)
are the mean and covariance of the joint posterior distribution of the objective function
obtained in the Gaussian process, respectively.

The algorithm-running process of BMAE-Net, based on Bayesian optimization, is
shown in Algorithm 1.

Algorithm 1 Training of the BMAE-Net Model

Input: the weather data, hyperparameter space W, epochs
Output: the optimal hyperparameter, the prediction of temperature
1: for i = 1: n do
2: Select a set of parameters ω from the hyperparameter space W
3: Train the model with ω

4: Evaluate model performance with Equation (19)
5: Update the covariance matrix and calculate the posterior probability
6: parameters ω∗ update by UCB function
7: Obtain the best model parameters ω∗ and predict

4. Experiments
4.1. Datasets and Evaluation Metrics

With economic development and people’s pursuit of a better life, accurate prediction
of meteorological data is of practical importance to support agriculture. Temperature
variation is closely related to agricultural production and is a major factor affecting the
growth and development of crops. Temperature prediction helps in agricultural planning,
disaster weather prevention, and the planning of agricultural output, thus improving crop
yield and quality and increasing economic growth.

The temperature substantially affects the crop’s distribution and quality, so this ex-
periment uses temperature data collected from meteorological stations in agricultural
areas at three locations in China as the study object. The source code is available at
https://github.com/btbuIntelliSense/Temperature-and-humidity-dataset (accessed on
29 November 2022). The three cities are located in the northeast, north, and south of
China, Shenyang, Beijing, and Guangzhou, and the latest data showed that these three
locations have 10.3 million, 1.77 million, and 0.44 million mu (a Chinese unit of area, where
1 mu = 666.7 m2) of grain sown in 2022. The different locations show different temperature
variations, meaning that the distribution of crops varies from location to location, with
wheat being the main grain crop in Shenyang, maize being grown more in Beijing, and
indica rice being the main crop in Guangzhou.

The temperature dataset records the temperature values for the three cities from
1 January 2015, at 00:00 h, to 31 December 2015, at 24:00 h, with a sampling frequency
of 1 h for the sensors and a total of 24 datasets per day. The length of each dataset is
8760. The datasets are relatively complete, with only 1.3% of missing values (113 sets); the
data are missing randomly, without continuous missing values. The missing values are
filled and replaced using the average of two adjacent measurements. The temperature
data of the three cities are shown in Figure 4. Shenyang and Beijing have four distinct
seasons, while Guangzhou has more sunny and hotter weather. The lowest temperature in
Shenyang in winter can reach −20 ◦C, while the lowest temperature in Guangzhou is only
5 ◦C. Moreover, the temperature fluctuation in Guangzhou is slight throughout the year,
with a difference of 30 ◦C between the minimum and maximum temperatures, while the
maximum temperature difference in Shenyang can reach 53 ◦C.

https://github.com/btbuIntelliSense/Temperature-and-humidity-dataset


Agronomy 2023, 13, 625 12 of 23

Agronomy 2023, 13, x FOR PEER REVIEW 12 of 24 
 

 

4. Experiments 

4.1. Datasets and Evaluation Metrics 

With economic development and people’s pursuit of a better life, accurate prediction 

of meteorological data is of practical importance to support agriculture. Temperature 

variation is closely related to agricultural production and is a major factor affecting the 

growth and development of crops. Temperature prediction helps in agricultural planning, 

disaster weather prevention, and the planning of agricultural output, thus improving crop 

yield and quality and increasing economic growth. 

The temperature substantially affects the crop’s distribution and quality, so this 

experiment uses temperature data collected from meteorological stations in agricultural 

areas at three locations in China as the study object. The source code is available at 

https://github.com/btbuIntelliSense/Temperature-and-humidity-dataset (accessed on 29 

November 2022). The three cities are located in the northeast, north, and south of China, 

Shenyang, Beijing, and Guangzhou, and the latest data showed that these three locations 

have 10.3 million, 1.77 million, and 0.44 million mu (a Chinese unit of area, where 1 mu = 

666.7 m2) of grain sown in 2022. The different locations show different temperature 

variations, meaning that the distribution of crops varies from location to location, with 

wheat being the main grain crop in Shenyang, maize being grown more in Beijing, and 

indica rice being the main crop in Guangzhou. 

The temperature dataset records the temperature values for the three cities from 1 

January 2015, at 00:00 h, to 31 December 2015, at 24:00 h, with a sampling frequency of 1 

h for the sensors and a total of 24 datasets per day. The length of each dataset is 8760. The 

datasets are relatively complete, with only 1.3% of missing values (113 sets); the data are 

missing randomly, without continuous missing values. The missing values are filled and 

replaced using the average of two adjacent measurements. The temperature data of the 

three cities are shown in Figure 4. Shenyang and Beijing have four distinct seasons, while 

Guangzhou has more sunny and hotter weather. The lowest temperature in Shenyang in 

winter can reach −20 °C, while the lowest temperature in Guangzhou is only 5 °C. 

Moreover, the temperature fluctuation in Guangzhou is slight throughout the year, with 

a difference of 30 °C between the minimum and maximum temperatures, while the 

maximum temperature difference in Shenyang can reach 53 °C. 

 

Figure 4. Histograms of the air temperature measurement datasets from three locations, used for 

model training and validation. 

In December, most Chinese cities adopt greenhouse farming; 67% of these are plastic 

greenhouses. These plastic greenhouses do not have intelligent heating and ventilation 

Figure 4. Histograms of the air temperature measurement datasets from three locations, used for
model training and validation.

In December, most Chinese cities adopt greenhouse farming; 67% of these are plastic
greenhouses. These plastic greenhouses do not have intelligent heating and ventilation
equipment and rely entirely on physical methods, such as the laying out of insulation quilts,
to control temperature. Temperature control in plastic greenhouses is heavily dependent
on outdoor temperatures. Therefore, accurate prediction of the outdoor temperature is
essential for greenhouse crop cultivation, and accurate temperature prediction can provide
a basis for agricultural production planning to provide a suitable growing environment
for crops in greenhouses. Therefore, we selected 8040 datasets from the first 11 months for
model training and 720 datasets from December for testing.

The experiments in this paper use the root mean squared error (RMSE), mean absolute
error (MAE), Pearson’s correlation coefficient (R), the symmetric mean absolute percent-
age error (SMAPE), the mean error (ME), and the standard deviation of errors (SDE) as
evaluation model indicators. RMSE and MAE are standard error measures between the
actual value and the forecast, while SMAPE is the deviation ratio, with smaller values
indicating a closer match. The ME value is equal to or close to 0 for unbiased predictions.
SDE measures the extent to which the error value deviates from the mean. R is used to
measure the correlation between the predicted and actual values. The R value is close to 1,
showing that the higher the correlation between the prediction and the ground truth, the
better the model will fit. The formulas for these four metrics are shown below:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (28)

MAE =
1
m

m

∑
i=1
|yi − ŷi| (29)

SMAPE =
100%

m

m

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(30)

R =
∑T

t=1 (ŷt − ŷt)(yt − yt)√
∑T

t=1(ŷt − ŷt)
2∑T

t=1 (yt−yt)
2

(31)

ME =
1
m

m

∑
i=1

(ŷi − yi) (32)



Agronomy 2023, 13, 625 13 of 23

SDE =

√
1

m− 1

m

∑
i=1

(yi − ŷi)
2 (33)

where yi is the ground truth value, ŷi is the prediction, m represents the number of samples,
yi is the average of the ground truth value, and ŷi is the average of the prediction.

4.2. Comparative Experiments

To verify the effectiveness of our proposed model, we selected nine deep-learning
models for comparative experiments. The baseline models we used were the Linear, RNN,
GRU, LSTM, Bi-LSTM, ESN, Encoder-Decoder, attention, and informer models.

Three cases were considered:

Case 1: 24 h of the past day was used to predict 24 h in the next day.
Case 2: 48 h of the past two days were used to predict 24 h in the next day.
Case 3: 48 h of the past two days were used to predict 48 h in the next two days.

The training parameters of the model were set as follows: the epoch was 200, the
learning rate was 0.0001, and the optimizer was Adam. Other parameters are shown in
Table 1.

Table 1. Model parameters.

Parameters Case 1 Case 2 Case 3

Batch size 12 24 48
Network layers 2 2 4
Hidden units 64 64 128

Encoder-decoder layers 1 1 2
Multi-head 2 2 2

ESN neuronal reservoir 400 800 1200

The BMAE-Net has many hyperparameters, among which the number of hidden
layer units and batch size are the most sensitive hyperparameters and significantly impact
the model performance. Other adjustable hyperparameters include epoch, dropout, the
number of encoder/decoder layers, heads of multi-head attention, and optimizer. The
detailed hyperparameter settings are shown in Table 2.

Table 2. Bayesian optimization hyperparameter space and search results.

Parameters Range Case 1 Case 2 Case 3

Batch size [6,50] 16 24 48
Network layers [1,6] 1 2 3
Hidden units [24,256] 36 72 120

Encoder/Decoder layers [1,4] 1 2 2
Heads of multi-head attention [1,3] 1 2 2

Epoch [50,200] 65 110 135
Optimizer [Adam, SGD, AdaGrad] Adam Adam Adam

All models were written in a Python 3.8 environment, based on the PyTorch deep
learning framework. All experiments were performed on a server with the following
parameters: Ubuntu 20.04 64-bit operating system; Intel Core i7-6800K 3.4 GHz CPU;
NVIDIA GTX 1080Ti 11G. The evaluation of model prediction performance is conducted
using the evaluation metrics mentioned in Section 4.1.

The results of temperature experiments in the Shenyang area are shown in Table 3.
As seen from Table 3 and Figure 5, the RMSE, MAE, and SMAPE indicators of the model
proposed in this paper are lower than those of the other baseline models, which indicates
that the model has the smallest difference between the prediction and the ground truth. The
R indicators are greater than the other models, meaning that the BMAE-Net model has the
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highest goodness of fit. In Case 1, the RMSE, MAE, and SMAPE of the BMAE-Net model
were 5.7%, 8.1%, and 7.2% lower than the GRU model, which was the best-performing
model on this dataset, and the R indicator was 1.2% higher. In Case 2, compared to the
attention model, which was the best-performing model on this dataset, the BMAE-Net
model’s RMSE, MAE, and SMAPE were 6.1%, 4.7%, and 1.7% lower than the attention
model, and the R metric improved by 1.4%. In Case 3, compared to the best-performing
Bi-LSTM model on this dataset, the BMAE-Net model’s RMSE, MAE, and SMAPE were
1.5%, 2.9%, and 0.9%, and the R metric improved by 0.9%.

Table 3. Experimental results for temperature from the Shenyang station.

Step Case 1 Case 2 Case 3

Metric RMSE MAE SMAPE R RMSE MAE SMAPE R RMSE MAE SMAPE R

Linear 4.966 4.153 0.934 0.796 4.623 3.840 0.911 0.805 5.523 4.395 0.975 0.728
Informer 3.692 3.161 0.790 0.863 3.416 2.953 0.779 0.861 4.336 3.491 0.843 0.802

RNN 3.240 2.842 0.755 0.878 3.454 2.982 0.770 0.864 4.228 3.498 0.842 0.797
GRU 3.073 2.652 0.716 0.889 3.302 2.840 0.773 0.868 3.803 3.190 0.811 0.829
LSTM 3.254 2.811 0.728 0.883 3.210 2.783 0.752 0.878 3.865 3.237 0.836 0.827

Bi-LSTM 3.122 2.701 0.730 0.885 3.186 2.798 0.764 0.878 3.784 3.113 0.813 0.832
ESN 3.318 2.864 0.748 0.878 3.326 2.876 0.754 0.861 4.167 3.429 0.829 0.802

Encoder-
Decoder 3.138 2.738 0.715 0.881 3.298 2.805 0.741 0.874 3.996 3.333 0.841 0.814

Attention 3.146 2.707 0.708 0.888 3.122 2.648 0.719 0.879 3.919 3.283 0.829 0.822
BMAE-

Net 2.899 2.437 0.665 0.900 2.933 2.523 0.707 0.891 3.728 3.022 0.806 0.840
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The results of the temperature experiments in the Beijing area are shown in Table 4. As
can be seen from Table 4 and Figure 6, the RMSE, MAE, and SMAPE indicators of the model
proposed are lower than the other baseline models, which indicates that the model exhibits
the smallest difference between the prediction and the ground truth. The R indicators are
greater than in the other models, indicating that the model has the highest goodness of fit.
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Table 4. Experimental results for temperature from the Beijing station.

Step Case 1 Case 2 Case 3

Metric RMSE MAE SMAPE R RMSE MAE SMAPE R RMSE MAE SMAPE R

Linear 3.299 2.830 0.932 0.775 4.404 4.000 1.181 0.763 4.840 4.134 1.119 0.606
Informer 3.347 2.880 0.945 0.784 3.691 3.269 1.053 0.780 4.037 3.464 1.032 0.634

RNN 3.604 3.118 0.923 0.771 3.415 2.968 1.000 0.794 3.630 3.108 1.001 0.681
GRU 3.154 2.905 0.913 0.786 3.394 2.931 0.966 0.794 4.109 3.542 1.101 0.671
LSTM 3.172 2.718 0.911 0.783 3.189 2.753 0.952 0.783 3.690 3.142 1.007 0.672

Bi-LSTM 3.193 2.708 0.928 0.780 3.257 2.805 0.965 0.781 3.826 3.235 1.032 0.655
ESN 3.106 2.636 0.895 0.792 3.110 2.683 0.932 0.796 3.699 3.186 1.022 0.681

Encoder-
Decoder 3.235 2.778 0.954 0.796 3.276 2.847 0.966 0.806 3.667 3.108 0.998 0.692

Attention 3.108 2.666 0.920 0.796 3.204 2.771 0.944 0.800 3.860 3.324 1.026 0.698
BMAE-

Net 3.011 2.574 0.882 0.804 3.000 2.576 0.926 0.810 3.624 3.104 0.980 0.722
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In Case 1, the BMAE-Net model had 3.1%, 2.4%, and 1.5% lower RMSE, MAE, and
SMAPE values and a 1.4% higher R-indicator compared to the ESN model that performed
best on this dataset. In Case 2, the BMAE-Net model had lower RMSE, MAE, and SMAPE
values, which decreased by 4.1%, 4.4%, and 2% compared to the ESN model, and the R
metric improved by 1.9%. In Case 3, the RMSE, MAE, and SMAPE of the BMAE-Net model
decreased by 1%, 0.2%, and 1.8% compared to the encoder-decoder model, which was the
best-performing model on this dataset, and the R indicators improved by 4.4%.

The results of the temperature experiments in the Guangzhou area are shown in
Table 5. As seen from Table 5 and Figure 7, the RMSE, MAE, and SMAPE metrics of the
model proposed in this paper are lower than those of the other baseline models, which
indicates that the model has a minor difference between the prediction and the ground
truth. The R metrics are greater than those of the other models, meaning that the model has
the best fit. In Case 1, the BMAE-Net model had 13%, 15%, and 14.4% lower RMSE, MAE,



Agronomy 2023, 13, 625 16 of 23

and SMAPE values and a 4.1% higher R-indicator than the attention model, compared
to the best-performing attention model on this dataset. In Case 2, compared to the best-
performing attention model on this dataset, the BMAE-Net model had 4%, 7.5%, and 6.3%
lower RMSE, MAE, and SMAPE values and 1.7% better R metrics than the attention model.
In Case 3, compared to the best-performing Bi-LSTM model on this dataset, the BMAE-Net
model had 9%, 9%, and 8.6% lower RMSE, MAE, and SMAPE values than the Bi-LSTM
model, and the R metric improved by 6.4%.

Table 5. Experimental results for temperature from the Guangzhou station.

Step Case 1 Case 2 Case 3

Metric RMSE MAE SMAPE R RMSE MAE SMAPE R RMSE MAE SMAPE R

Linear 2.184 1.920 0.131 0.751 2.033 1.767 0.123 0.793 2.804 2.414 0.164 0.629
Informer 1.917 1.571 0.105 0.818 1.876 1.606 0.111 0.830 2.724 2.392 0.165 0.651

RNN 1.992 1.719 0.119 0.812 1.877 1.595 0.109 0.826 2.581 2.121 0.140 0.693
GRU 1.940 1.638 0.116 0.819 1.794 1.474 0.104 0.849 2.615 2.163 0.143 0.693
LSTM 1.972 1.646 0.111 0.799 1.828 1.500 0.103 0.835 2.710 2.335 0.158 0.669

Bi-LSTM 1.894 1.599 0.110 0.824 1.774 1.456 0.099 0.843 2.556 2.113 0.139 0.687
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4.3. Ablation Experiments

In order to validate the Bayesian encoder-decoder model based on the attention
mechanism proposed in this paper, the modeling predictions were validated using the tem-
perature data from three cities. The same arrangement used in the comparison experiments
in Section 4.2 was employed to set up MHAtt, BLinear, BLSTM, BGRU, and BMED-Net, to
compare the prediction results for the three cases.
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As seen from Table 6 and Figure 8, in the temperature prediction experiments in
each location, compared with the MHAtt model, the BMAE-Net model that incorporated
variational inference improved in all evaluation indexes, and the model prediction was
better. Meanwhile, the model results for BLinear, BGRU, and BLSTM were also better than
those for Linear, GRU, and LSTM, which indicates that with the inclusion of variational
inference, the fitting ability of the model was improved, and better prediction could
be achieved.

Table 6. The experimental results for temperature for each location.

Location Step Metric BMAE-Net BLinear BGRU BLSTM MHatt

Shenyang

Case 1

RMSE 2.899 3.969 3.016 3.240 3.084
MAE 2.437 3.360 2.558 2.708 2.611

SMAPE 0.665 0.844 0.712 0.683 0.714
R 0.900 0.849 0.892 0.889 0.890

Case 2

RMSE 2.933 4.271 3.230 3.312 3.043
MAE 2.523 3.559 2.772 2.802 2.579

SMAPE 0.679 0.842 0.733 0.723 0.707
R 0.891 0.824 0.880 0.881 0.889

Case 3

RMSE 3.728 4.684 3.849 3.837 3.799
MAE 3.022 4.169 3.191 3.203 3.162

SMAPE 0.806 1.002 0.830 0.834 0.817
R 0.840 0.748 0.835 0.831 0.834

Beijing

Case 1

RMSE 3.011 3.081 3.092 3.023 3.054
MAE 2.574 2.614 2.616 2.576 2.576

SMAPE 0.882 0.895 0.895 0.908 0.899
R 0.804 0.787 0.788 0.794 0.800

Case 2

RMSE 2.983 3.115 3.205 3.104 3.000
MAE 2.565 2.675 2.744 2.662 2.576

SMAPE 0.913 0.926 0.939 0.913 0.936
R 0.810 0.774 0.767 0.767 0.800

Case 3

RMSE 3.660 3.736 3.667 3.692 3.934
MAE 3.093 3.175 3.106 3.104 3.384

SMAPE 0.980 1.012 0.996 1.003 1.031
R 0.722 0.660 0.684 0.692 0.707

Guangzhou

Case 1

RMSE 1.476 2.047 1.859 1.887 1.670
MAE 1.187 1.734 1.524 1.560 1.360

SMAPE 0.083 0.117 0.105 0.105 0.093
R 0.892 0.791 0.830 0.810 0.857

Case 2

RMSE 1.598 1.947 1.773 1.759 1.642
MAE 1.276 1.663 1.435 1.449 1.331

SMAPE 0.090 0.114 0.098 0.099 0.091
R 0.879 0.817 0.847 0.841 0.868

Case 3

RMSE 2.321 2.670 2.574 2.705 2.474
MAE 1.921 2.232 2.155 2.395 2.068

SMAPE 0.127 0.149 0.144 0.165 0.139
R 0.731 0.666 0.696 0.635 0.712
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In order to see the magnitude of each metric more clearly, a line graph of the evalu-
ation metrics of each compared model was plotted. As seen from Figure 8, for nonlinear
time series data with sensor measurement errors and severe interference from the external
environment, the proposed multi-head attention encoder-decoder neural network, opti-
mized via a Bayesian inference strategy, has the advantages of higher accuracy and better
generalization than other prediction models.

We selected four comparison models to calculate the ME and SDE values. The closer
the value for ME is to 0, the smaller the model error is, while a value for ME of less
than 0 indicates that the overall predicted value is smaller than the ground truth value,
and a value greater than 0 is the opposite. The smaller the SDE, the smaller the error
deviation from the mean, and vice versa. Table 7 shows that the proposed model has lower
ME and SDE values than other baselines in Case 1, proving that BMAE-Net has better
prediction performance.

Table 7. The model parameters.

Case 1 Shenyang Beijing Guangzhou

Metrics ME SDE ME SDE ME SDE

GRU 0.2482 3.5019 1.3105 3.4355 −0.2278 2.1746
Bi-LSTM 0.1959 3.5374 0.7520 3.4569 −0.1447 2.1123

Encoder-Decoder 0.3975 3.6614 1.3210 3.5164 −0.0157 1.9279
Attention −0.3309 3.4998 0.7489 3.4306 0.0044 1.8782

BMAE-Net −0.1170 3.2593 0.5610 3.3730 0.0307 1.6193
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Figure 9 plots the curves of the predicted and ground truth values (left) and the scatter
plot (right) for our model in the test for Case 1. The x-axis of the fit plot is time, while the
y-axis is temperature. The more the curves of the ground truth and predicted values repeat,
the closer the predicted values are to the ground truth values. As shown in each subplot on
the left of Figure 9, the model can predict the temperature trend in Case 1; the model works
best on the Guangzhou dataset, followed by Shenyang. This is because Guangzhou has
a relatively concentrated temperature distribution throughout the year, while Shenyang
and Beijing have cold winters in December and undergo large temperature changes in
the morning and evening, so the temperature dataset is more of a challenge to fit. The
scatter plot is drawn using the linear regression model of the predicted and ground truth
values; the x-axis is the ground truth value, the y-axis is the predicted value, the black
line is the linear regression of the ground truth value, and the red line is the prediction
model. The closer the two lines are, the closer the predicted value is to the ground truth
value; the closer the blue points in the plot are to the black line, the higher the correlation
between the predicted and ground truth values. As shown by the subplots in Figure 9, the
predicted and ground truth values are strongly correlated, which is especially evident in the
Guangzhou data, where the predicted values are concentrated around the regression line,
indicating that our model performs well on the temperature prediction task. In summary,
the experimental results demonstrate that the model has excellent multi-step prediction
performance under different datasets.
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4.4. Discussion

In the comparison experiments, we performed three cases of effect validation on the
temperature datasets of three locations separately. The experimental results are shown
in the first two subsections; in most cases, the BMAE-Net error designed in this paper
is smaller than the remaining nine comparison models, and the fit is better than the
comparison models. For example, the R evaluation metrics for temperature prediction in
the three locations are 0.9, 0.804, and 0.892, respectively, while the RMSE is reduced to 2.899,
3.011, and 1.476 in the Case 1 temperature data. Among the prediction performances of the
three locations, the best results were obtained for the Guangzhou site, which we speculate
is because the temperature data distribution in Guangzhou is more concentrated, while
the temperature data distribution in Shenyang and Beijing is more dispersed (as shown
in Figure 4), which indicates that the quality of the dataset also has an impact on the
model performance.

In the ablation experiments, we incorporated Bayesian mechanisms for the Linear,
GRU, LSTM, and multi-headed attention models, respectively, so that the internal param-
eters conformed to a normal distribution and the weights and biases were continuously
corrected to achieve optimal results when backpropagating. Ablation experiments further
confirmed that including variational inference improved the R-evaluation metrics of the
model, while reducing each error evaluation metric. From the experimental results, it can
be concluded that BLinear, BLSTM, BGRU, and BMAE-Net all outperformed the model
without incorporating Bayesian principles, proving that the introduction of the Bayesian
principle contributes to the model’s performance and can improve its predictive power.

The BMAE-Net model in this paper is based on Bayesian principles for parameter
optimization to establish the optimal parameters. The model is continuously trained
to establish the optimal parameters within our preset parameter range. The process of
finding the optimal parameters was long, and we noted the time needed for the Bayesian
optimization process during the experiments. When the Case 1 experiment was conducted,
the average training time for the three locations was 17 h 23 min. At the same time, the
other comparison models were trained according to our preset parameters, and the usual
training time was about 8 min 35 s. It can be seen that the time cost of Bayesian optimization
was higher, and the parameters generated during the training process became elevated.
However, compared with parameter optimization methods, such as grid and random
searches, the time needed has been reduced significantly.

5. Conclusions

Temperature, an essential factor on which crop production depends, affects crop
growth, development, and yield. Accurate temperature prediction can guide farming
operations. In this paper, a Bayesian optimization-based multi-head attention encoder-
decoder model is proposed to implement the prediction of weather parameters. A holistic
encoder-decoder framework is used, with Bayesian-GRUs as the basic units of the encoder
and decoder, combined with a multi-head attention structure based on variational inference.
The model is validated on temperature data from three locations and has better general-
ization performance and robustness than other baseline models with different prediction
forecasting steps. The best performance can be demonstrated on meteorological data with
strong nonlinear characteristics and data with errors, and the intrinsic characteristics of
the data can be fully explored and predicted. Eventually, the model can achieve a 24-hour
accurate temperature prediction to provide a guiding basis for agricultural production
planning and a suitable growing environment for crops.

In subsequent work, the model will be further optimized, and its application will
be extended to other types of time series data. Meanwhile, the introduction of Bayesian
optimization inevitably increases the computational cost and requires more training time;
therefore, the model will be optimized in terms of computational cost in the next step.
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