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Abstract: This work investigates the effects of an organic fertilizer enriched in Ca and Mg and two
bacterial inoculants, applied alone and in combination, on soil fertility, plant growth, nutrition, and
production of secondary metabolites, namely, acemannan and total phenolic compounds (TPCs), by
Aloe vera (Aloe barbadensis Miller), under field cultivation. The first inoculum consisted of five native
bacterial strains (Pseudomonas sp., Enterobacter sp., and three strains of Pantoea sp.), characterized
in vitro as putative plant growth promoters, isolated from local organic farming fields of Aloe vera.
The second inoculant was a commercial product (BACTILIS-S and HUMOFERT) and consisted of
three Bacillus species: B. pumilus, B. amyloliquefaciens, and B. subtilis. The organic fertilizer (HUMO-CAL
M-8O) was a mixture of humic and fulvic acids, with an additional CaCO3 (40% w/w) and MgO (4%
w/w). The most significant increase in the content of acemannan and TPCs was detected under single
application of the organic fertilizer, which was linked to enhanced concentration of Mg and Ca in the
leaf gel. The concentration of acemannan tended to be increased with the combined application of
the organic fertilizer and microbial inoculants. TPCs were significantly increased in both single and
combined treatments, seemingly related to Fe concentration in the leaf rinds.

Keywords: Aloe vera; soil fertility; microorganisms; secondary metabolites; plant nutrition; aceman-
nan; medicinal plants

1. Introduction

Aloe vera (Aloe barbadensis Miller) constitutes one of the most valuable medicinal plants
with many uses reported over thousands of years [1]. To date, it is used worldwide as an
ingredient in nutraceuticals, pharmaceuticals, and cosmetics [2–4]. Aloe vera is a xerophytic
succulent plant, which belongs to the Asphodelaceae family, originating from Africa and
the Arabian Peninsula [5,6]. These plants have the capability to produce lateral shoots (also
known as offshoots, suckers, etc.), which may be used as propagation material. Planting of
offshoots constitutes the main propagation technique of Aloe vera [7]. Its succulent leaves
consist of two parts, the outer photosynthetically activate green rind and the inner leaf
pulp (also called gel), which serves primarily for water and energy storage. Crassulacean
acid metabolism (CAM) supports the plant’s tolerance to xerophytic regions, as it improves
water use efficiency [5].

Several secondary metabolites present in the leaf gel of Aloe vera are thought to be
directly related to the plant’s beneficial characteristics. The leaf gel consists of 98–99%
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water, while the remaining 1–2% constitutes several biodrastic molecules, such as vitamins,
proteins, phenol compounds, and carbohydrates [8–11]. Beta-(1→4) acetylated glucoman-
nan, also, known as acemannan, is one of the most remarkable polysaccharides in Aloe vera
leaf gel [12]. Anticancer, anti-inflammatory, antidiabetic, and wound-healing properties
have been attributed to acemannan [3,13–15]. In addition to being components of the cell
wall, glucomannans may play the role of storage polysaccharides in membrane-bound
granules in specialized tissues such as Dendrobium orchid stems [16,17]. In Aloe vera plants,
acemannan acts as a solute, contributing to the plant’s tolerance to water deficit [5,18].

Plant secondary metabolites, in addition to acting as functional molecules for crop
defense against stressors, are of great interest due to their beneficial effects on human
health and their potential pharmaceutical, cosmetic, and industrial use. However, they
are found in very low concentrations in the plant tissues; therefore, there is increased
interest in increasing the concentration of these molecules [19]. Strategies for achieving
this goal include breeding approaches [20], engineering plant cell cultures [21], and het-
erologous gene expression [22]. Among them, there is growing interest in understanding
the environmental factors (biotic and abiotic, acting as elicitors) that trigger and enhance
the metabolite production in planta [19,23,24]. Organic compounds, such as humic and
fulvic acids, have been found to act as elicitors, increasing the accumulation of secondary
metabolites in plants [25,26]. Organic fertilization, in addition to its several beneficial effects
for plants, contributes to the maintenance of soil fertility [27]. The uncontrolled use of
chemical fertilizers to promote plant growth that started with the “green revolution” led to
serious side-effects related to environmental damage [8,28–30]. Recently, in the strategy
framework 2022–2023 of the FAO [31], the need for more sustainable agricultural practices,
such as organic farming, is noted.

The application of plant growth-promoting rhizobacteria (PGPR) is also an innovative
efficient tool for improving plant growth and metabolism [32–34]. These microbes may
exist in plants roots or in the rhizospheric soil, and they can positively affect plants, either
directly or indirectly [35]. Moreover, PGPR can act as bio-elicitors, inducing the synthesis of
secondary metabolites in plants [36–39]. Nevertheless, the interactions between plants and
microbes are dynamic; they may depend on environmental conditions and/or be species
specific [40]. Investigations focusing on the potential effects of combined applications
of PGPR with organic fertilization on the secondary metabolism of medicinal plants are
still limited.

In the current study, we examined the combined effect of organic fertilization and
PGPR inoculants on soil fertility, plant growth, nutrient content, and secondary metabolite
production (acemmanan and total phenolic compounds (TPCs)) of Aloe vera plants. We
used as microbial inoculants a consortium of the PGPR species Pseudomonas sp., Enterobac-
ter sp., and three strains of Pantoea sp., which were previously isolated from Aloe vera roots,
as well as a commercial biofertilizer (BACTILIS-S, HUMOFERT) containing Bacillus sp.
strains. The organic fertilizer (HUMO-CAL M-8O) was also a commercial product, com-
posed of a mixture of humic and fulvic acids with 40% w/w CaCO3 and 4% w/w MgO. It
was hypothesized that the combined application of organic fertilizer with each microbial
inoculant would lead to an improved nutritional status of Aloe vera plants, which would
also influence their bioactive compound composition and crop productivity.

2. Materials and Methods
2.1. Experimental Design and Applications

The study was conducted in Neapoli (Laconia, Greece), from June to November 2022.
The region is characterized by a typical Mediterranean climate with a xeric soil moisture and
thermic soil temperature regime (latitude: 36.54039, longitude: 23.02571). The soil texture
was determined as sandy [41]. One year old offshoots were used as plant material with
70 × 80 cm planting distance and a plantation framework of 10,000 plants/ha. The field
experiment treatments included the “no application” control (C1), three single treatments
((i) “application of organic fertilizer” (C2), (ii) “inoculation with BACTILLIS- S” (C3), and
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(iii) “inoculation with the five native isolated PGPR strains” (C4)) and two combined
treatments ((i) “application of the organic fertilizer in combination with BACTILLIS-S” (C5)
and (ii) “application of the organic fertilizer and the five PGPR isolates” (C6)). A total of
36 plants were used per treatment, arranged according to a complete block design.

The commercial organic fertilizer treatment consisted of an organic mixture containing
biologically processed leonardite rich in humic and fulvic acids (10–12% w/w in total), with
extra content of CaCO3 (40% w/w) and MgO (4% w/w). The mixture was poor in macronu-
trients N, P2O5, and K2O (<1% w/w). Before plantation, 50 g of organic fertilizer was
added to every planting pit. The consortium inoculant of the bacterial isolates included five
native strains previously isolated from Aloe vera roots, derived from cultivations in Neapoli
(Laconia, Greece), which showed positive results for in vitro plant growth-promoting tests,
i.e., solubilization of phosphorus, production of indole-3-acetic acid (IAA), and siderophore
production. BACTILLIS-S, the commercial biofertilizer, contained lyophilized bacterial
strains of three Bacillus species: B. pumilus, B. amyloliquefaciens, and B. subtilis. The five
PGPR isolates were grown separately in UM broth at 30 ◦C for 24 h in an orbital shaker;
prior to inoculation, a consortium was prepared by mixing equal volumes of all individual
cultures. Both the consortium of five isolates and the BACTILLIS-S inoculum were diluted
to 108 cfu/mL, and 100 mL of inoculum was applied per plant. Inoculation was repeated
after 20 days.

2.2. Soil Properties Analysis

Soil sampling was performed twice, at 20 days after the application of organic fertilizer
and bacterial inocula and at harvest (6 months after the applications). At each sampling
time, three soil samples (0–10 cm) per treatment were collected. All soil samples were
air-dried and sieved to <2 mm prior to analysis.

The pH was measured using a standard glass/calomel electrode in 1:2.5 w/v soil–CaCl2
(0.01M) ratio suspensions [42]. Electrical conductivity (EC) measurement was conducted
in a solution of 10 g of soil with 25 mL of dH2O [42]. Soil total organic carbon was es-
timated according to Walkley and Black’s wet digestion method [43], and total N was
estimated by titration after distillation of NH3, via Kjeldahl digestion [44]. Exchangeable
cations and extractable Zn, Fe, Mn, and Cu were determined using the ammonium acetate
and diethylenetriaminepentaacetic acid (DTPA) extraction methods [45,46], respectively.
Concentrations of Mg, Fe, Zn, Mn, and Cu were measured by flame atomic absorption
spectrophotometry (Varian, A–300; Varian Techtron Pty. Limited, Australia), using an
air–acetylene flame, while Ca concentration, using an acetylene–N2O flame. K and Na were
measured by flame photometry (PG 2000 Instruments). The available P in soil samples was
estimated by extraction with sodium bicarbonate [47], followed by Murphy and Riley’s
color reaction method with a T60 UV/Vis spectrophotometer (PG instruments, United
Kingdom), at 880 nm wavelength.

2.3. Morpho-Anatomical Measurments

The analysis took place at harvest time. Plant growth was determined by measuring
height, width, total number of leaves (NOL), and total number of offshoots (NOO) per
plant. Twelve replicates (plants) were used per treatment.

2.4. Leaf and Gel Analysis for Minerals

One leaf per plant was collected for the determination of mineral content in the outer
leaf rind and of concentration of minerals, acemannan, and TPCs in the inner leaf gel, with
six replicates for each treatment. Leaf samples were collected in the morning and were
separated immediately to the outer leaf rind and inner leaf gel parts. Afterward, rind
samples were dried for further analysis, and gel samples were homogenized and kept at
−20 ◦C, until lyophilization.

For mineral composition analysis, samples of the dried rinds of all plants were finely
ground in a stainless-steel Wiley mill. A subsample of 0.5 g was heated to ash at 550 ◦C.
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The rind extract was digested with 5 mL of 65% HNO3, diluted to 25 mL with dH2O, and
filtered. For the inner leaf gel, a subsample of 50 mg lyophilized gel of each sample was
heated to ash at 550 ◦C. The extract was digested with 1 mL of 65% HNO3, diluted to 10 mL
with dH2O, and filtered. Total concentration of P in the rind and lyophilized gel samples
was determined following the Murphy and Riley color reaction method, with a PG T60
UV/Vis spectrophotometer, at 880 nm wavelength [48]. For rind samples, concentration of
Mg, Fe, Zn, Mn, and Cu were determined by flame atomic absorption spectrophotometry
(Varian, A–300; Varian Techtron Pty. Limited, Mulgrave, Australia), using an air–acetylene
flame, while Ca concentration was determined using an acetylene–N2O flame. K and
Na were measured by flame photometry (PG 2000 Instruments), and N was measured
using the Kjeldahl method [49]. For the lyophilized gel samples, the concentration of the
macro-elements Ca, Mg, K, and Na was determined as for the rind samples.

2.5. Acemannan Quantification

Acemannan was quantified spectrophotometrically at 540 nm, using the Congo Red
method, according to Eberendu et al. [50] and Candarelli et al. [51], with some modifications.
Briefly, 10 mg of lyophilized gel of each sample was diluted in approximately 35 mL of
distilled water and, after overnight shaking at 28 ◦C, placed in an ultrasonic bath for 30 min.
Afterward, the extract was diluted to 50 mL and passed through a 0.45µm filter, before the
color reaction. Konjac glucomannan (Megazyme) was used as the standard [12].

2.6. Quantification of Total Phenolic Content

The total phenolic content of each lyophilized gel sample was estimated using the
Folin–Ciocâlteu method [52]. For the extraction, 25 mg of lyophilized gel was diluted in
2 mL of 80% MeOH and centrifuged at 12,000 rpm for 15 min. This step was repeated twice.
Then, 50 µL of the methanol extract was combined with 3.95 mL of distilled water and
250 µL of Folin–Ciocâlteu reagent. After 1 min, 270 µL of 20% Na2CO3 was added to the
mixture. The absorbance was measured after 2 h of incubation in the dark with a PG T60
UV/Vis spectrophotometer, at 760 nm wavelength. A solution (1 mg/mL) of gallic acid
was used to construct the standard calibration curve.

2.7. Data Analysis

All data analyses were conducted in R v4.2.2 (R Core Team, Vienna, Austria, 2022). We
tested for main effects of treatments using one-way analysis of variance (ANOVA). For the
comparisons between means, Duncan’s multiple range test (p < 0.05) was employed, using
the R package agricolae [53]. Pearson’s correlation was used for pairwise comparisons of
acemannan with (i) mineral and TOC concentration in the inner leaf gel, and (ii) nutrient
concentration in the outer leaf rind. A p-value ≤ 0.05 was considered to indicate statistical
significance. All plots were designed with the ggplot2 package [54].

3. Results and Discussion
3.1. Soil Properties

In order to determinate whether the treatments improved soil fertility, soil parameters
such as pH, electrical conductivity (EC), and contents of total organic carbon (TOC), total
N, exchangeable Ca, Mg, K, and Na, and available micronutrients Fe, Mn, Zn, and Cu were
measured at two different periods (Table 1). At the first soil sampling, pH increased in
C3, C5, and C2 treatments, compared to C1 (Table 1). However, the pH increase remained
significant until the second sampling (6 months after the application) for the C3 treatment
only (Table 1). On the contrary, no significant differences were recorded in the first or
second samplings regarding the EC among all treatments (Table 1). Regarding TOC,
organic fertilizer seemingly induced a positive effect in all treatments, although significant
differences were observed only during the first sampling (Table 1). Despite the fact that
application with organic fertilizer induced a positive effect on TN content, the C/N ratio
showed a clear increase of 47% compared to C1, at the first sampling (Table 1). Both
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combined treatments of organic fertilizer with microbial inoculants led to a reduction in
C/N ratio at the first sampling (Table 1).

Table 1. The effects of fertilizer and microbial inoculants on soil properties.

Soil
Properties 1 Sampling 2

Treatments 3

C1 C2 C3 C4 C5 C6

pH S1
S2

6.15 ± 0.04 cd

6.50 ± 0.10 bc
6.45 ± 0.06 b

6.72 ± 0.20 ab
6.79 ± 0.03 a

7.01 ± 0.04 a
6.25 ± 0.05 c

6.16 ± 0.04 c
6.71 ± 0.03 a

6.51 ± 0.09 bc
6.03 ± 0.05 d

6.4 ± 0.01 bc

EC S1
S2

84.65 ± 1.35 a

75.97 ± 12.54 ab
103.05 ± 10.82 a

113.95 ± 19.57 a
80.55 ± 6.61 a

60.15 ± 3.66 b
76.10 ± 4.67 a

51.30 ± 2.02 b
104.30 ± 20.72 a

57.95 ± 13.36 b
127.60 ± 21.01 a

78.95 ± 6.61 ab

TOC S1
S2

0.41 ± 0.01 b

0.51 ± 0.00 ab
0.53 ± 0.01 a

0.55 ± 0.02 a
0.47 ± 0.02 ab

0.48 ± 0.016 ab
0.51 ± 0.10 ab

0.50 ± 0.03 ab
0.52 ± 0.03 a

0.52 ± 0.01 ab
0.53 ± 0.03 a

0.44 ± 0.02 b

TN S1
S2

0.068 ± 0.001 a

0.057 ± 0.001 b
0.058 ± 0.000 a

0.067 ± 0.000 a
0.068 ± 0.002 a

0.062 ± 0.001 ab
0.067 ± 0.001 a

0.061 ± 0.001 b
0.068 ± 0.000 a

0.06 ± 0.001 b
0.066 ± 0.00 a

0.03 ± 0.001 b

C/N ratio S1
S2

6.14 ± 0.71 b

8.99 ± 0.43 a
9.07 ± 0.19 a

8.14 ± 0.34 a
6.90 ± 0.45 ab

7.70 ± 0.41 a
7.68 ± 0.24 ab

8.17 ± 0.61 a
7.70 ± 0.59 ab

8.77 ± 0.06 a
8.04 ± 0.62 ab

8.03 ± 0.10 a

Ca S1
S2

630.5 ± 10.7 b

971.5 ± 42.4 abc
888.7 ± 149.7 a

832.5 ± 53.4 bc
830.0 ± 15.0 b

1022.0 ± 61.1 ab
622.5 ± 31.4 b

857.5 ± 60.9 bc
835.00 ± 106.2 b

1073.0 ± 36.3 a
633.5 ± 9.5 b

770.0 ± 12.7 c

Mg S1
S2

40.00 ± 0.23 c

36.06 ± 1.08 ab
47.9 ± 1.73 abc

47.43 ± 4.81 a
59.65 ± 2.04 a

34.06 ± 1.31 b
39.10 ± 1.44 c

33.02 ± 0.47 b
53.40 ± 5.71 ab

39.93 ± 3.80 ab
42.15 ± 2.28 bc

38.24 ± 0.76 ab

K S1
S2

74.00 ± 0.60 d

53.0 ± 0.28 a
109.00 ± 4.60 bc

106.20 ± 16.89 a
142.50 ± 1.40 ab

64.00 ± 9.23 a
87.00 ± 4.00 cd

47.00 ± 0.57 a
167.50 ± 5.50 a

92.00 ± 27.71 a
133.00 ± 16.70 b

84.00 ± 8.08 a

P S1
S2

28.27 ± 5.08 cd

16.97 ± 0.96 a
59.01 ± 7.30 ab

30.81 ± 7.56 a
69.27 ± 1.09 a

21.63 ± 0.86 a
20.25 ± 3.36 d

19.00 ± 3.08 a
46.77 ± 2.19 bc

19.22 ± 0.87 a
28.11 ± 3.82 cd

18.92 ± 4.87 a

Na S1
S2

13.55 ± 0.09 a

23.65 ± 2.28 a
14.80 ± 0.57 a

22.70 ± 1.32 a
16.50 ± 0.10 a

20.00 ± 1.38 a
16.50 ± 1.44 a

23.70 ± 1.79 a
16.50 ± 1.79 a

16.00 ± 3.69 a
13.36 ± 0.14 a

22.00 ± 0.69 a

1 pH = pH1:2.5 CaCl2; EC = ECsw1:5 (µS/cm); TOC (total organic carbon) and total N (%); Ca, Mg, K, P, and Na
(mg/kg). 2 S1 = first soil sampling (20 days after the applications), S2 = second soil sampling (6 months after the
applications). 3 C1 = control, C2 = organic fertilizer, C3 = BACTILLIS S, C4 = PGPR isolates, C5 = organic fertilizer
plus BACTILLIS S, C6 = organic fertilizer plus PGPR isolates. Data represent average values (n = 3). Values in the
same row with different letter are significantly different according to Duncan’s multiple range test (p < 0.05).

In terms of the other macronutrients, only Na was not significantly affected by the
treatments (Table 1). Soil Mg concentrations significantly increased in C3 and C5 treatments
at the first sampling, while, for C2 treatment, the observed increase was not significant
(Table 1). Nonetheless, the Ca increase was more pronounced for the C2 treatment, with
a 29% increment compared to C1 (Table 1). Furthermore, most treatments increased K
concentrations in relation to C1: 126.3% for C5, 92.6% for C3, 79.8% for C6, and 42.3%
for C2 (Table 1). Regarding P concentrations, individual treatments of BACTILLIS S and
organic fertilizer had the most positive effect, while combined treatments were not found
to promote an additive effect compared to C1 (Table 1). Moreover, significant differences
were noted in the first but not the second sampling.

Treatments resulted in significant increases with respect to the concentrations of
micronutrients compared to C1, except for Mn (Table 2). However, these changes were
noticeable only in the first sampling. Regarding Fe, Zn, and Cu, the most significant
increase was recorded in the C2 treatment compared to control. Moreover, significant
differences in Cu concentrations were also detected for C3 and C5 treatments, showing
46.7% and 40% increases, respectively (Table 2).
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Table 2. The effects of fertilizer and microbial inoculants on soil concentration of micro-elements.

Soil
Micronutrients 1 Sampling 2

Treatments 3

C1 C2 C3 C4 C5 C6

Fe S1
S2

26.75 ± 0.49 b

47.82 ± 13.70 a
55.46 ± 10.73 a

30.99 ± 7.09 a
34.88 ± 0.75 ab

20.69 ± 2.69 a
33.35 ± 0.54 ab

32.03 ± 5.46 a
30.40 ± 1.67 b

24.04 ± 1.67 a
35.58 ± 2.62 ab

48.71 ± 5.96 a

Mn S1
S2

9.78 ± 0.14 a

17.28 ± 3.93 a
11.43 ± 0.57 a

30.99 ± 7.09 a
9.58 ± 0.17 a

20.69 ± 2.69 a
10.14 ± 0.83 a

32.03 ± 5.46 a
9.49 ± 0.22 a

24.04 ± 1.67 a
10.28 ± 0.62 a

25.09 ± 7.67 a

Zn S1
S2

3.45 ± 0.05 b

4.18 ± 0.08 a
4.29 ± 0.19 a

4.44 ± 0.13 a
3.76 ± 0.07 ab

4.46 ± 0.19 a
3.44 ± 0.12 b

4.20 ± 0.11 a
3.83 ± 0.04 ab

4.11 ± 0.03 a
3.65 ± 0.30 ab

4.48 ± 0.04 a

Cu S1
S2

1.20 ± 0.14 b

1.90 ± 0.11 a
1.86 ± 0.09 a

1.90 ± 0.01 a
1.76 ± 0.03 a

1.63 ± 0.08 a
1.32 ± 0.06 b

1.86 ± 0.11 a
1.68 ± 0.06 a

1.80 ± 0.01 a
1.16 ± 0.02 b

1.90 ± 0.02 a

1 Micronutrients: Fe, Mn, Zn, and Cu (mg/kg). 2 S1 = first soil sampling (20 days after the applications),
S2 = second soil sampling (6 months after the applications). 3 The six treatments were as follows: C1 = con-
trol, C2 = organic fertilizer, C3 = BACTILLIS S, C4 = PGPR isolates, C5 = organic fertilizer plus BACTILLIS S,
C6 = organic fertilizer plus PGPR isolates. Data represent average values (n = 3). Values in the same row with
different letter are significantly different according to Duncan’s multiple range test (p < 0.05).

The benefits of humic and fulvic acids in soil fertility have been widely documented [55].
According to our results, the mixture of humic and fulvic acids with CaCO3 and MgO led
to a significant increase in the concentration of TOC and available soil Ca, Mg, K, P, and
Fe, which was linked to the significant increase in soil pH. BACTILLIS S treatment had a
positive effect on the concentration of K, P, and Cu. Bacillus spp. have been found to solubi-
lize K, mineralize organic material, and solubilize unavailable forms of P [56,57]. Moreover,
Bacillus spp., such as B. subtillis are known to produce organic and inorganic acids and
chelating compounds, providing plants with available forms of micronutrients [56,58].

3.2. Plant Growth

To examine the effects of treatments on Aloe vera plant growth, the height, width,
number of leaves (LOL), and number offshoots (NOO) were determined (Table 3). No
differences were detected, despite the observed changes in soil fertility. Many studies have
reported the benefits of organic fertilization and inoculation with PGPR for plant growth,
but this effect depends on the environment and host genotype [59,60]. Our findings are in
line with Khajeeyan et al. [61], who recorded no significant effect on Aloe vera growth after
the application of PGPR Pseudomonas and Pantoea sp., in a field experiment over 2 years.

Table 3. The effects of fertilizer and microbial inoculants on Aloe vera growth.

Plant Growth 1
Treatments 2

C1 C2 C3 C4 C5 C6

Height 52.50 ± 1.90 a 52.12 ± 2.53 a 54.00 ± 1.05 a 51.79 ± 1.85 a 52.00 ± 1.48 a 52.40 ± 1.59 a

Width 57.83 ± 2.87 a 58.41 ± 3.44 a 55.94 ± 1.67 a 55.75 ± 3.38 a 56.28 ± 1.49 a 52.23 ± 3.91 a

NOL 14.70 ± 0.78 a 16.17 ± 0.83 a 16.89 ± 0.69 a 16.50 ± 0.66 a 16.44 ± 0.50 a 15.65 ± 0.65 a

NOO 6.83 ± 1.52 a 6.66 ± 1.79 a 7.44 ± 1.82 a 6.83 ± 1.58 a 7.05 ± 1.33 a 6.70 ± 1.65 a

1 Height (cm), width (cm), NOL = number of leaves, NOO = number of offshoots. 2 C1 = control, C2 = organic
fertilizer, C3 = BACTILLIS S, C4 = PGPR isolates, C5 = organic fertilizer plus BACTILLIS S, C6 = organic fertilizer
plus PGPR isolates. Data represent average values (n = 12). Values in the same row with different letters are
significantly different according to Duncan’s multiple range test (p < 0.05).

3.3. Leaf Rind Mineral Concentrations

The macronutrient content of leaf rind samples was affected by treatment application,
except K, which did not differ among treatments (Table 4), despite showing a significant
increase in the soil (Table 1). On the contrary, all treatments had a positive impact on N
content, whereas the most pronounced effects were for C3 and C6, which exhibited 36.9%
and 33.4% increases, respectively. The sole application of organic fertilizer (C2 treatment)
significantly increased Ca and Mg content. Regarding P, the combined application of
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organic fertilizer and BACTILLIS S (C5 treatment) significant increased P concentration by
128% compared to C1. On the contrary, all treatments led to a reduction in the Na content
compared to C1, especially the two treatments which contained BACTILLIS-S (C3 and C5).

Table 4. The effects of fertilizer and microbial inoculants on mineral composition in the Aloe vera
outer green rind of the leaves.

Rind Minerals 1
Treatments 2

C1 C2 C3 C4 C5 C6

N 7.52 ± 0.65 b 8.69 ± 0.48 ab 10.3 ± 0.35 a 8.63 ± 0.38 ab 9.61 ± 0.27 ab 10.03 ± 0.73 a

Ca 18.36 ± 0.82 bc 23.75 ± 0.40 a 18.68 ± 1.53 bc 21.6 ± 0.63 ab 16.57 ± 0.65 c 19.20 ± 1.67 bc

Mg 5.71 ± 0.19 b 7.61 ± 0.21 a 6.50 ± 0.29 ab 6.56 ± 0.37 ab 5.20 ± 0.53 b 6.39 ± 0.50 ab

K 14.68 ± 0.92 a 13.43 ± 1.48 a 19.45 ± 2.56 a 12.42 ± 1.04 a 15.77 ± 1.43 a 19.36 ± 2.04 a

P 1.07 ± 0.10 b 1.06 ± 0.13 b 1.84 ± 0.18 ab 1.42 ± 0.19 ab 2.44 ± 0.48 a 2.01 ± 0.39 ab

Na 7.04 ± 0.60 a 5.52 ± 0.40 ab 3.63 ± 0.74 b 6.07 ± 0.60 ab 3.86 ± 0.77 b 6.73 ± 0.17 a

Fe 20.50 ± 0.24 b 36.41 ± 3.17 a 31.56 ± 0.87 a 34.44 ± 3.73 a 32.03 ± 1.88 a 35.18 ± 1.78 a

Mn 46.34 ± 6.59 c 94.49 ± 10.55 ab 38.72 ± 3.89 c 107.67 ± 22.8 a 51.27 ± 4.02 bc 102.82 ± 9.82 a

Zn 17.46 ± 0.77 ab 17.08 ± 2.08 ab 15.41 ± 2.62 ab 22.69 ± 2.76 a 13.06 ± 2.25 b 23.34 ± 1.88 a

Cu 2.66 ± 0.59 a 1.70 ± 0.2 a 2.84 ± 0.34 a 2.21 ± 0.17 a 1.94 ± 0.18 a 2.10 ± 0.2 a

1 Macronutrients: Ca, Mg, K, P, and Na = g/kg d.w. Micronutrients: Fe, Mn, Zn, and Cu = mg/kg d.w.
2 C1 = control, C2 = organic fertilizer, C3 = BACTILLIS S, C4 = PGPR isolates, C5 = organic fertilizer plus
BACTILLIS S, C6 = organic fertilizer plus PGPR isolates. Data represent average values (n = 6). Values in the same
row with different letter are significantly different according to Duncan’s multiple range test (p < 0.05).

Fe concentrations showed significant increases of 77.6%, 71.6%, 68%, 56.2%, and 53.9%
for C2, C6, C4, C5, and C3, respectively. Moreover, Mn concentrations were positively
affected, for the most part, by PGPR isolates and the organic fertilizer treatment. Cu and
Zn concentrations in rinds showed no significant differences among treatments.

The significant increase in N content caused by C3 and C6 indicated the beneficial
effect of BACTILLIS S on N uptake from Aloe vera plants, linked to the reduced C/N ratio
in soil for the C6 treatment compared to C2. A positive result in terms of N content was
also reported after the application of Bacillus pumilus in the CAM plant Mammillaria fraileana
in a pot experiment [62]. Diverse species of Bacillus are known to act as diazotrophs, pro-
viding the plants with available forms of nitrogen [56,63]. Additionally, although the single
application of BACTILLIS S led to the most significant increase in the soil, the concentra-
tion of P in the rind was more pronounced in the combined application of BACTILLIS S
with the organic fertilizer, indicating the synergistic effect of the latter on P accumulation
in the rind. Furthermore, the increase in Fe content was attributed to the siderophore
production capability, as previously mentioned for Bacillus spp., Pseudomonas spp., Enter-
obacter spp., and Pantoae spp. [10,62,64–66]; this was confirmed in vitro for the strains used
in this experiment.

3.4. Gel Macronutrient Concentration

Treatments caused significant changes in the accumulation of all examined macronutri-
ents. The application of the organic fertilizer, enriched in Ca and Mg, had the most positive
effect on the Ca content (significant increase of 19.2% compared to C1). Nevertheless,
the combined treatment of organic fertilizer and PGPR isolates (C6) led to a surprisingly
significant reduction in Ca content by 22.1% compared to C1. In addition, C3 showed a
decrease in Ca concentration by 31.9%. Similarly, the sole application of organic fertilizer
and PGPR isolates resulted in significant increases in Mg concentration of 27.6% and 15.5%,
respectively, compared to C1; however, the combined treatment (C6) was not found to have
an additive effect. This consistent determination of a positive effect of the organic fertilizer
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on Ca and Mg accumulation in the leaves by the application of PGPR isolates indicates
a potential role of PGPR in the leaf transpiration of Aloe vera. Ca and Mg reside in plant
leaves as a result of increased transpiration, which leads leaves to accumulate increased
amounts of these elements [67]. However, PGPR have been shown to improve water man-
agement and to control leaf transpiration, mainly by interfering with the ABA signaling
pathway [68]. We, therefore, suggest that the observed control of Ca and Mg accumulation
in the leaves of the Aloe vera plants by the application of the PGPR is probably related to
reduced transpiration and improved water status management indued by the application
of endophytic bacterial isolates. Regarding K, all treatments with organic fertilizer or PGPR
isolates showed a negative effect. K content was found to be increased only by the single
application of BACTILLIS S (C3). BACTILLIS S also resulted in a significant increase in the
concentration of P compared to C1, not only in the combined application with the organic
fertilizer, such as rind samples, but also when applied alone. Although not a nutrient, we
also measured Na content in the leaves, since it interferes with plant physiology, especially
under drought/salinity conditions. Na content was significantly lower by 33.9% for C5 in
comparison to C1.

Little information is available on the impact of soil fertility in the nutrient concentration
in Aloe vera gel because, in most studies, the whole leaf was used for nutrient analysis.
Chowdhury et al. [69] observed an increase in the concentration of P in the gel of Aloe vera
plants, treated with poultry manure combined with inorganic fertilization in all doses
applied, compared to control. According to our results, organic fertilization caused a
significant augmentation in the concentration of Ca and Mg in rind and gel samples
(Table 5). However, the concentration of K, was not found to be changed in the rind
(Table 4), whereas, in gel samples (Table 5), it was significantly higher compared to C1
when the plants were inoculated with BACTILLIS S. This observation is related to the
increased concentration of K in soil samples of BACTILLIS S treatment, which may be
the mechanism via which BACTILLIS S conveys enhanced plant tolerance to drought,
since K is a major plant cell osmoticum [70]. Similarly, the positive effect of the individual
treatment of BACTILLIS S on P concentration was found to be significant in the gel and soil,
but not in the rind samples. Nonetheless, the combined application of BACTILLIS S with
organic fertilization led to a significant accumulation of P in the rind and gel samples. An
opposite trend was observed for Na concentration, which decreased in gel samples under
the combined treatment of BACTILLIS S and organic fertilizer.

Table 5. The effects of fertilizer and microbial inoculants on mineral composition in the Aloe vera
inner leaf gel.

Gel Minerals 1
Treatments 2

C1 C2 C3 C4 C5 C6

Ca 40.57 ± 1.76 b 48.36 ± 2.16 a 27.62 ± 1.14 c 43.13 ± 0.24 ab 38.21 ± 0.47 b 31.58 ± 2.26 c

Mg 5.21 ± 0.19 b 6.65 ± 0.25 a 5.28 ± 0.20 b 6.02 ± 0.11 a 5.00 ± 0.18 b 5.20 ± 0.16 b

K 14.37 ± 1.23 b 8.72 ± 1.15 c 35.76 ± 2.24 a 6.91 ± 0.70 c 9.97 ± 0.53 bc 12.11 ± 0.92 bc

P 0.68 ± 0.07 c 0.55 ± 0.08 c 1.11 ± 0.08 b 0.77 ± 0.02 bc 1.79 ± 0.18 a 0.78 ± 0.08 bc

Na 10.17 ± 0.36 ab 11.10 ± 0.33 a 8.97 ± 0.14 b 10.74 ± 0.52 a 6.72 ± 0.17 c 10.45 ± 0.38 a

1 Macronutrients: Ca, Mg, K, P, and Na = g/kg d.w. 2 C1 = control, C2 = organic fertilizer, C3 = BACTILLIS S,
C4 = PGPR isolates, C5 = organic fertilizer plus BACTILLIS S, C6 = organic fertilizer plus PGPR isolates. Data
represent average values (n = 6). Values in the same row with different letter are significantly different according
to Duncan’s multiple range test (p < 0.05).

3.5. Acemannan and TPC Concentrations

To examine whether changes in nutrient status were related to modifications in the
accumulation of specific secondary metabolites in the inner leaf gel of Aloe vera plants,
we measured the concentrations of acemannan (Figure 1a) and TPC (Figure 1b) in the
lyophilized gel samples. The accumulation of both acemannan and TPC was positively
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affected by the application of the organic fertilizer. PGPR inoculation induced an increase
in acemannan, while BACTILLIS S induced an increase in TPC. Specifically, the highest
acemannan concentrations were recorded in the single treatment of organic fertilizer (42.1%
compared to value of C1 samples), while, in combined treatments, no significant increase
was observed. The positive effect of organic fertilizer was more pronounced for TPC with
respect to acemannan, while C2, C6, and C5 treatments led to significant average increases
compared to C1.
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letter are significantly different according to Duncan’s multiple range test (p < 0.05).

3.6. Correlation Analysis

Next, we examined if there was a link between nutrient content and the concentra-
tions of acemannan and TPC in the leaf gel (Figure 2a) and in the rind (Figure 2b). The
results showed a strong positive correlation between Mg content in the gel and acemannan
concentration. Interestingly, Ca content was not as strongly correlated as Mg content with
acemannan concentration, but a significant correlation was still observed for gel and rind
samples. A positive association with acemannan concentration was also observed with
Na in gel samples and Mn in rind samples. An opposite pattern was observed for K gel
content and Cu content in rind samples, which were correlated negatively with acemannan
accumulation. Regarding TPC, their concentration was found to only correlate with the
concentration of Fe in the rind samples.

Acemannan accumulation was positive affected, for the most part, by all applica-
tions of organic fertilizer, as well as by inoculation with the PGPR isolates. For both the
organic fertilizer and the PGPR isolates, gel and rind concentrations of Mg and Ca were
higher than in the other treatments. Furthermore, in all treatments which contained the
organic fertilizer (which was enriched in Ca and Mg), the concentration of available Ca
and Mg in the soil was increased. In contrast, single applications of organic fertilizer and
PGPR resulted in a reduction in K concentration in the gel and the rind, despite a small
increase in K availability recorded in the soil. Apparently, the excess availability of Ca
and Mg led to competition between K and Ca/Mg uptake, resulting in reduced uptake
of K. Zhang et al. [71] also observed a significant increase in the total soluble sugars of
banana plants after the application of a mixture of a calcium magnesium phosphate fertil-
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izer and an organic fertilizer, which was linked to the improved Mg content in the leaves.
In addition, the beneficial impact of PGPR isolates on the acemannan concentration is in
line with previous investigations, including inoculations with Pseudomonas spp. [40,72]
or Enterobacter spp. [73] and sugar elevation in plant tissues. Nevertheless, investigations
focusing on the impact of organic fertilization and biostimulant on acemannan production
are still limited. A significant increase in the concentration of acemannan (referred to as
β-polysaccharides) in the gel of Aloe vera plants, was reported by Cardarelli et al. [51],
after the application of a mixed inoculum, consisting of the arbuscular mycorrhiza fungi
Glomus intraradices and Glomus mosseae, in a pot experiment.
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Regarding TPC, all organic fertilizer applications resulted in increased concentrations,
but a correlation was only observed with rind Fe concentration. These results are in
agreement with the reported increase in TPC in Aloe vera plants following the application
of poultry manure in a field experiment [69]. TPC concentration was also enhanced by all
applications of BACTILLIS S. This is in line with previous findings, such as the increase in
phenolic compounds of Coriandrum sativum L. and Cichorium endivia L., after the application
of a Bacillus halotolerans biofertilizer [74,75]. Moreover, Bacillus subtillis inoculation led to
increased TPC levels in tomato plants [76]. Li and Jiang [77] also observed that inoculation
of maize with Bacillus aquimaris caused an increase in TPC, under both normal and salt
stress conditions.

4. Conclusions

The results of this study showed that bioactive compounds in Aloe vera such as
acemannan and total phenolic content were positively affected by organic fertilization
rich in Ca and Mg, as well as by microbial biostimulant applications, despite the absence of
noticeable changes in plant growth. Although the increase induced by the single application
of organic fertilizer was more pronounced, the inoculation with the consortium of PGPR
isolates and BACTILLIS-S seemed to also enhance the accumulation of acemannan and TPC.
Moreover, the organic fertilizer and the microbial biostimulants of this study improved
soil fertility and led to significant differences in the nutrient content of the leaf gel and
rind. Noteworthily, the strong correlation between the nutrient content of the leaf gel and
rind with the bioactive compounds of Aloe vera plants, particularly between acemmanan
and Mg in the gel, and between TPC with Fe in the rind, supports the hypothesis that
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nutrient acquisition plays a significant role in the secondary metabolism of these plants.
This study presents a basis for further investigation of sustainable agricultural practices
which promote the production of valuable secondary metabolites, contributing to the
resourceful cultivation of Aloe vera plants, as well as to human health.
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