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Abstract: Drought monitoring is an important scientific basis for drought impact evaluation and
the selection of mitigation strategies. Since the drivers of drought vary among regions, there is no
universal drought index applicable to different regions. The Shiyang River Basin, an inland river
basin, located in Gansu Province, China, has a closed water cycle system. Drought is a dominant
nature disaster for the sustainable development of the region. Thus, this is an ideal area to explore
the suitability of drought-monitoring indices. Here, we took the Shiyang River Basin as an example,
in order to explore suitable indicators for agricultural drought monitoring in inland river basins. This
study assessed the twelve different widely used drought indices used for monitoring the impact of
drought on crop growth, represented by net primary production (NPP). The results showed that the
vegetation status-based drought indices (VCI and NVSWI) had the highest significant correlation
(0.6 ≤ |R| ≤ 1, p < 0.05) on NPP, and the integrated drought indices (DSI and ISDI) had the strong
significant correlation (0.4≤ |R| < 0.6, p < 0.1). These four indices are good indicators for agricultural
drought monitoring. Studies based on these four indices showed that agricultural drought has a
tendency to slow down from 1982 to 2020. This is inconsistent with the monitoring of drought indices
based on the meteorological variables that show a trend of increasing drought. This is mainly due
to the increased efficiency of water management and its use in inland river basins. This indicates
that other water resource information, such as runoff, should be included to construct an integrated
agricultural drought-monitoring indices in management intensive regions, such as in an inland river
basin.

Keywords: agricultural drought; drought indices; drought assessment; inland river basin

1. Introduction

Drought is one of the most common natural disasters in terrestrial ecosystems, char-
acterized by wide coverage, severe impacts and frequent occurrences, which directly
or indirectly cause significant economic losses at global and regional scales [1,2]. The
American Meteorological Society (AMS) classifies drought into meteorological drought,
agricultural drought, hydrological drought, and socioeconomic drought [3,4]. Among
them, agricultural drought refers to the impact of water shortage on the crop production,
and especially when the soil water content cannot satisfy the plant requirement [5]. The
latest statistics from the United Nations Office for Disaster Risk Reduction (UNDRR) 2021
Special Report estimates the annual losses due to agricultural drought to be USD 6.4 billion
in the United States and up to USD 9 billion in Europe [6]. In China, the average annual
direct economic losses due to drought from 2006–2017 amounted to RMB 88.230 billion,
and the impacted crop area reached up to 169 million hm2 per year [7].

The impacts of agricultural drought are mainly reflected in the reduction of agricultural
production, as well as the degradation of forest and grassland [8–10]. The meteorological
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drought, caused by factors such as insufficient precipitation, high temperature and high
evapotranspiration, can lead to the water supply being less than the requirement, which
is manifested as a soil moisture deficit. Then, a soil moisture deficit will affect the normal
growth and development of vegetation. For example, drought can lead to the direct death
of crops during the germination period. It can directly affect the pollination and fertilization
of plants, as well as the growth of fruits during the flowering period of crops, resulting
in a crop yield reduction or crop failure. At the same time, the vegetation will change
its physiological structure because it cannot obtain water from the soil for growth [11].
Drought indices are an effective means of monitoring agricultural drought, and there are
more than 150 drought indices available [3,5]. Among them, drought indices constructed
based on meteorological variables, soil moisture and vegetation status can all reflect the
possible effects of drought on agriculture from different perspectives.

The drivers of agricultural drought vary from region to region, which indicates that
the suitable agricultural drought monitoring indices are diverse for different regions. For
example, agricultural production in some regions is mainly sustained by atmospheric
precipitation, while others rely on glacial meltwater from upstream, and the influence
of human activities (groundwater extraction as well as irrigation, etc.). Suitable drought
monitoring indices need to be explored for the specific conditions of different regions to
improve the drought monitoring capacity of specific regions [12,13]. Crop yield, as an
important indicator of agricultural drought, plays an important role in evaluating the
drought index [14,15]. However, long time series of crop yields in the region are difficult to
obtain, and the lack of standardization in the collection of statistical data leads to uncertainty
in crop yield data.

The net primary productivity (NPP), obtained by using remote sensing satellites over
large areas, is strongly correlated with crop biomass [16]. Crop biomass reflects final crop
yield [17]. Therefore, NPP could serve as an alternative to crop yield to assess the suitability
of drought indices when crop yields are not available [18]. NDVI and NPP indicators
can represent the health of vegetation, but the physical significance of NDVI and NPP
are considerably different. NDVI represents the greenness and canopy structure. NPP
reflects the efficiency of photosynthesis [19]. The relationship between photosynthesis and
greenness is unstable, especially under drought stress [20]. The NPP, through the direct
effects (e.g., water limitation and heat stress) and indirect effects (e.g., fire and pests) of
drought, could lead to yield reduction [21], which means that NPP is sensitive to drought
in different seasons and vegetation types [22,23]. The NPP has been extensively used to
assess drought indices. Mu et al. developed a new global drought monitoring index, the
Drought Severity Index (DSI), using MODIS ET/PET and NDVI data, and used MODIS
NPP as a relative indicator of vegetation productivity change to validate the DSI [24]. Wei
et al. used the Euclidean distance method and the three-dimensional (3D) P-NDVI-LST
to establish the new index Temperature Vegetation Precipitation Dryness Index (TVPDI),
which was tested and validated with MODIS NPP [25].

The Shiyang River Basin, located in Gansu Province, China, has the most severe
water scarcity and ecological degradation among the three major inland river basins in
the Hexi Corridor [26]. The upper reaches, which rely on the surface runoff recharge from
glacial meltwater in the northern Qilian Mountains and precipitation in the mountainous
areas, are important water conservation areas and have been severely damaged by climate
change and irrational development. Midstream and densely populated areas are the main
distribution zones of basic farmland and economic industries, which consume most of
the upstream runoff water and restricts the amount of water recharge downstream. The
lower reaches are surrounded by desert on three sides, with only about 10% being oasis,
and the ecological degradation situation is serious. In the past 50 years, the Shiyang
River Basin has been massively cleared for farming, and the area of irrigated farmland
has been expanding, resulting in an uneven distribution of water resources, a shortage
of surface water resources, and an over-exploitation of groundwater, which has caused a
series of environmental and ecological problems [27,28]. Therefore, in order to maintain
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the economic and social development and ecological stability of the basin and promote the
rational exploitation of water resources, it has become particularly important to accurately
monitor agricultural droughts in the Shiyang River Basin.

Given that the main drivers of drought in the upper, middle and lower reaches of
this basin are different but interlinked, a comparative study of the monitoring capacity
of different drought indices in the upper, middle and lower reaches of the Shiyang River
Basin will not only provide a direct scientific basis for drought monitoring in this region,
but also provide a reference for the selection of drought monitoring indicators for other
inland rivers. The main objectives of this study are as follows: (1) to explore the suitability
of indices for agricultural drought monitoring in the upper, middle and lower reaches of
this basin, taking the Shiyang River Basin as an example, and (2) to analyze the spatial and
temporal trends in agricultural drought in the basin from 1982 to 2020. This study uses NPP
to represent the effects of agricultural drought on vegetation, assuming that vegetation
is only stressed by water conditions, and does not take into account other factors such as
disease, pests, etc., as we know that the occurrence of pests and diseases is rare in this
region due to its harsh environmental condition [29].

2. Materials and Methods
2.1. Study Area

The Shiyang River Basin is located in the eastern part of the Hexi Corridor and the
northern foot of the Qilian Mountains in Gansu Province, with a geographical location
of 101◦41′~104◦16′ E and 36◦29′~39◦27′ N (Figure 1). The Shiyang River Basin is a closed
inland river basin, far from the sea. It is well known to be short of water due to low
precipitation and high evapotranspiration. In the upper reaches of the basin, the average
annual temperature is lower than 6 ◦C, the annual precipitation is 400–600 mm, and the
annual evaporation is 700–1200 mm. In the middle reaches, the average annual temperature
is lower than 6–8 ◦C, the annual precipitation is 150–300 mm, and the annual evaporation
is 1300–2000 mm. In the lower reaches, the average annual temperature is higher than 8 ◦C,
the annual precipitation is small 150 mm, and the annual evaporation is 2000–2600 mm [30].
Drought in the upper reaches is not only influenced by changes in precipitation, but by
changes in glacial snowmelt water. In the middle and lower reaches, irrigation, water
transfer and other human activities influence the occurrence of drought disaster [27,31].
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Figure 1. Geographical location of the Shiyang River Basin (HRB) in Gansu Province, China, and the
distribution of land use and riverways within the Basin.

2.2. Datasets and Pre-Processing
2.2.1. Climate Data

TerraClimate provides a global dataset of climate and land surface variables from 1958
to the present (Table 1), with a temporal resolution of 1 month and a spatial resolution
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of about 4 km (1/24th of a degree). The accuracy of TerraClimate data is higher than
CRU Ts 4.0, as verified by comparison with a large number of station data [32]. This data
has been widely used in recent years for ecological and hydrological studies at a global
scale [33,34]. In this study, precipitation (P), potential evapotranspiration (PET), actual
evapotranspiration (AET), and soil moisture (SM) data are extracted from TerraClimate
data for the period 1982–2020. The potential evapotranspiration is calculated using the
Penman–Monteith method, which is considered the most suitable method for estimating
drought due to the consideration of rich physical variables [35]. Actual evapotranspiration
and soil moisture are derived from the output of the water-balance mode (WBM), which
is run at monthly time steps and takes into account the interaction between precipitation,
potential evapotranspiration, and soil and snow storage [36].

Table 1. The information of the data.

Data Temporal
Resolution

Spatial
Resolution

Time
Domain Sources

TerraClimate P, PET, AET
and SM 1 month 4 km 1982–2020 http://www.climatologylab.org/

terraclimate.html

STAR NDVI and BT4 1 week 4 km 1982–2020 https://www.star.nesdis.noaa.gov/star/
index.php

MODIS NPP 1 year 500 m 2000–2020 https://lpdaac.usgs.gov/products/mod1
7a3hgfv006/

Land use data No 1 km 2020 https://www.resdc.cn/
AWC No 0.083◦ 2000 https://webmap.ornl.gov/ogcdown/

2.2.2. Remote Sensing Data

The global VHI product from NOAA Satellite Applications and Research Center
(STAR) has similar monitoring results to those of the drought operational monitoring
systems GADMFS and USDM (Table 1), which are widely used for agricultural drought
monitoring [37]. The weekly Normalized Difference Vegetation Index (NDVI) and Bright-
ness Temperature (BT4), shared by STAR, provide a longer time series (1981-present) data
source for vegetation index building [38,39]. Among them, NDVI is calculated by channel
1 and channel 2 of AVHRR, and BT4 is calculated by channel 4 of AVHRR. The NDVI and
BT4 datasets with a weekly temporal resolution and a 4 km spatial resolution are generated
using smooth filtering (removal of high frequency noise). Since the BT4 is a good indicator
of land surface temperature (LST) [40], and has been used as LST for drought monitoring
in several studies [41,42], in this study, we use BT4 instead of LST to calculate the drought
index. In order to be consistent with the time scale of meteorological data, this study used
data obtained from the years 1982–2020, and the maximum value synthesis method to
process the weekly data into monthly values; this, at the same time, can well avoid the
problem of abruptly small monitoring values due to cloud contamination [43].

The MOD17A3HGF version 6 product is used as the data source for NPP from 2000
to 2020 in this study (Table 1), providing information on annual-scale NPP at a 500 m
spatial resolution. Annual NPP is derived from the sum of all 8 days of net photosynthesis
(PSN) for a given year. This data is widely used in ecological monitoring [44,45]. MODIS
LAI/FPAR, the input data for MODIS NPP, includes a small amount of infrared and near-
infrared information. This indicates MODIS NPP and STAR NDVI also take the information
of both bands. Shared-band information may cause spurious correlations between the
Drought index based on NDVI and NPP. However, MODIS LAI/FPAR represents only a
fraction of the MODIS NPP input data and there is a large amount of reanalysis meteoro-
logical data [46]. Furthermore, MODIS NPP and STAR NDVI are from different sensors,
MODIS, AVHRR, respectively, and the effect of the shared bands is again attenuated. In
this study, because of the large number of missing values for MODIS NPP in the lower
Shiyang River Basin, this study only analyzes the relationship between the drought index
and NPP in the areas where MODIS NPP data is available.

http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
https://www.star.nesdis.noaa.gov/star/index.php
https://www.star.nesdis.noaa.gov/star/index.php
https://lpdaac.usgs.gov/products/mod17a3hgfv006/
https://lpdaac.usgs.gov/products/mod17a3hgfv006/
https://www.resdc.cn/
https://webmap.ornl.gov/ogcdown/
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2.2.3. Land Use and Other Auxiliary Data

Land use data were obtained from the Resource and Environmental Science and Data
Center (Table 1). This data provides annual-scale land use information with a 1 km spatial
distribution in China and is widely used in different studies [47]. We selected the land use
data of Gansu Province at the time of 2020 and extracted the Shiyang River Basin using
Arcgis 10.8. The main land use types in the Shiyang River Basin are farmland, water bodies,
desert (classified as unused land in the original data), grassland and forest, and built-up
areas (Figure 1). Among them, farmland areas, grassland and forest areas, and desert
areas are the subjects of this study. The effective soil water content (AWC) data used to
calculate sc-PDSI were obtained from the ORNL DAAC data center on the NASA website
(Table 1). It has a spatial resolution of 0.083 degrees and is dated to 2000 years. This data
provides accurate and reliable soil information for the calculation of PDSI, as well as a
series of modified indices for PDSI [48,49]. All datasets are re-gridded to a 4 km × 4 km
grid resolution, using bilinear interpolation to make data consistent.

2.3. Methods

As the complex landscape of the watershed, this study separates the Shiyang River
Basin into grassland and forest area, farmland area, and desert area, according to the land
use type. This also corresponds to the upper, middle and lower reaches of the watershed
by following the topography. Twelve different widely used drought indices, based on
meteorological variables (SPEI, sc-PDSI, ESI, MEDDI), soil moisture (SSI, SMA), vegetation
status (VCI, TCI, NVWSI, MTVDI), and the multivariate-based integrated drought index
(DSI, ISDI), were adopted for the comparison. The detailed process is shown in Figure 2.
The full names and abbreviations of the indices are shown in Table 2.
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Table 2. The widely used drought indices.

Indices Formula Variable Explanation References

SPEI (Standardized Precipitation
Evapotranspiration Index) f(x) = β

α

(
x−γ
α

)β−1
[

1 +
(

x−γ
α

)β]−2
f(x): Log-Logistic distribution
function; α, β and γ: Scale
parameter, shape parameters and
position parameters

[50]

sc-PDSI (self-calibrating Palmer
Drought Severity Index) Xi = pXi−1 + qZi

p and q: Persistence factor; Xi and
Xi−1: Current month PDSI value
and previous month PDSI value;
Zi: Current month moisture
abnormalities

[51]

ESI (Evaporative Stress Index) ESI = rET−rET
δ(rET) , rET = ET

PET
ET: Actual evapotranspiration;
PET: Potential evapotranspiration [52]

MEDDI (Modified Evaporative
Demand Drought Index) P = i−0.33

n+0.33

P: Cumulative probability; i: The
rank of the cumulative quantity
after sorting; n: Total number of
samples

[53]

SSI (Standardized Soil Moisture
Index) SSI = SM−SM

δ(SM)

SM: Soil moisture in the growing
season [54]

SMA (Soil Moisture Anomaly) SMA = SM− SM SM: Soil moisture [55]

VCI (Vegetation Condition Index) VCIi =
NDVI−NDVImin

NDVImax−NDVImin

NDVI: Normalized vegetation
index [56]

TCI (Temperature Condition
Index) TCIi =

LSTmax−LST
LSTmax−LSTmin

LST: Land surface temperature [41]

NVSWI (Normalized Vegetation
Supply Water Index)

VSWIi =
NDVI
LST

NVSWIi =
VSWI−VSWImin

VSWImax−VSWImin

NDVI: Normalized vegetation
index; LST: Land surface
temperature

[57]

MTVDI (Modified Temperature
Vegetation Dryness Index)

MTVDI = LSTmax−LST
LSTmax−LSTmin

LSTmax = a1 + b1 ×NDVI
LSTmin = a2 + b2 ×NDVI

a1 and b1: Dry-side fitting
parameters; a2 and b2: Wet-side
fitting parameters; LST Land
surface temperature

[58]

DSI (Drought Severity Index)
DSI = Z − Z

σ(Z) , Z = ZrET + ZNDVI,

rET = ET
PET

ET: Actual evapotranspiration;
PET: Potential evapotranspiration;
Z: Z-score Standardization

[24]

ISDI (Integrated Scaled Drought
Index)

ISDI =
1
6∗Scaled NDVI + 1

6∗Scaled LST +
1
3∗Scaled PCP + 1

3∗Scaled SM

NDVI: Normalized vegetation
index; LST: Land surface
temperature; PCP: Precipitation;
SM: Soil moisture

[59]

2.3.1. Introduction of Drought Indices

The indices describing agricultural drought can be derived from meteorological vari-
ables, soil moisture, and vegetation status, as well as multivariate drought indices. In this
study, 12 representative indices were selected for comparison (Table 2). In addition, the
growing season is the period when vegetation is most severely affected by drought, so only
the growing season period (April–October) is considered in the drought indices calculation.

SPEI, sc-PDSI, ESI and MEDDI are four widely used drought indices based on meteo-
rological variables (Table 2). SPEI is based on the difference between monthly precipitation
and potential evapotranspiration, and obtained using normal standardization based on a
Log-Logistic probability distribution [50]. SPEI describes long- and short-term droughts
using the deviation of water volume in cumulative months, with multiple time scales [60].
Sc-PDSI is based on PDSI with parameters calculated by adjusting to regional character-
istics, allowing for more accurate monitoring in the study area [51]. Compared to SPEI,
which uses only precipitation and evapotranspiration data, sc-PDSI also incorporates data
on soil characteristics, which helps to monitor soil moisture and can effectively describe
agricultural drought [15]. ESI is an anomaly in the ratio of actual evapotranspiration to
potential evapotranspiration, and this study uses total actual evapotranspiration and po-
tential evapotranspiration during the growing season to calculate the ESI series [52]. EDDI
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is ranked using the magnitude of the cumulative values of potential evapotranspiration
and is calculated using normal normalization after constructing an empirical cumulative
distribution, again with multiple time scales [53]. To facilitate comparison between indices,
MEDDI is used which is the negative of EDDI.

The drought indices based on soil moisture calculated with standardized soil moisture
data. There are many methods of standardization. Hao et al. used the SPI as an example
to fit soil moisture using the Gamma distribution [61], but in the Shiyang River Basin,
there are long periods of zero in the TerraClimate soil moisture data, making the Gamma
distribution inadequate to fit. Z-score standardization was used to calculate SSI series using
total soil moisture during the growing season [54]. SMA is the calculation of the degree of
soil moisture deviation from the contemporaneous mean state on a monthly scale [55].

VCI, TCI, NVSWI and MTVDI are commonly used drought monitoring indices based
on vegetation status, which is represented by NDVI and LST. VCI and TCI are calculated by
normalizing NDVI and LST for the same period separately on a monthly scale, eliminating
effects such as season and land cover [41,56]. Under drought stress, NDVI and LST
always change in opposite directions. NVSWI is normalized using the ratio of NDVI
and LST, and the normalization is intended for comparison with other indices [57]. the
trapezoidal relationship between NDVI and LST can establish the wet and dry edges.
TVDI uses the relationship between LST and wet and dry edges to determine drought
conditions. To ensure that the boundaries of the feature space are representative, the
use of TVDI requires that the study area covers all land use types from bare soil to high-
density vegetation [58]. MTVDI is a modification of TVDI to make it more suitable for
understanding and comparison [62].

DSI and ISDI are drought indices based on the combination of multiple variables from
two different models. DSI uses operational satellite remote sensing data as the primary
input and is a global index that enhances real-time drought monitoring [24]. DSI uses
Z-score to standardize the ratio of actual evapotranspiration to potential evapotranspiration
and mean NDVI for the growing season, respectively, to obtain ZrET and ZNDVI. The results
were summed and normalized again by Z-score. MODIS ET and NDVI data areused to
create the DSI. Due to the large number of missing values of MODIS ET in the Shiyang
River Basin, a combination of reanalysis ET and remote sensing NDVI is used to calculate
DSI. Based on AVHRR NDVI and North American Regional Reanalysis (NARR), ISDI is
proposed and applied to agricultural drought monitoring in the U.S. [59]. ISDI assigns
different weights to Scaled NDVI, Scaled LST, Scaled PCP, and Scaled SM and combines
them linearly based on the correlation analysis with multiple meteorological indices. The
weights are determined to be 1/6, 1/6, 1/3 and 1/3, respectively.

2.3.2. Correlation Analysis

Pearson’s correlation coefficient is used to test the correlation between two vari-
ables [63]. In this study, Pearson’s correlation coefficient was calculated for the normalized
twelve drought indices and the normalized NPP from 2000 to 2020, to determine the simi-
larity between these indices and the NPP, respectively. |R| < 0.2 indicates an extremely
weak correlation, 0.2 ≤ |R| < 0.4 indicates a weak correlation, 0.4 ≤ |R| < 0.6 indicates
a moderate correlation, 0.6 ≤ |R| < 0.8 indicates a strong correlation, and 0.8 ≤ |R|
≤ 1 indicates an extremely strong correlation. Statistical significance is provided at the
two-sided 5% and 10% level in all cases (p-value).

2.3.3. Trend Analysis

We use Sen’s slope to analyze the trend in the drought index, and the Mann–Kendall
method to test the significance of the trend [64,65]. Sen’s slope is neither affected by outliers,
nor does it need to obey a certain distribution. It has good ability to avoid measurement
errors or discrete data. The Mann–Kendal nonparametric test, which is often used in
conjunction with Sen’s slope; it also does not require the sample to follow a specific
distribution and is not disturbed by a few outliers, and has a high degree of quantification.
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3. Results
3.1. Correlation Analysis of Drought Indices and NPP

The twelve drought indices are derived with different assumption and also calculation
methods. In addition, the units and magnitude of the indices are different, making it
difficult to directly compare and analyze them. In this study, the units of the drought
indices and the validation variable NPP are unified by normalization, i.e., the difference
between the maximum and minimum values of the series after subtracting the minimum
values from the long time series indices. This will make indices more comparable among
these indices.

The drought index, based on meteorological variables, has a non-significantly weak
correlation with NPP (0.2 ≤ |R| < 0.4, p > 0.1). Most of the meteorological variable-based
drought indices are extremely weakly non-significantly correlated with NPP, (0 ≤ |R| <
0.2, p > 0.1) except sc-PDSI, which was weakly non-significantly correlated with NPP (0.2 ≤
|R| < 0.4, p > 0.1) (Figure 3 and Table 3). The four drought indices, based on meteorological
variables, had the same trend in interannual variation and the same trend in interannual
variation with NPP in most of the periods (Figure 3a,b). The correlations of these four
indices with NPP were specifically RSPEI = 0.146, Rsc-PDSI = 0.238, RESI = 0.198, and RMEDDI
= 0.042 in the grassland and forest area, respectively, and RSPEI = 0.171, Rsc-PDSI = 0.242,
RESI = 0.153, and RMEDDI = 0.165 for farmland area (Figure 3c,d and Table 3).
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Table 3. Correlation coefficients of drought index and NPP in the grassland and forest area, and
farmland area, over 2000−2020.

SPEI sc-PDSI ESI MEDDI SSI SMA VCI TCI NVSWI MTVDI DSI ISDI

Grassland and forest area 0.146 0.238 0.198 0.042 0.207 −0.035 0.857 ** −0.056 0.623 ** −0.167 0.559 ** 0.331
Farmland area 0.171 0.242 0.153 0.165 0.482 ** 0.391 * 0.833 ** −0.158 0.657 ** −0.209 0.406 * 0.508 **

** denotes p < 0.05 and * denotes p < 0.1. Higher values of the index indicate greater suitability to monitor
agricultural drought. The high R values for each index are shown in bold.

The correlation between the soil moisture-based drought index and NPP is moderately
significantly correlated (0.4 ≤ |R| < 0.6, p < 0.1) in the farmland area, which is better
than the meteorological variable-based drought index. The correlations of SSI and SMA
with NPP are better in the farmland area than in the grassland and forest area, where
SSI is moderately significantly correlated with NPP (0.4 ≤ |R| < 0.6, p < 0.05) and SMA
is weakly significantly correlated with NPP (0.2 ≤ |R| < 0.4, p < 0.1). In contrast, SSI
is weakly non-significantly correlated with NPP (0.2 ≤ |R| < 0.4, p > 0.1). SMA is very
weakly non-significantly correlated with NPP (0 ≤ |R| < 0.2, p > 0.1) in the grassland
and forest area (Figure 4 and Table 3). The interannual trends of these two indices are the
same in the farmland area (Figure 4b). In the grass and forest area, the same interannual
trends are monitored for both indices, except in 2015–2016 (Figure 4a). Before 2013, the
interannual trends in NPP and the soil moisture-based drought index are the same. After
2013, the soil moisture-based drought index show an increasing trend. The changes in
NPP always lag behind the soil moisture-based drought index, with a lag of one growing
season (Figure 4a,b). The correlation coefficients between the two indices and NPP showed
RSSI = 0.207 and RSMA = −0.035 in the grassland and forest areas, and RSSI = 0.482** and
RSMA = 0.391* in the farmland areas, respectively (Figure 4c,d and Table 3).
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The drought index based on vegetation status is extremely strongly significantly
correlated with NPP (0.8 ≤ |R| ≤ 1, p < 0.05). VCI has the highest correlation with
NPP, reaching an extremely strong significant correlation (0.8 ≤ |R| ≤ 1, p < 0.05). This
is followed by NVSWI, which reached a strong significant correlation (0.6 ≤ |R| < 0.8,
p < 0.05). TCI is extremely weakly non-significantly correlated with NPP (0 ≤ |R| <
0.2, p > 0.1). MTVDI is weakly non-significantly correlated with NPP in the farmland
area (0.2 ≤ |R| < 0.4, p > 0.1) and extremely weakly non-significantly correlated in the
grassland and forest area (0 ≤ |R| < 0.2, p > 0.1) (Figure 5 and Table 3). The interannual
variation in the four indices is quite different (Figure 5a,b). For most of the periods, VCI
and NVSWI show the same trend in interannual variation, while TCI and MTVDI show
the same trend in interannual variation only in the grassland and forest area. In addition,
the interannual variation trend in NPP is the same as VCI and NVSWI, and opposite to
TCI and MTVDI in most periods. The correlation between VCI and NVSWI and NPP
was shown as RVCI = 0.857** and RNVSWI = 0.623** in the grassland and forest area, and
RVCI = 0.833** and RNVSWI = 0.657** in the farmland area, respectively. The correlation
between TCI and MTVDI and NPP show that RTCI = −0.056 and RMTVDI = −0.167 in the
grassland and forest area, and RTCI = −0.158 and RMTVDI = −0.209 in the farmland area,
respectively (Figure 5c,d Table 3).
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Figure 5. Temporal changes of vegetation status-based drought index and NPP during the growing
season from 2000 to 2020: (a) grassland and forest area, (b) farmland area. The scatter plot distribution
of vegetation status-based drought index and NPP over 2000–2020: (c) grassland and forest area and
(d) farmland area.

The integrated drought index is moderately significantly correlated with NPP (0.4 ≤
|R| < 0.6, p < 0.1), which is better than the drought index based on meteorological variables
and soil moisture. The DSI is moderately significantly correlated with NPP (0.4 ≤ |R|
< 0.6, p < 0.1). The ISDI is moderately significantly correlated with NPP in the farmland
areas (0.4 ≤ |R| < 0.6, p < 0.05) and weakly non-significantly correlated in the grassland
and forest areas (0.2≤ |R| < 0.4, p > 0.1) (Figure 6 and Table 3). The interannual trends
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in the two combined drought indices are opposite only in 2016–2017 (Figure 6a,b). The
interannual trends in DSI and ISDI with NPP are opposite in the grassland and forest area
for 2017–2019, and in the farmland area for 2008–2010, 2015–2016 and 2017–2019. The
correlation between the two integrated drought indices and NPP is shown as RDSI = 0.406*
and RISDI = 0.508** in the farmland area, and RDSI = 0.559**, RISDI = 0.331 in the grassland
and forest area, respectively (Figure 6c,d and Table 3).
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3.2. Temporal Trends of Agricultural Drought

Trends in the development of agricultural drought in the study area are analyzed
based on the four drought indices (VIC, NVSWI, DSI and ISDI), which are identified as
suitable indices for agricultural drought in previous section. The study shows that there
is a trend of a decrease in agricultural drought in the study area, which is represented
by an increasing in these indices (VIC, NVSWI, DSI and ISDI) (Figure 7, Table 4). In the
grassland and forest area, VCI shows a significant (p < 0.05) increasing trend, with a rate
of change of 0.06/10a. NVSWI shows a non-significant decreasing trend, with a rate of
change of −0.01/10a. DSI shows a significant (p < 0.1) increasing trend, with a rate of
change of 0.23/10a. ISDI shows a non-significant increasing trend, with an increasing trend
approximately equal to 0. In the farmland area, VCI shows a significant (p < 0.05) increasing
trend, with a rate of change of 0.09/10a. NVSWI shows a significant (p < 0.1) increasing
trend, with a rate of change of 0.05/10a. DSI shows a significant (p < 0.05) increasing trend,
with a rate of change of 0.43/10a. ISDI shows a non-significant increasing trend, with a
rate of increase equal to 0. In the desert area, VCI shows a significant (p < 0.1) increasing
trend, with a rate of change of 0.04/10a and NVSWI shows a non-significant increasing
trend, with a rate of change of 0.01/10a. DSI shows a significant (p < 0.1) increasing trend,



Agronomy 2023, 13, 469 12 of 20

with a rate of change of 0.23/10a. ISDI shows a significant (p < 0.05) decreasing trend, with
a rate of decrease of −0.03/10a.
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Table 4. Temporal trends in VCI, NVSWI, DSI and ISDI in the grassland and forest area, and farmland
area and desert areas, over 1982–2020.

VCI NVSWI DSI ISDI

Grassland and forest area 0.06/10a ** −0.01/10a 0.23/10a * 0.00/10a
Farmland area 0.09/10a ** 0.05/10a * 0.43/10a ** 0.00/10a

Desert area 0.04/10a * 0.01/10a 0.23/10a * −0.03/10a **
** denotes p < 0.05 and * denotes p < 0.1. Higher values of the index indicate weaker agricultural drought.

3.3. Spatial Distribution of Agricultural Drought Trend

The spatial variation in the four indices (VIC, NVSWI, DSI and ISDI) indicates a
significant slowdown in agricultural drought in the Shiyang River Basin (Figure 8). The
VCI increases significantly in the agricultural area, as well as in the southern side of the
grassland and forest area near the glacier, with trends ranging from approximately 0.015
to 0.03/a. The area of significant increase is less in the desert area, with a trend between
approximately 0 and 0.015/a (Figure 8a). NVSWI monitored a significant increasing trend
in most of the farmland area, with a trend between approximately 0.015 and 0.03/a. A
significant decreasing trend in NVSWI was monitored in a small part of the grassland and
forest area, especially in the upper grassland and forest area bordering the farmland area,
with a trend of between approximately −0.015 and 0/a (Figure 8b). The distribution of
spatial variation in DSI and VCI is similar, with a significant increase in most of the area
and an increasing trend of approximately 0.045/a or more (Figure 8c). ISDI significantly
increases in a small part of the farmland area, which is mainly in the middle stream, with a
trend of between approximately 0 and 0.015/a. In addition, a significant decreasing trend
in ISDI was monitored in the northern part of the downstream desert zone, with a trend of
between approximately −0.015 and 0/a (Figure 8d).
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4. Discussion
4.1. Suitability Indices for Agricultural Drought Monitoring in the Shiyang River Basin

VCI, NVSWI and the two integrated drought indices are suitable for monitoring agri-
cultural drought in the Shiyang River Basin. The drought index based on meteorological
variables is affected by meteorological conditions such as water scarcity and high evapo-
transpiration. The change from meteorological environmental background to vegetation
growth and development is a complex process, resulting in some areas where drought
indices based on meteorological variables do not directly respond to the status of agricul-
tural drought [66]. With global warming and accelerated glacier shrinkage, the melting
of glaciers in the upper reaches of the Shiyang River basin has allowed more runoff to
be used at lower elevations to compensate for the effects of meteorological drought on
vegetation [67]. In addition, more than 90% of the surface water in the Shiyang River
basin is allocated to agricultural land, while large amounts of groundwater are extracted.
In the event of a major drought, water catchment transfers from outside areas mitigate
the effects of drought on crops [26]. Soil moisture is the indicator most closely related to
vegetation growth [68]. The monitoring capability of soil moisture-based drought indices
in agricultural areas has been improved compared to that of drought indices based on
meteorological variables. However, the sensitivity differs between soil moisture at different
depths and different types of vegetation [69,70]. The data quality of soil moisture is another
factor that has been limiting the development of drought monitoring [71], especially in
the arid and semi-arid regions of northwest China, which cannot rely excessively on soil
moisture to monitor agricultural drought. The results showed that VCI and NVSWI, two
indices with considering NDVI, performed better in monitoring agricultural drought in the
Shiyang River Basin. NDVI is one of the important parameters reflecting crop growth and
nutrient information. Adding LST is not suitable for monitoring agricultural drought in the
Shiyang River Basin, which is similar to Wei’s study [72]. The integrated drought index has
a significantly higher monitoring capacity due to the consideration of more variables, most
notably NDVI, and has a good performance in different areas of the Shiyang River Basin.
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4.2. The Contrasting Trend between Meteorological and Agricultural Drought

Agricultural drought in the study area tended to slow down, but drought indices based
on meteorological variables showed a trend of increasing drought (Figure A1, Table A1).
In the grassland and forest area, drought indices based on meteorological variables has
a generally drier trend. In the farmland area, no significant trends were monitored for
the drought indices based on meteorologically related variables. In the desert area, the
drought indices based on meteorological variables monitored a trend of gradually increas-
ing drought severity. These manifestations, contrary to the actual agricultural drought
changes, are mainly due to the improvement of water resource management and utiliza-
tion efficiency, in order to reduce the impact of meteorological conditions on agricultural
drought. In the upstream area, abundant water resources, brought by the melting of the
glaciers, keep the soil moist and the soil moisture maintains the normal water demand of
vegetation [73]. In the midstream region, the role of human activities dominates the changes
in soil moisture and vegetation, and irrigation and water allocation are the main means for
local crops to obtain water resources. With optimal and orderly field management by the
government, crops are less affected by meteorological conditions [27]. Downstream has
received attention from authorities and scholars for many years, and thus the vegetation
cover and growth status have been improved thanks to a series of ecological projects,
such as water harvesting, water transfer and groundwater extraction, implemented in
the downstream [28]. By comparing trends in drought indices based on meteorological
variables and agricultural droughts, especially over different time windows, it may be
useful to analyze the causes of agricultural drought formation and even to quantify the
contribution of human activities in mitigating agricultural droughts.

4.3. The Importance of Runoff Information in Agricultural Drought Monitoring for Inland River
Basin

Drought indices that consider runoff would be more effective in monitoring agricul-
tural drought in the Shiyang River Basin, a water management intensive region. In the
closed inland river, precipitation is not the only water resource, but runoff from melting
glaciers in the upper reaches and groundwater can also meet most of the agricultural needs
of the middle and lower reaches [74]. During the flood season, the flow of Shiyang River is
mainly influenced by the precipitation in the Qilian Mountains, and the drought indices
based on meteorological variables can reflect agricultural drought to some extent. During
the non-flood period, runoff is supplemented by the melting of snow and ice formed by
the upstream glaciers; at this time, the drought index based on meteorological variables
cannot reflect the actual water deficit [75]. Precipitation is low in the middle and lower
reaches in the Shiyang River Basin and potential evapotranspiration is high; thus, vege-
tation is mainly dependent on moisture replenished by runoff, which greatly reduces the
dependence of agricultural drought on precipitation. Agricultural drought, as a type of
drought severely affected by human activities, is more closely related to water resource
management, such as irrigation and reservoirs; hydrological process models that take these
factors into account have been well validated for monitoring agricultural droughts [76].
The vast majority of these water sources come from runoff, which reflects the efficiency of
water management and use in inland river basins and the integration of natural and human
factors. [77,78]. Among the runoff-related drought indices, PDSI has been extensively
validated in global and regional-scale drought monitoring [79,80]. The use of SRI, SWSI,
and RDAI may further enhance the capability of agricultural drought monitoring in the
Shiyang River Basin [81]. In fact, the practice of incorporating the runoff drought index
to monitor agricultural drought has been applied in the operational agricultural drought
monitoring system USDM in the United States [82].

4.4. The Imperative of Constructing Integrated Drought Indices

The key to constructing a comprehensive drought index is the selection of variables
and the construction of the model. The selection of variables representing the drivers
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of regional agricultural drought can significantly improve the monitoring ability of the
index. In the results of this study, TCI and MTVDI derived with LST were weakly or
even very weakly correlated with NPP after normalization in the Shiyang River Basin
sub-region. The spatial and temporal variations in NVSWI and ISDI were significantly
different from VCI and DSI in the desert and grassland, and forest areas. The LST was
not suitable to be added as an input in monitoring the drought index in the Shiyang
River Basin. The monitoring ability of the index may be controlled by only some key
variables, and adding more parameters may introduce more errors [83,84]. For multivariate
based composite drought indices, the construction methods are complex and the most
commonly used methods include linear combination, joint distribution, and principal
component analysis [1]. Considering regional heterogeneity, such as climatic conditions,
vegetation types, and human activities, can enhance the monitoring effectiveness of the
drought index [76,85]. There is a significant cumulative and lagged relationship among
meteorological conditions, soil moisture, and vegetation status. The severe agricultural
drought can be triggered by long-term or growth-critical environmental stresses. The time
scale and lag effects of variables need to be considered when constructing a comprehensive
drought index [86,87]. In addition, the use of machine learning and deep learning can
resolve the complex and ambiguous nonlinear relationships among different variables,
which is a hot research topic for constructing integrated drought indices [1].

4.5. Practical Implication and Limitations

This study revealed that the vegetation status-based and the integrated drought indices
have a better performance than meteorological variables or soil moisture-based drought
indices in this inland river basin with intensive water management. This finding is essential
for other regions with intensive water management, because the meteorological variables-
based drought indexes are not suitable for drought management in this region. Meanwhile,
the identified suitable drought indices are based on the widely available climate and remote
sensing data. All of them can be easily obtained for the agricultural drought monitoring.
While NPP is a good indicator of crop yield production, it would be better to obtain the
yield production to validate these drought indices.

5. Conclusions

In this study, the suitability of drought indices for the agricultural drought monitoring
of an inland river (the Shiyang River Basin) was explored, based on the widely used
drought indices. Then, the spatial–temporal trend in agricultural drought was analyzed in
the study region. We reached with following conclusions:

(1) Drought indices based on meteorological variables are not suitable for monitoring
agricultural drought in the Shiyang River Basin. The drought indices based on meteorolog-
ical variables are extremely weakly non-significantly correlated with NPP (0 ≤ |R| < 0.2,
p > 0.1). The drought indices based on meteorological variables can only partially reflect
the interannual variation trend in NPP.

(2) The drought index based on soil moisture is more capable of monitoring in farmland
area than the drought index based on meteorological variables. The drought index based
on soil moisture can be moderately significantly correlated with NPP in the farmland
area (0.4 ≤ |R| < 0.6, p < 0.1), and the interannual variation in the soil moisture-based
drought index lags behind the NPP, which can predict the change in agricultural drought
in advance.

(3) VCI and NVSWI can accurately monitor the variation in NPP, and the indices
constructed using LST reduce the monitoring ability. NPP is extremely strongly significantly
correlated with VCI (0.8 ≤ |R| ≤ 1, p < 0.05) and strongly significantly correlated with
NVSWI (0.6 ≤ |R| < 0.8, p < 0.05). TCI and MTVDI are not strongly non-significantly
correlated with NPP (0 ≤ |R| < 0.4, p > 0.1).

(4) The integrated drought index improves the ability and stability of monitoring
compared with the index considering only single factors. The integrated drought index
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can achieve a moderate significant correlation with NPP (0.4 ≤ |R| < 0.6, p < 0.1), which is
better than the drought index based on meteorological variables and soil moisture.

(5) The monitoring of the spatial and temporal changes in the suitability indices VCI,
NVSWI, DSI and ISDI showed that the drought index based on meteorological variables
showed a trend of increasing drought, while agricultural drought slowed down during
1982–2020 in the Shiyang River Basin. This is mainly due to the improvement of water
management and utilization efficiency within the basin.

This study provides the basis for index selection in agricultural drought monitoring
in the Shiyang River Basin. Meanwhile, the drought index assessment framework in this
study can be applied to agricultural drought monitoring in other inland river basins.
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Table A1. Temporal trends of SPEI, sc-PDSI, ESI and MEDDI in the grassland and forest area,
farmland area and desert area, over 1982–2020.

SPEI sc-PDSI ESI MEDDI

Grassland and forest area 0.10/10a 0.13/10a 0.10/10a −0.32/10a **
Farmland area 0.16/10a 0.02/10a 0.16/10a −0.1710a

Desert area 0.22/10a 0.16/10a 0.22/10a −0.30/10a **
** denotes p < 0.05. Higher values of the index indicate weaker agricultural drought.
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