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Additional food and bio-products are expected to be required to feed the growing
world population under the changing climate. It is therefore increasingly important to
maintain the sustainability of cropping systems, and to improve crop yield and quality
with efficient resource use. Cropping systems consist of numerous complex and interacting
biological processes, which can be influenced by human management. The quantification
of these complex processes helps to increase our understanding of crop development and
growth, and facilitates the design of new management strategies aimed at high yield and
quality. Crop models are based on existing insights into the underlying chemistry, physics,
physiology, and ecology of cropping systems. Information on weather, soil, and man-
agement practices is combined and processed to predict crop performance. Crop models
increase insight into relevant processes, allow the study of the effects of crop management,
and enable the exploration of possible consequences of management modifications. Model-
ing tools have been used in variety of areas, ranging in scale from functional genomics to
regional natural resource management.

Recent studies showed that the existing crop models have variable success in simu-
lating crop performance. It is necessary to upgrade crop models with newly developed
knowledge to precisely project crop performances and explore mitigations under warm-
ing climate changes. The independent field experiment data are required to probe new
principles of crop growth and to create confidence in modeling as an effective tool, be-
cause existing models have to be evaluated based on crop genetic characteristics and
location-specific conditions before they can be successfully applied.

This Special Issue, entitled “Advances in Modeling Cropping System to Improve
Yield and Quality”, consists of ten papers on field experiments, model developments and
improvements, and model applications confronting the emerging challenges in the crop
production industry. These papers include a review paper on the modeling approach
linking the genotype to the phenotype, two papers on crop performances under designed
management practices, two papers on model developments and improvements, three
papers on model applications to improve crop yield and resource use efficiency, and two
papers developing new methods and models to predict crop production.

Since the pioneering work on plant modeling by C.T. de Wit [1] in the 1950s, crop
models have been extensively developed and applied for different scales. For the micro
scale of modeling, quantitative trait loci (QTL) information was incorporated into crop
models to analyze genotype-by-environment interactions [2]. In the review paper in this
Special Issue, Gu [3] introduced details on the development and applications of QTL-based
modeling, outlining a genotype-to-phenotype approach that exploits the potential values
of quantitative methods. Associated with crop modeling, the effects of QTL, typically at the
single-organ level over a short time scale, were projected for their impact on crop growth
during the whole growing season in the field. This quantitative approach can provide
more markers for selection programmes in specific environments while also allowing
for prioritization.
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The observations of field experiments are a basic requirement to provide knowledge
of crop development and growth for developing and evaluating crop models. In most crop
models, the emergence date is governed by temperature and soil moisture, and the impact
of nitrogen (N) supply is usually ignored. In this Special Issue, Szabó et al. [4] reported an
experiment on the emergence of maize hybrids in different age groups grown in a long-term
experimental field under rainfed conditions. They observed the day of emergence, grain
moisture, protein, oil, starch, and yields of the maize hybrids. They concluded that nitrogen
fertilizer had a significant effect on the day of emergence by improving nutrient conditions
for the germination of maize, which may be both considered by farmers and used by model
developers for model improvement. It is another important topic for models to simulate
crop rotations in a long-term pattern. To evaluate the models simulating crop rotations,
collecting observed data from long-term experiments usually consumes much time and
labor. Yuan et al. [5] conducted a long-term field experiment to investigate the effects of
crop rotation and biochar-based fertilizer application on the crop yield, soil attribute, crop
quality, and agronomic traits in 2014–2020. Their results show that the diversified corn and
soybean rotations had a significant positive effect on average crop yield compared with
their monocultures. A significant positive effect of biochar-based fertilization was observed
for any crop in terms of both protein and oil content.

Crop producers usually use insecticides to protect crops from insects in order to
achieve high yields; however, the impact of insects is considered in few current crop mod-
els. Crops are assumed to grow under no biotic stress in most crop models. To simulate the
impact of insects and applying insecticide on crop production, Sulaiman et al. [6] provided
a discretized system of a continuous dynamical model for enhancing crop production in the
presence of insecticides and insects. The model was based on agricultural crop production
with variable density of insect population, insecticide concentration, and some external
efforts, which were given by a system of nonlinear differential equations. They used the
Levenberg–Marquardt algorithm (LMA) based on artificial neural networks (NNs) to inves-
tigate the approximate solutions for different insecticide spraying rates. This study showed
the feasibility of including the impact of insects on crop growth in most crop models in the
future. Besides mimicking crop growth, improving the harvest method at maturity may
yield additional benefits. With the innovation of technology, automatic harvest has become
favorable for producers. To improve the accuracy of discrete element simulation parameters
for the mechanized harvest of pears, Fan et al. [7] improved the simulation parameters of
pear harvests by comparing physical experiments and simulations. Their study provided a
basis for the design and parameter optimization of pear-harvesting machinery.

Three papers in this Special Issue highlighted the crop model as an important tool in
designing management strategies to obtain high N use efficiency and crop yield. It was
reported that an excessive nitrogen (N) application rate led to low N use efficiency and
environmental risks in a potato production system in northwest China. Jiang et al. [8]
applied two models, DNDC and WHCNS_Veg, to optimize management practices for
improving potato yield and N use efficiency, after these two models were evaluated using
measured tuber yield, above-ground biomass, N uptake, and soil inorganic N from a
multiple-year field experiment in northwest China in 2017–2020. They concluded that the
greatest tuber yield and N use efficiency were achieved at a N rate of 150–180 kg ha−1 with
2–3 splits, a fertilization depth of 15–25 cm, and a planting date of 25 April to 10 May. In the
second published paper, Khan et al. [9] used the CSM-CERES-Wheat model to determine
the influence of N fertilizer rates with different timings of application on wheat yield traits,
i.e., tiller number, grain number, grain weight, grain yield, biomass, and grain N content.
The simulation scenarios suggest that the application of 140 kg N ha−1 with triple-split
timings, i.e., 25% at the sowing stage, 50% at the tillering stage, and 25% at the booting
stage, resulted in the maximum yield and N recovery. Simulated N losses were determined
by leaching for experimental conditions where a single N application of 100% or existing
double-split timing was applied. Reducing the nitrate N (NO3−-N) leaching is another
important target to increase N use efficiency in a cropping system. Farmaha et al. [10]
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linked SWAP (a water balance model) with ANIMO (a nitrate leaching model) and the
Geographical Information System (GIS) to assess the spatial and temporal leaching of
NO3−-N from fields of a rice–wheat cropping system in the riparian wetlands in north-
western India. The results reveal that NO3−-N concentration in the groundwater exceeded
the 10 mg NO3−-N L−1 limit for drinking water only during December–January, and the
SWAP–ANIMO model satisfactorily predicted NO3−-N concentrations in the leachate in
the vadose zone. Their study showed again that the modeling approach was satisfactory for
an efficient quantitative assessment of NO3−-N pollution in groundwater while accounting
for the spatial and temporal variability.

Predicting crop growth and yield is an important issue for producers, stakeholders,
and the global trade market. Mathematical models such as machine learning tools can
be an addition to crop models in the prediction of crop yields. In this Special Issue,
Rajković et al. [11] compared two machine learning tools, Artificial Neural Networks
(ANNs) and Random Forest Regression (RFR), using them to unambiguously predict
crop seed yield, oil, and protein content. The RFR model showed better prediction capabili-
ties compared with the ANN model. Furthermore, monitoring crop leaf N content might
help to adjust crop management to improve crop yield. Along these lines, Zhao et al. [12]
elucidated the color changes in rice leaves after anthesis and created an algorithm for
monitoring the N content of rice leaves, aiming to provide a theoretical basis for the precise
management of rice nitrogen fertilizer and the development of digital image nutrition
monitoring equipment. They measured rice leaf R, G, and B values, and analyzed the
correlations between RGB-normalized values and leaf SPAD values. They concluded that it
was accurate and efficient to use a scanner to obtain the RGB color index for deducing the
N content of rice.
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