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Abstract: Crop rotation and intercropping are important ways to increase agricultural resource
utilization efficiency and crop productivity. Alternate intercropping, or transposition intercropping,
is a new intercropping pattern in which two crops are intercropped in a wide strip with planting
positions switched annually on the same land. Transposition intercropping combines intercropping
and rotation and thus performs better than either practice alone. Compared with traditional inter-
cropping or rotation, it can increase yield and net return by 17–21% and 10–23%, respectively, and the
land equivalent ratio (LER) by 20% to 30%. In crop growth and development, a balanced root–shoot
relation is essential to obtain satisfactory yields and yield quality. Intercropping, rotation, or the
combination can alter the original root–shoot relation by changing the ecology and physiology of
both root and shoot to achieve a rebalancing of the relation. The crop yield and yield quality are
thus regulated by the root–shoot interactions and the resulting rebalancing. The review examines
the effects of above- and belowground interactions and rebalancing of root–shoot relations on crop
yields under cotton-based intercropping, rotation, and particularly alternate intercropping with the
practices combined. The importance of signaling in regulating the rebalancing of root–shoot relations
under intercropping, rotation, and the combination was also explored as a possible focus of future
research on intercropping and rotation.

Keywords: alternate intercropping; ecophysiology; root–shoot signaling; yield formation

1. Introduction

In China, the per capita cultivated land area is small, and the conflict between different
crops has always been prominent [1]. In recent years, unreasonable farming management
has led to an imbalance in the structure of agriculture [2,3]. Long-term single cultivation
has been found to cause serious deterioration of land quality [4], inhibited crop growth
and development, decreased accumulation of organic matter in the soil [5], decreased
photosynthetic production [5,6], increased incidence of pests and diseases [7,8], and thus
reduced the crop productivity [4].

Crop rotation and intercropping are used worldwide to improve crop productivity in
sustainable agriculture [9]. Rotation has been demonstrated to effectively reduce constraints
and increase crop yield [10]. However, the traditional rotation is not attractive because
most smallholder farmers in the Yellow River Valley of China prefer to harvest the two
cash crops in the same year as a result of economic considerations. Although traditional
intercropping can meet farmers’ requirement of harvesting two crops in one year, there
still exist continuous cropping constraints [11]. Moreover, traditional intercropping is not
amenable to mechanization, which is also an important reason for its low adoption in recent
years [12].
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To address this concern, alternate intercropping, combining rotation and intercropping
as a new cropping pattern, has recently attracted wide interest [1]. It is characterized by
wide-strip intercropping and interannual crop transposition (Figure 1), which can satisfy
farmers’ need to harvest two crops a year, reduce continuous cropping constraints, and
produce better yields than traditional rotation and intercropping alone [13,14].
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Figure 1. Traditional (a) and alternate (b) intercropping of cotton and soybean; intercropping of
cotton and chili (c) and cotton and peanut (d).

Previous studies mainly focus on intercropping or rotation, especially on aboveground
growth and development, crop yields, and benefits [15,16]. However, recently, attention has
increasingly focused not only on traditional intercropping or rotation, but also on alternate
intercropping, with a particular focus on the belowground, and its interactions with the
aboveground [14,17]. In this review, on the basis of the literature and relevant research of
the authors, we discuss how alternate intercropping affects root–shoot interactions and
the rebalancing of root–shoot relations in order to provide a reference for the sustainable
development of cotton intercropping and multiple cropping.

The Web of Science and Cnki (www.cnki.net; accessed on 1 January 2023) were used
in a search of the literature published since 1980, with the literature search terms “Rota-
tion” and “Intercropping”. A total of 49,598 articles related to intercropping and rotation
were identified, including 14,982 related to intercropping, 34,610 related to rotation, and
12 related to alternate intercropping. Among the articles, 1979 were cotton-based, including
1054 on rotation, 920 on intercropping, and 5 on alternate intercropping. Compared with
single cropping, 78.2% of articles on cotton-based intercropping showed an increase in
yield; compared with continuous cropping, 86.2% of articles on rotation showed an increase
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in yield; and compared with traditional intercropping and rotation, 100% of articles on
alternate intercropping showed an increase in crop yield.

2. How Cotton-Based Rotation Improves Productivity

Cotton production occurs on five continents under diverse agroclimatic conditions
with contrasting productivity levels and production constraints [18]. Developing eco-
efficient cropping systems in cotton fields that are productive and sustainable is key in
increasing productivity and economic benefits. Rotation is a planned sequence of multiple
crop species grown in recurring succession on the same area of land [17]. Cotton-based
rotation is an important way to increase productivity in agro-ecosystems.

2.1. Productivity and Economic Benefits

Cotton-based rotation systems can improve crop yields across a broad range of envi-
ronments. For example, compared with continuous cropping of cotton, rotation cropping
increased cotton yields by 2.6~4.5% [15]. Rotation also promotes cotton vegetative and
reproductive growth and increases plant height; numbers of true leaves, fruit branches,
and squares and bolls; and boll weight [15]. In a more recent study using satellite remote
sensing, the lint yield of cotton rotated with rice was greater than that of continuous
cotton [19].

Cotton-based rotations also increase profitability, a key factor influencing farmer de-
cisions to adopt a crop rotation system [20,21]. Cotton→wheat rotation produces gross
margins 25% higher than those of continuous cropping because of the lower cost of produc-
tion [22]. Legumes are a viable option for small landholders using cotton-based cropping
in India [23], and the gross profits of this system have always been higher than those of
continuous cotton [24]. Cotton→legume rotations have been widely adopted in Australia
and India because of increased profitability [23,24]. The inclusion of vetch in continuous
cotton or cotton→wheat system increases gross profit margins by 23% and 12%, respec-
tively [24,25]. Thus, productivity and economic benefits are greater with cotton-based
rotations than with continuous cotton, especially when rotated with legumes.

2.2. Soil Improvement and Root Growth

Soil physical properties such as aggregation and stability are key factors in regulating
soil functions [17,26]. The benefits of crop rotation on soil physical properties are widely
reported [27–29]. For example, when legumes are introduced in a crop rotation, macroag-
gregate formation increases because of deep roots, leaf drop, increased rhizosphere activity,
and root exudates [30]. Moreover, crop rotation with legumes increases the diversity of
crop species, which can reduce the need for traditional cultivation measures [17].

Crop rotation results in changes in root structure and biomass [31–33] and also causes
variation in root exudates and rhizosphere microorganisms [34,35]. Roots play an important
role in increasing soil organic carbon (SOC) levels, but the root traits that impact SOC likely
vary widely among cover crop species [33]. Amsili et al. [36] found rotation improved
the quantity, quality, and spatial distribution of roots, and changed the root-to-shoot (R:S)
ratio, compared to single planting. Crop rotation also increased root cumulative carbon by
37%~46% and reduced the root carbon-to-nitrogen (C:N) ratio. Incorporating bahiagrass
into the traditional peanut and cotton cropping system resulted in improved cotton root
development including larger total root area, length, and biomass [32]. Rotation with sod
improved the taproot system of cotton, which enables the cotton to extract nutrients and
soil moisture from the deeper soil profile [32].

A meta-analysis showed that crop rotations increase microbial biomass by 21% [37].
Changes in microbial community structure are also associated with differences in rotational
diversity [38–40]. Rotational diversity increases microbial community diversity and the
relative abundance of fungi compared with that of bacteria [41,42]. Such changes are impor-
tant because microbial community diversity is linked to functional resilience and resistance
to disturbance [26]. The rotation of cotton and leguminous crops results in substantial
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changes in the rhizosphere [26,35]. The rotation increased rhizosphere microbial biomass
by 21% compared to continuous cropping, improved soil microbial diversity and ecological
functions [37], and ultimately improved soil organic matter and soil fertility [17,29].

2.3. Resource Utilization

Appropriate rotation increases productivity and economic benefits [21], which is
largely attributed to improved resource utilization [27,43]. Therefore, it is important to
understand how previous crops affect the resource utilization efficiency of subsequent
crops [17]. In cotton-based rotation systems, the advantage of rotation over continuous
cropping is the effective use of available resources, such as solar radiation, soil nutrients,
and water [31,44,45]. For example, in a cotton→spring wheat→reseeded→feed rape ro-
tation system, the net photosynthetic rate of cotton increases by 44.88% to 50.37% and
light energy use efficiency increases by 18.82% to 59.17% compared with those of contin-
uous cropping [46]. Canopy apparent photosynthesis also increases under rotation, and
increases in leaf area index and biomass of cotton indicate increases in cotton growth and
development [44].

2.4. Root–Shoot Interaction

It is believed that the belowground and aboveground parts interact within a cotton-
based rotation system. Interannual crop rotation resulted in changes in soil organic matter
content and rhizosphere microorganisms, which would affect the growth and development
of the aboveground parts. The aboveground alteration would affect root growth and
development, indicating an interaction between shoot and root [26,34]. In cotton-based
rotation systems, cotton is a straight-root crop with a deep root system that absorbs water
and nutrients from deep soil layers, whereas wheat and corn are fibrous root crops with
shallow root systems that make full use of surface soil nutrients compared with cotton [47].
Thus, a rotation of cotton and wheat (maize) has complementary advantages that maximize
the nutrient utilization efficiency of each soil layer [48,49]. Compared with continuous
cotton cropping, cotton-based rotation increases the water use efficiency of cotton by 28.01%
to 68.35% during the late flowering period [46]. A cotton→corn→soybean rotation system
consumes less fertilizer, especially nitrogen fertilizer, than continuous cotton because of the
nitrogen fixation of soybean [50,51]. In a cotton→peanut rotation system, root diameter,
root area, root length, and root biomass of cotton increased significantly [32,33], which
enhanced the uptake of nutrients and finally improved the aboveground leaf area index
and plant height traits [33], realizing the regulation of root to shoot.

2.5. Pest and Disease Control

Continuous monoculture allows pathogens to continue life cycles without interruption,
resulting in rapid multiplication of pathogens and increases in disease severity [52,53].
By contrast, when several different crop species are planted, pathogens with a relatively
narrow host range or without long-term survival capacity or dispersal do not survive in
the absence of a suitable host [54]. Therefore, crop rotation can also be regarded as an
important strategy to control plant diseases. Diverse crop rotations increase crop health
and decrease pest occurrence [17], thus reducing production risk when compared with
that in monoculture [55,56]. In a cotton→grain crop rotation system, abundances of adult
Propylea japonica lady beetles increased, which led to reductions in aphids in center cotton
plots [56]. In addition, diseases (especially rust), weeds (especially wild oats), and pests
(especially wheat thrips) were 2 to 3 times less frequent in grain planted after cotton, and
spiders were 3 to 4 times less abundant in cotton planted after grain than in continuous
cropping [57]. The studies suggest that crop diversity in rotation ecosystems is beneficial
because ecological control of pests allows reductions in pesticide inputs [17,52], especially
under agricultural intensification [56].

Of course, inappropriate rotation may cause problems in crop production. Generally,
the rotation of similar crops is far lower than that of different categories of crops in yield



Agronomy 2023, 13, 413 5 of 17

and economic benefits. For example, the yield and economic benefits of rotation between
legume crops and grain crops are better than those of rotation between different legume
crops or different grain crops [58].

3. Cotton-based Intercropping

Intercropping is a method of planting at least two crops in the same season in rows or
bands [59]. Cotton-based intercropping is also an important way to increase productivity in
agro-ecosystems. In a global meta-analysis, compared with monocultures under the same
management, both low- and high-yield intercropping strategies saved land by 16% to 29%
and reduced fertilizer use by 19% to 36% [16].

3.1. Productivity and Economic Benefits

Cotton-based intercropping systems are considered a promising strategy in sustainable
cotton production, particularly for small landholdings [60]. Cotton is suitable for intercrop-
ping because of its wide row spacing, slow growth in the initial stage, and relatively long
period of growth and development [61]. Vacant space between rows of a cotton crop allows
two to three months to grow a short-duration intercropping. Legumes, including gram,
bean, and cowpea, grow rapidly and complete life cycles in a short time, which is highly
suitable for intercropping with cotton [61]. Although yields of intercropped cotton can
be 8% to 31% lower than those of monoculture cotton, total productivity and net income
of intercropping systems are much higher than those of monoculture [62]. Farm income
under different cotton-based intercropping systems increases by 30% to 40% [63]. However,
in the case of traditional narrow row spacing, the effects of intercropping are not good.
Therefore, cotton must be planted with wide row spacing to ensure sufficient space for
intercropping [64].

3.2. Rhizosphere Microbial Community

Exchanges and competition for mineral nutrients and water, soil microorganisms,
and other resources are primarily concentrated belowground, particularly in the rhizo-
sphere [65]. Intercropping not only affects root growth, morphology, and function, but also
alters the rhizosphere microbial community, promotes or inhibits the production of plant
root exudates [66], and leads to interactions among roots of intercropped crops. Plants
and rhizosphere bacteria interact closely in the rhizosphere [67]. Crop plants can stimulate
rhizosphere bacteria by secreting root exudates and metabolites and thus alter interactions
between rhizosphere bacterial communities and plants [68].

3.3. Resource Utilization

Intercropping greatly increases net returns compared with those from a single crop,
which is largely attributed to improved resource utilization [16]. Intercropping has wider
and more rapidly developing coverage than that in monoculture, which increases the
interception of solar radiation and thus increases the effective use of sunlight [69–71]. In
intercropping systems, the two intercropped crops have asynchronous canopy patterns and
different maturity dates [69]. Therefore, because of the expansion of leaf area throughout
the growing season, light interception may increase by 30% to 40% compared with that
in monoculture [72]. The microclimate within the canopy of intercrops regulates temper-
ature extremes, and in the summer, a widespread canopy of a main crop such as cotton
reduces temperature and air movement, leading to decreased evaporation loss and in-
creased relative humidity [73]. For example, compared with single cropping, jujube–cotton
intercropping decreases soil temperature under jujube and cotton by 0.04 ◦C to 0.87 ◦C
and 0.63 ◦C to 2.92 ◦C, respectively, throughout the growth period, except in April and
May, and decreases transpiration and soil evaporation in intercropped jujube by 12 mm
and 39 mm, respectively [74].

Interspecific exchanges, competition, and other interactions occur in cotton-based
intercropping systems, which can significantly improve soil microbial activity [75] and
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increase the decomposition of humus and the transformation of organic matter and nutri-
ents [76]. Long-term (10 to 16 years) experiments in soils of different fertility show that the
average grain yield of intercropping systems is 22% higher than that of monocultures, and
yields are more consistent year to year [77]. A possible explanation for why intercropped
crops can absorb more nutrients is that the roots of intercropped crops are more developed
and have longer-lasting functions than those of monocropping crops [14]. Compared with
traditional cotton monocropping, cotton–halophyte intercropping increases root mass and
density at the 0–20 cm soil depth [78], and cotton–mung bean intercropping increases total
land output by 16.6% to 19.8%, total nitrogen uptake by 27.9% to 45.3%, water use efficiency
by 17.0% to 36.3%, and economic benefits by 31.7% to 51.9% [79].

3.4. Pest Control

Intercropping is important in sustainable cotton production because it helps to reduce
populations of insect pests by attracting natural enemies and typically produces stable
yields and high profits [80]. Arthropod community structure is associated with the spatial
and temporal structure of crops [53,81]. The increase in vegetation diversity in intercropped
cotton fields alters the temporal and spatial pattern of crops and thus improves the stability
of arthropod communities [82,83]. Cotton–cowpea intercropping reduces the number of
apterous Aphis gossypii per cotton plant by 31% to 43% compared with that in monocrop-
ping [84]. Intercropping cotton with trap crops such as corn, alfalfa, mung bean, and
cowpea can effectively trap and reduce pest abundance on cotton [85–87]. The loss rate of
diseases of intercropped cotton and corn is lower than that of monocropped cotton [88]. It
was found that using strip intercropping with cotton was effective in controlling early leaf
spots of groundnut, which also reduced fungicide application [89].

In addition, vegetation structure, ventilation, humidity, and temperature differ be-
tween cotton intercropping ecosystems and single-plant ecosystems [73,74]. This micro-
climate change can increase the number of natural enemies on the one hand, reduce the
number of pests on the other hand, and finally reduce pest damage [90,91]. Crops with
plant height differing from that of cotton, such as corn or fruit trees, greatly affect tempera-
ture, humidity, wind speed, and light in intercropping systems. Therefore, climate factors
directly or indirectly affect the development and survival of cotton pests, thus affecting
population densities [92–94].

4. How Alternate Intercropping Improves Crop Productivity

Alternate intercropping, or transposition intercropping, is a new intercropping mode
in which two crops are intercropped in a wide strip with planting positions switched
annually on the same land [95]. Transposition intercropping effectively combines rotation
with intercropping to realize the benefits of increases in yields from intercropping and
increases in efficiency from rotation [95–97]. Currently, transposition intercropping is used
in cotton, corn, legumes (peanut, soybean, and mung bean), and other crops and has
achieved good results, showing broad prospects for increases in application [96,97].

4.1. Productivity and Economic Benefits

Intercropping can satisfy the need for farmers to harvest two crops per year [77],
and rotation can reduce constraints associated with continuous cropping [17]. Therefore,
when intercropping and rotation of different crops are combined, farmers can harvest two
crops within one year, reduce problems associated with continuous cropping, and further
improve crop productivity and land use efficiency [16,77]. The average land equivalent
ratio can increase by 20% to 30% compared with that in traditional intercropping [95–97].
Traditional cotton–peanut intercropping increases seed cotton yield by 16.9% and decreases
peanut yield by 5.6%, whereas alternate intercropping of cotton and peanut increases cotton
yield by 21% without sacrificing peanut yield. Therefore, the crop output value under
alternate intercropping was 4.5% higher than that under traditional intercropping, and
the net return exceeded that under traditional intercropping by 10% [1]. In maize and
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peanut alternate intercropping, annual yields of maize and peanuts increased by 19.68%
and 17.29% and net revenues increased by 23.14% and 13.99%, respectively, compared with
those in traditional intercropping [95]. Thus, compared with traditional intercropping,
alternate intercropping has been shown to increase crop productivity and economic return
without additional inputs [95,96], indicating it is a promising cropping system.

4.2. Soil and Rhizosphere Microbial Community

Alternate intercropping has been shown to have important effects on soil microbial
community structure and function [26,34] which may be associated with increases in nutri-
ent uptake [44,50] and water use efficiency, as well as increases in dry matter accumulation
and N translocation [31,45]. Compared with continuous cropping of maize and peanut,
cotton–peanut alternate intercropping increases soil carbon stocks in the 10–20-cm soil
layer by 20.11% (maize) and 34.19% (peanut) [95], and as a result, soil erosion and carbon
emissions decrease [98]. Thus, alternate intercropping may increase crop yields by improv-
ing soil properties [96,97], with increases in soil organic carbon levels, decreases in carbon
mineralization rates, and increases in nutrient availability [95].

Both rotation and intercropping directly affect soil and rhizosphere microbial commu-
nities [26,68]. Compared with monoculture, diversified planting can significantly increase
the diversity and composition of bacterial communities, with consequent effects on ecosys-
tem functioning [99,100]. Related analysis shows that alternate intercropping may increase
microbial richness [95,101] and dramatically alters the abundance and composition of
soil bacteria in the topsoil of both crops of a strip [102]. Therefore, increases in microbial
richness and diversity and improvements in microbial community structure may be other
reasons for the high productivity in alternate intercropping.

4.3. Resource Utilization

Alternate intercropping may provide distinct advantages above ground [95]. Well-
designed alternate intercropping can optimize the canopy microclimate and thus increase
aboveground photosynthetic production and assimilate partitioning [69,71,73,103]. Alter-
nate intercropping of cotton and peanut increases the uptake of nitrogen, phosphorus, and
potassium by 6.3, 11.5, and 7.3%, respectively. Net photosynthetic rate, chlorophyll content,
and maximum leaf area index of peanut increase by 7.2, 8.9, and 4.4%, respectively [1]. Strip
width can also significantly affect light capture and light use efficiency of intercropped
crops [69]. Therefore, appropriately increasing the width of strips to alleviate negative
effects on shorter crops in an intercropping system can effectively increase total productivity
and economic benefits [95].

Wang et al. [104] found that variation in the proportion of border rows is due to
changes in strip width between 1 and 4 m. Therefore, when the strip width is increased
to 5 m, the adverse effects of shading on the yields of shorter crops are eliminated. For
example, under maize and peanut alternative intercropping, compared with continuous
cropping, intercropping increases the value of soil plant analysis development (SPAD), net
photosynthetic rate, and the dry weight accumulation of maize, and the reduction in effects
of shading by wider strips and the alleviation of continuous cropping obstacles by rotation
increase the SPAD value and dry weight accumulation of peanut, which may explain the
high productivity in alternate intercropping [95].

4.4. Interactions under Alternate Intercropping
4.4.1. Three Types of Interactions

Plant root and shoot form a unit in which each part depends on and promotes and
restricts the other [105]. Under intercropping or rotation, microecological conditions change
above- and belowground parts [106,107], and the original root–shoot relation is altered.
Therefore, an inevitable series of changes occur to “rebalance” the root–shoot relation. In
the process of rebalancing, yield generally decreases when roots and stems are antagonistic
to one another, whereas yield increases when roots and stems are synergetic [95,101].



Agronomy 2023, 13, 413 8 of 17

Root–shoot interactions and the rebalance within a crop plant are also affected by the
intercropped crop. Specifically, root–root and shoot–shoot interactions occur between
different crop species under intercropping [108]. Therefore, different types of interactions
occur under alternate intercropping of cotton and leguminous crops [101,102]. Three types
of interactions under alternative intercropping of cotton and legumes can be identified,
namely “aboveground (shoot–shoot) interactions”, “belowground (root–root) interactions”,
and “root–shoot interactions”. Belowground interactions regulate nitrogen, phosphorus,
and potassium uptake by crops [59,103,109]. Aboveground interactions regulate the canopy
structure of both crops [110,111], and interactions between roots and shoots modulate the
rebalancing of root–shoot relations. The overall effects of the different interactions in
alternate intercropping of cotton and soybean are shown in Figure 2.
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Under alternate intercropping, interspecific aboveground interactions (Type 1) change
canopy micro-ecology (e.g., temperature, humidity, and CO2 concentration), resulting
in morphological and physiological alterations of aboveground parts. Interspecific be-
lowground interactions (Type 2) change the micro-ecology of root zones, especially by
affecting rhizosphere microorganisms, which results in changes in root morphology and
physiology. Intraspecific root–shoot interactions (Type 3) are also mediated by interspecific
interactions (Types 1 and 2) under alternate intercropping, which leads to “rebalancing” of
the root–shoot relation and ultimately regulates the formation of crop yield and quality.
Signal transmission is involved in the three types of interactions.

4.4.2. Root–Shoot Interaction

In an alternate intercropping system, the soil–air interface creates a spatial division
between above- and belowground interspecific interactions [103]. Root barriers can be
used to separate belowground interactions from those above ground [102,109,113]. Some
studies indicate that compared with single-crop plantings, root interactions are more
important than shoot interactions in determining the productivity of an intercropped
system [59,105], while other studies indicate that aboveground interactions have greater
effects than those below ground in intercropping [106,111]. In addition, effects on the
productivity of both root and shoot interspecific interactions vary according to crop species
combinations [103,114] and are further modified by the availability of environmental
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resources [109,111]. Therefore, it is important to achieve a thorough understanding of the
effects of above- and belowground interactions on plant growth in order to increase the
advantages of alternate intercropping.

Alternate intercropping optimizes root–shoot relations by combining rotation with
intercropping [95]. Root absorption and photosynthetic production capacity improve syn-
ergistically [111], indicating a rebalance in the root–shoot relation, which leads to further
increases in yields and benefits of intercropping systems [103,105]. With alternate inter-
cropping of cotton and peanut, both leaf photosynthesis and root absorption of nitrogen,
phosphorus, and potassium increase greatly [102]. The rhizosphere bacterial community
is also significantly enriched under alternate intercropping [59,115], and there is feedback
from changes in rhizosphere bacterial communities on aboveground processes [106]. As a
result, alternate intercropping rebalances root–shoot relations to ultimately improve system
productivity, compared with traditional rotation or intercropping [103,109]. Under alterna-
tive intercropping, soil microorganisms and canopy microclimate are changed to a greater
extent than those in the traditional cropping mode [95,101]. Improvements in rhizosphere
microbial community structure and function and changes in canopy microclimate affect
plant nutrition [106,109], growth and development [103], and canopy photosynthesis and
assimilate distribution [111]. As a result, root–shoot relations are rebalanced under alternate
intercropping, leading to improvements in crop yield and quality [14,16]. Thus, rhizosphere
microorganisms affect root–shoot interactions and have important roles in achieving the
high yields obtained with alternate intercropping. The importance of rhizosphere microbial
communities should be considered when designing sustainable cropping systems [95].
Therefore, for a monocultured or traditionally intercropped crop, there exists a balancing
of root–shoot relations as a result of root–shoot interactions. However, under alternate
intercropping, the original root–shoot coordination is broken by interspecific aboveground
interactions and interspecific belowground interactions, resulting in a new balancing or
rebalancing of the root–shoot relationship.

4.4.3. Signaling in Interactions

Transmission of signal molecules is important in the three types of interactions under
alternate intercropping [116,117]. Signal molecules include microbial antibiotics, volatile or-
ganic compound (VOC) and quorum-sensing (QS) polypeptides [118], and small and
medium organic molecules and nucleic acids that transmit information in the xylem
and phloem [119]. The compounds can act as both intraspecific and interspecific sig-
nal molecules. When the aboveground part of a crop plant is subject to stress, signal
substances are generated and transmitted to roots to promote nutrient absorption [120–122].
Roots then transmit absorbed nutrients to the aboveground to alleviate the stress, improve
the crop growth environment, and form a balanced system of nutrient circulation [117].

In addition, signal regulation of root–shoot interactions is also reflected in the senes-
cence of crop leaves [123]. In the premature senescence of cotton leaves caused by potas-
sium deficiency, regulation is primarily accomplished by a root–shoot feedback signal that
changes potassium absorption by roots followed by feedback to leaves [124]. Grafting un-
transformed (wild-type) tobacco scions onto the roots of transgenic plants that can produce
many cytokinins does not prevent normal leaf senescence of the wild-type scions [125].
This result indicates that the shoot regulates the activity of roots, followed by root feedback
to the shoot to rebalance the root and shoot relation [117]. According to girdling and graft-
ing experiments, the regulation of senescence of canopy leaves by roots primarily occurs
through the transport of cytokinins and other hormones as signal molecules from roots
to the canopy [120,123]. Osterlund et al. [126] also found that Arabidopsis ELONGATED
HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light,
is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate up-
take. Mobile HY5 coordinates light-responsive carbon and nitrogen metabolism and hence
shoot and root growth. Therefore, signal molecules have important roles in root–shoot
interactions by regulating shoot–root rebalancing. Thus, under intercropping or rotation,
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but especially under alternate intercropping, signal molecules may have important roles in
intraspecific root–shoot interactions and in interspecific root–root or canopy-canopy inter-
actions. The participation and regulation of signal molecules promote nutrient rebalancing
between shoots and roots.

5. Discussion and Conclusions

Intercropping and rotation are both effective ways to improve crop productivity and
ecological benefits. Rotation can increase soil nutrient and organic matter content, change
soil microbial diversity and its ecological function, affect root morphology and function,
and then regulate the growth and development of aboveground canopy and the formation
of yield and quality [1,17,26]. Intercropping, on the one hand, changes the root zone microe-
cology, and affects root morphology and function through root interspecific interactions of
intercropping crops; on the other hand, it changes the canopy microclimate, affects the plant
type and canopy structure of crops, and regulates the aboveground photosynthetic produc-
tion and assimilate partitioning and crop yield formation [14,16,59,77]. Intercropping and
rotation break the original root–shoot relationship by changing the root–shoot physiological
ecology and achieving a new coordination of root and shoot, that is, “rebalancing”, through
root–shoot interaction, and thus the crop yield and quality formation are regulated by
the rebalancing [101]. The new alternate intercropping mode characterized by wide strip
intercropping of two crops and rotation of annual planting positions has the functions of
intercropping and rotation, which can more effectively coordinate the root–shoot relation-
ship and promote the formation of crop yield and quality through root–shoot rebalancing
(Figure 2).

Rotation and intercropping, and especially their combination in alternate intercrop-
ping, can fully utilize natural resources, improve productivity, and will play increasingly
important roles in future agricultural production and ecosystems [96,97]. The research on
them will also shift from focusing on the aboveground to both the above- and belowground
parts, and from focusing on the interaction between the aboveground canopy to the interac-
tion between the root zone and the root canopy. Advanced technologies and means such
as molecular biology and smart agriculture are also bound to be applied to crop rotation
and intercropping.

Of course, limitations and corresponding solutions regarding alternate intercropping
need investigation. Under a climate change scenario, crops will suffer different abiotic stress
conditions such as salt, heat, and drought. We can cultivate varieties with strong stress
resistance for intercropping and rotation [127–129]. Selecting crops with strong abiotic
resistance such as cotton and sorghum (Suaeda salsa or Medicago sativa) for rotation or
intercropping can alleviate salinity damage [78]. Developing shade-tolerant cotton varieties
and adopting cotton–fruit intercropping can alleviate the stress of high temperature on
cotton to a certain extent. Under limited water or nitrogen fertilizer input, the temperature
and precipitation in a year vary greatly. In this case, it is necessary to properly adjust
the intercropping time, strip width, and crop variety. A crop model can be adopted to
manage and mitigate the climate risk under intercropping [130]. Based on practical needs
and development trends, the following aspects should be paid particular attention to in
the future.

5.1. Modeling of Intercropping and Rotation

Crop modeling is an effective tool to manage and reduce the climate risk of planting
systems [130–132]. On farmland and a certain regional scale, it can quantify the above-
ground yield advantage of intercropping (rotation) as well as the distribution and utilization
of belowground resources so as to achieve a wide range of application assessments and
reduce the risk of climate change [110]. At present, the internationally recognized mod-
els related to intercropping mainly include the INTERCOM model, plant structure and
function model (FSPM), and wheat/cotton model [131,132]. Based on the crop growth
and development process, these models can be combined with intelligent agricultural
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technology to achieve accurate simulation of interspecific and intraspecific interactions,
crop growth and development, and yield formation in intercropping and rotation sys-
tems. Therefore, modeling of intercropping or rotation should be studied and developed
according to the needs.

5.2. Root–Shoot Signal Transmission

It is important to deepen the study on the release and action mechanism of root exu-
dates in the intercropping system, the dynamic process of the rhizosphere for the efficient
utilization of nutrients [133], and especially the study on the microbial diversity and func-
tion of the rhizosphere [118]. It is necessary to study the signal molecules involved in the
regulation of root–shoot interaction under intercropping or rotation and their mechanisms,
so as to provide a theoretical basis for coordinating and balancing root–shoot relation-
ships [117]. It is also necessary to study the role and mechanism of signal molecules in the
intercropping and rotation system in the “aboveground interaction system”, “belowground
interaction system”, and “root–shoot interaction system” under the background of global
climate change so as to provide basis and support for the design of agricultural ecosystems
that adapt to climate change.

5.3. Integration of Cultivar, Agronomy, and Machinery

Selection and utilization of appropriate crop types or combinations of cultivars can
strengthen exchanges and cooperation among crops and reduce interspecific competi-
tion [114]. The operation of intercropping and rotation is much more complicated than
monocropping, and sustainable development can be achieved only by mechanization. At
present, a strip intercropping of corn and soybean with a land equivalent ratio of more than
1.5 has been widely demonstrated in China [16,77]. The unit yield of corn is equivalent to
that of single cropping with an extra harvest of soybean, and it is thus being considered
of great significance for easing the conflict between grain and oil crops for land [16]. The
unit yield of corn is equivalent to the unit yield of a single crop, and there is additional
soybean harvest in the system. Therefore, it is considered to be of great significance for
easing the land conflict between food and oil crops. However, there are disadvantages
related to mechanization and weed control. In order to give full play to the potential of
increasing production and efficiency of the technology, measures should be taken to make
the system realize the integration of machinery and agronomy. Intelligent agricultural tech-
nologies such as intelligence, digitization, and geospatial information technology should
be introduced into the research and practice of intercropping and rotation so as to promote
the sustainable development of intercropping and rotation [128].

In conclusion, intercropping and rotation affect intraspecific root–shoot interactions as
well as interspecific root–root and shoot–shoot interactions. As a result, root–shoot relations
are rebalanced, and crop yields and quality are regulated by the rebalancing. Alternate
intercropping is a typical practice that regulates and improves yield and efficiency through
three types of interactions to rebalance root–shoot relations. Future research on alternate
intercropping should further reveal the interaction mechanisms of the competition and the
exchange of aboveground and belowground resources. It is also necessary to further study
how to match cotton with intercropping crop varieties and optimize agronomic measures
such as sowing date, plant density, fertilization, and chemical regulation. With this infor-
mation, the optimal composite planting scheme can be designed to effectively adjust the
composite population structure, make better use of the spatial–temporal niche differences
between intercropped crops, meet the special needs for light and heat resources, improve
resource utilization efficiency and crop productivity, and thus provide new theoretical and
technical support for the sustainable development of crop production.
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