agronomy

Article

Utilisation of Deep Learning with Multimodal Data Fusion for
Determination of Pineapple Quality Using Thermal Imaging

Maimunah Mohd Ali 1@, Norhashila Hashim 12*(, Samsuzana Abd Aziz 1'? and Ola Lasekan 3

check for
updates

Citation: Mohd Ali, M.; Hashim, N.;
Abd Aziz, S.; Lasekan, O. Utilisation
of Deep Learning with Multimodal
Data Fusion for Determination of
Pineapple Quality Using Thermal
Imaging. Agronomy 2023, 13, 401.
https://doi.org/10.3390/
agronomy13020401

Academic Editors: Daniel Garcia
Fernandez-Pacheco, José Miguel
Molina Martinez and Dolores

Parras-Burgos

Received: 26 December 2022
Revised: 20 January 2023
Accepted: 27 January 2023
Published: 30 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia,
Serdang 43400, Selangor, Malaysia

SMART Farming Technology Research Centre, Faculty of Engineering, Universiti Putra Malaysia,

Serdang 43400, Selangor, Malaysia

Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia,
Serdang 43400, Selangor, Malaysia

*  Correspondence: norhashila@upm.edu.my; Tel.: +60-3-97694336; Fax: +60-3-89466425

Abstract: Fruit quality is an important aspect in determining the consumer preference in the supply
chain. Thermal imaging was used to determine different pineapple varieties according to the
physicochemical changes of the fruit by means of the deep learning method. Deep learning has
gained attention in fruit classification and recognition in unimodal processing. This paper proposes a
multimodal data fusion framework for the determination of pineapple quality using deep learning
methods based on the feature extraction acquired from thermal imaging. Feature extraction was
selected from the thermal images that provided a correlation with the quality attributes of the fruit in
developing the deep learning models. Three different types of deep learning architectures, including
ResNet, VGG16, and InceptionV3, were built to develop the multimodal data fusion framework for the
classification of pineapple varieties based on the concatenation of multiple features extracted by the
robust networks. The multimodal data fusion coupled with powerful convolutional neural network
architectures can remarkably distinguish different pineapple varieties. The proposed multimodal data
fusion framework provides a reliable determination of fruit quality that can improve the recognition
accuracy and the model performance up to 0.9687. The effectiveness of multimodal deep learning
data fusion and thermal imaging has huge potential in monitoring the real-time determination of
physicochemical changes of fruit.

Keywords: deep learning; thermal imaging; fruit quality; convolutional neural network; multimodal
data fusion

1. Introduction

Fruit is partly responsible for human health, as it provides an abundant source of
vitamins, minerals, fibres, and nutrients. Pineapple (Ananas comosus) is one of the major
tropical fruits worldwide and possesses high nutritional composition, pharmacological
content, and excellent flavour, as well as growing commercial value [1]. The global pineap-
ple production reached 28.18 million metric tons in 2019, where Costa Rica ranked first as
the top pineapple producer worldwide, generating about 3.33 million metric tons [2]. The
huge demand for pineapple fruit has further aided various research studies on the posthar-
vest handling and grading/sorting processes, as well as fruit production and cultivation.
Efficient postharvest handling should start with producing excellent quality fruits upon
harvest, with appropriate measures along the commercial chain until consumption [3].
Typically, the fruit quality is monitored based on physiological growth, where the fruit
continues to ripen even after harvesting. Due to the nature of conventional methods that
are time-consuming and destructive, recent advances in non-destructive techniques are
being developed as an alternative to solve this issue [4]. Recent advances acquired from
imaging-based techniques employ multimodal data fusion based on deep learning, which
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is beneficial in various food and agricultural applications, since abundant information is
retrieved to obtain accurate results. The accurate, rapid, and non-destructive determination
of physicochemical changes in fruit can provide a guideline to obtain a better quality
of pineapples.

Imaging-based techniques have been developed as one of the non-destructive means
to substitute the conventional methods that depend on pattern matching by comparing the
input image with reference data to compute the correlation [5]. Thermal imaging has been
applied in various food and agricultural applications, including fruit detection by means of
differentiating the fruit based on the temperature or thermal properties [6]. Furthermore,
thermal imaging can generate the simultaneous monitoring of the dynamic differentiation
of temperature by providing a high correlation with the internal quality attributes of the
fruit [7]. Doner et al. [8] investigated the effect of ohmic thawing on the temperature
distribution of minced beef using thermal imaging. Badia-Melis et al. [9] explored the
potential of thermal imaging in predicting the surface temperature of apples in two dif-
ferent packaging boxes with an error of 0.41 °C (plastic boxes) and 0.086 °C (cardboard
boxes), respectively. Wang et al. [10] evaluated the potential of a thermal imaging system
to investigate the temperature distribution of stem lettuce slices during microwave freeze
drying and pulse-spouted microwave freeze drying. In addition, Xu et al. [11] evaluated
the temperature distribution of rapeseed using thermal imaging during dielectric drying.
Manickavasagan et al. [12] utilised the thermal imaging technique to classify eight differ-
ent wheats that obtained classification accuracies of 95% using the quadratic discriminant
method. Jiang et al. [13] reported the temperature distribution of banana chips using ther-
mal imaging during microwave drying. The findings demonstrated that the temperature
distribution of the samples was uniform during the sublimation drying phase. Ma et al. [14]
investigated the reaction of plasma-activated water on the decay and quality of Chinese
bayberries using the thermal imaging technique. Mohd Ali et al. [15] reported the appli-
cation of thermal imaging in predicting pineapple quality, which achieved a coefficient
of determination (R?) of 0.94 using a partial least squares model. This study continued
further using different machine learning classifiers in order to discriminate the pineapple
varieties that obtained the highest classification accuracy of 100% using support vector
machines [16].

Deep learning has been extensively applied to solve various classification tasks due to
its ability to deal with large datasets in various food and agricultural sectors. A recent work
performed by Guo et al. [17] utilised thermal imaging to detect bruises on strawberries
using a convolutional neural network (CNN) with an accuracy of 98%. Xie et al. [18]
reported an application of deep learning that utilised five different CNN models to identify
defective carrots with the highest accuracy of 97%. Benmouna et al. [19] developed a
CNN model to classify the ripening stages of apples with a high accuracy rate of 96%.
Lin et al. [20] employed a deep convolutional neural network (DCNN) model for the
discrimination of three different types of rice kernels. The findings signified that the DCNN
model obtained the highest classification accuracy of 99%. Assadzadeh et al. [21] employed
deep learning segmentation for predicting grain quality. The results obtained a great
prediction performance, with a R? of 0.99 for sound grain. Apart from that, Zhou et al. [22]
investigated the application of near-infrared spectroscopy coupled with deep learning
for the classification of six different types of powdery food, which obtained the highest
accuracy of 98%.

Multimodal data fusion is one of the emerging methods in deep learning, which utilises
knowledge from one modality that supports and reinforces another [23]. The fundamental
concept of multimodal data fusion is to extract features from different layers of combined
CNN models to further enhance the capability of the classifier model. The multimodal
deep learning method allows retrieving the information from one modality obtained by
the data features with minimal human engineering [4]. The utilisation of multimodal data
learns representations from different modalities because of the information embedded in
the dataset in order to enhance the classification accuracy [23,24]. Although considerable
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effort has been made to investigate the chemical and physical characteristics of pineapples,
to date, no studies have been conducted to develop classification tasks by developing
multimodal data fusion. Deep learning can be deployed in a realistic setting such that
feature extraction can produce different classification rates and boost the model accuracy.

In this case, multimodal input data comprised of thermal images are fed into the
network architecture to create data features for desired applications. In multimodal data
fusion for pineapples, the quality changes of the fruit, along with feature extraction, should
be considered when developing a deep learning network model. Utilising the sensitivity
of the thermal imaging approach, the performance of multimodal deep learning could
leverage the model performance in classifying pineapple varieties according to the physico-
chemical changes of the fruit. Thermal imaging integrated with the powerful ability of deep
learning offers a non-contact way of generating the temperature distribution of the fruit
sample. As a branch of artificial intelligence, deep learning is capable of analysing a huge
amount of data by providing more robust analyses with high performance in the thermal
information. In this sense, the deep learning approach provides efficient and precise results
compared to conventional and routine laboratory analyses. Hence, the aim of this study is
to develop a multimodal data fusion framework based on a deep learning approach where
multi-network architectures were combined with the feature extraction of pineapples using
the thermal imaging technique.

2. Materials and Methods
2.1. Experimental Design

A total of 1080 pineapple fruits from MD2, Morris, and Josapine varieties were har-
vested from an orchard in Simpang Renggam, Johor, Malaysia. The fruit samples were
stored at three different storage temperatures: 5, 10, and 25 °C and a relative humidity of
85-90%. A handheld thermal imaging device (FLIR E60, FLIR systems, King Hills, United
Kingdom) was used to obtain the thermal images ranging from 0.7-1.4 pm with an infrared
resolution of 320 x 240 pixels and temperature control of —20 °C to +650 °C. For each
sample, three different sides of the fruit were acquired. In the case of sampling, the thermal
images were obtained that were used for discrimination using deep learning methods,
including ResNet, VGG16, InceptionV3, and multimodal data fusion, respectively.

2.2. Data Acquisition

For the thermal imaging acquisition, the setting of the camera device used was FLIR
E60 with integrated 3.1 megapixels resolution, 320 x 240 pixels array size, and thermal
sensitivity <0.05 °C. The image acquisition of thermal images was conducted in a laboratory
room at an ambient temperature. The camera device was positioned perpendicularly at
40 cm above the surface of the fruit. The images were captured and connected to a computer
for storing the thermal images. A schematic diagram of image acquisition using the thermal
imaging system is illustrated in Figure 1. The image acquisition process was repeated for
three replications, which obtained a total of 3240 thermal images. The images stored in the
dataset were gathered in order to increase the input data to the neural network and reduce
the model overfitting.

The image processing procedures were conducted to extract the information from the
thermal image before input into the deep learning models. Firstly, the thermal image of
pineapple was converted to a grayscale image. The image processing procedures comprised
background removal, which was segmented from the thermal image using the thresholding
technique to select the region of interest. The Otsu thresholding technique was used to
obtain the threshold value to convert the grayscale image into a binary image. Feature
extraction was selected for each region of interest image based on the pixel intensity and
shape feature values of the thermal images. All feature values are described in pixel count.
The image processing and analysis were performed using MATLAB software (Version
R2020a, The MathWorks, Natick, MA, USA).
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Figure 1. Schematic diagram of image acquisition using the thermal imaging system.

2.3. Fruit Quality Determination

After filtering through Whatman paper no. 1, the soluble solids content (SSC) value
was determined from the pineapple juice using a digital refractometer (Pal-1, Atago Co.,
Tokyo, Japan). The SSC value was computed from the average of three readings and
expressed as a percentage. Using a penetrometer (GY-1, G-tech Co., Ltd., Guangdong,
China) with a 3.5 mm diameter plunger tip, the firmness of the pineapple flesh was
assessed. Three different areas of the pineapples, including bottom, middle, and top, were
evaluated for firmness. To get an average value from the samples, maximum force was
inserted into the pineapple flesh. Oven drying at 105 °C was used to measure the moisture
content until a consistent weight was achieved. In a metal dish, a pineapple cube of 3 cm?
was dried in an air-drying oven. The percentage based on a wet basis was measured to
compute the moisture content.

2.4. Multimodal Data Fusion

After image pre-processing and analysis, the thermal images were integrated for
multimodal data fusion. The data fusion based on the selected image parameters was fed
into the deep learning network architecture for the classification of the pineapple varieties.
Deep learning network architecture signifies a significant role in establishing a multimodal
data fusion framework. The advantage of multimodal data fusion is associated with its
capability in representation learning, as it could transform raw multimodal input into
higher input data. In this sense, the network architectures do not require complicated
pre-processing procedures in order to extract the specific features from each model network.
Multimodal data fusion is designed by concatenating the extracted features from three
CNNs of ResNet, VGG16, and InceptionV3, which were connected to a convolutional layer
for the classification task. These state-of-the-art CNN architectures used convolution and
pooling operations in several layers with different widths, depths, and cardinality [23]. The
convolutional layer assists the network to learn from the concatenated features extracted
from those three CNN architectures [25]. In this way, the CNN models could learn the
integrated features that are beneficial in the classification tasks. Additionally, it could also
be implied that representation learning is significantly faster than a network trained by a
single model [26]. Compared with a single model, the accuracy of multimodal data fusion
is improved by enhancing the interpretability of the model recognition results. Figure 2
shows the multimodal data fusion of the deep learning framework for the determination of
pineapple varieties.
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Figure 2. The multimodal data fusion of the deep learning framework.

The same dataset was applied to train the multimodal networks in which three outputs
from these three architectures were used as the input data. The utilisation of multimodal
data fusion could enhance the classification accuracy by using quality attributes information
of the fruit to assist in the recognition task. The recognition of the fruit varieties was
defined based on the combination of the fruit information using the multimodal data fusion
framework of the deep learning method. The properties of the CNN network architectures
and multimodal data fusion are presented in Table 1. Among the deep network architectures
used, multimodal data fusion has the highest number of parameters, whereas ResNet has
the lowest, with approximately 173.8 million and 11.5 million parameters, respectively. The
deep learning network architecture was developed using the framework Keras Version
2.1.4 [27] with TensorFlow Version 1.4 [28].

Table 1. The properties of the CNN network architectures and multimodal data fusion.

Network Architecture Number of Parameter (Million) Depth
ResNet 11.5 18
VGG16 138.4 16
InceptionV3 23.9 48
Multimodal data fusion 173.8 82

The image datasets were collected for classification tasks to facilitate the determina-
tion of the training and testing processes. During the training and testing processes, the
proposed network architectures could automatically extract the image features based on
fruit labelling. The sample dataset was randomly divided into a training set and testing set,
respectively. In order to assess the performance of the proposed deep learning network
architecture for the detection of pineapple varieties, a total of 3240 images was split into
80%, 10%, and 10% for training, validation, and testing, respectively. A stratified sampling
was used with an 80:10:10 split ratio, which attempted to keep the same percentages of
classes in each split to obtain more representative results. It should be noted that the
pineapple surface was fixed in the centre of the sample holder in such a way that the region
of interest information was extracted based on the position of the fruit when the thermal
image was acquired. The processor for the subsequent training and testing processing
platform was built using an Intel® Core™ i5 vPro with 32GB DDR4 memory and a 2TB
hard disk.

2.5. Data Analysis

The multimodal data fusion and three single CNN models were evaluated based
on precision, recall, F1-score, and accuracy. Precision is defined as the ratio of correct
prediction out of the total prediction scores [29]. Recall is denoted as the fraction of
the correct prediction that the samples can be classified accurately out of all the actual
samples per class [30]. Meanwhile, F1-score is described as the mean recall and precision
evaluation that signifies the balance between the classifier from both metrics [31]. In the
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fruit industry, it is worth mentioning that recall and precision should be greatly considered
due to the quality and safety precautions in obtaining high-quality products. Accuracy
is denoted as the fraction of correctly categorised samples among the overall amount of
whole samples [32]. In this case, accuracy offers objective decisions for classification tasks
with a stable number of testing datasets for each category. These performance metrics are
generally used in deep learning applications to analyse the performance of the network
architectures for both the training and testing datasets, as described in Equations (1)—(4):

Precision = 7TPTFP @
Recall = 7TP1PFN (2)

F1 — score = 2% 3)
Accuracy = g5 g :[ gl\lj FFN @)

where TP (true positive) are the sample datasets categorised by the neural network and
ground truth, FP (false positive) is not related to the ground truth in which the sample
datasets are categorised by the neural network only, and FN (false negative) is used to
count the negative number of sample datasets.

3. Results and Discussion
3.1. Measurement of Fruit Quality

The physicochemical properties measured in the training and testing datasets from
three different pineapple varieties are presented in Table 2. The highest firmness values
were obtained by Morris for both the training set (1.47 N) and the testing set (2.47 N),
respectively. These findings were in agreement with Siow & Lee [33], with the firmness
values of the pineapple fruits ranging from 0.20 to 3.50 N. A low firmness value in pineapple
was observed in the testing set, which was obtained by Josapine at 0.63 N. For the training
set, the highest SSC values were obtained by MD2 (13.50%), whereas the highest SSC value
of 12.50% was achieved by Josapine for the testing set, respectively. The research work
conducted by Padréon-Mederos et al. [34] revealed an increasing trend in SSC values of
pineapples ranging from 11 to 15%. On the contrary, the highest moisture content values
were obtained by Morris (91.75%) for the training set and MD2 (88.78%) for the testing set,
respectively. The range values of the physicochemical properties of different pineapple
varieties were sufficiently large in relation to the training and testing sets. The training sets
obtained the highest range compared to the testing sets for MD2 and Morris, which could
be utilised to enhance the performance and classification accuracy of the model.

Table 2. Physicochemical properties measured in the training and testing sets from three pineap-
ple varieties.

Variety Dataset SSC (%) Firmness (N) Moisture Content (%)
Josapine Training set 1230 £ 1.16 1.01 £ 0.06 90.76 4= 0.68
Testing set 12.50 £ 0.95 0.63 &+ 0.52 87.27 +0.39
MD2 Training set 13.50 +1.48 1.43 +0.58 85.72 £ 0.84
Testing set 12.10 £ 0.26 1.01 £0.05 88.78 £ 0.89
Morris Training set 8.20 = 0.54 1.47 +0.93 91.75 £ 0.01
Testing set 9.70 £ 0.42 247 £0.15 70.72 +1.94

Results are presented as the mean = standard deviation.
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3.2. Evaluation of Trained Networks

The proposed multimodal data fusion was trained using a training dataset of 2592 thermal
image samples. The hyperparameters used in the multimodal data fusion CNN model
based on the optimal classification accuracy are shown in Table 3. The proposed multimodal
data fusion model was validated after the tenth training iteration. The multimodal data
fusion was trained by a stochastic gradient descent with momentum (SGDM) and cross-
entropy loss function. In this network, the initial learning rate was 0.0001; a batch size of
25 with the maximum epoch was set to 100, which showed the effectiveness of the model
during training. These values were selected based on the hardware limitations and several
trials that reported better results using these parameter settings.

Table 3. The hyperparameters in the multimodal data fusion CNN model.

Hyperparameters Values
Classes 3
Batch size 25
Learning rate 0.0001
Epochs 100
Loss function Cross-entropy
Momentum 0.9
Weight decay 0.0005
Optimizer Stochastic gradient descent with momentum

In order to train all the deep learning models by optimising the biases and weights,
the SGDM algorithm was applied, with cross-entropy as the loss function. In this study,
there was no overfitting, since the dropout layer was added, which randomly set the output
features of a layer to zero. Furthermore, it was enough to train the multimodal data fusion
for 100 epochs to avoid data overfitting. This was because the training accuracy did not
converge and the training loss did not change significantly after 100 epochs. Specifically, the
multimodal data fusion accuracy did not significantly influence the relationship between
the image size and the model’s end inference, which could influence the accuracy of the
fruit classification. The uncertainty factor associated with the classification accuracy from
the multimodal data fusion was determined based on the number of classified image
datasets [35].

The comparison in accuracy and loss for the training and validation performance of
deep learning models is demonstrated in Figure 3. The trend observed in the training and
validation results is shown in the estimation of each deep learning model on the testing
dataset. For the training dataset, the multimodal data fusion outperformed the other
deep learning models with an accuracy of 94.76% and loss of 0.55, respectively. ResNet,
InceptionV3, and VGG16 also achieved promising results, with an accuracy and loss of
87.23-92.45% and 0.61-0.80, respectively. Likewise, a similar trend was also demonstrated
in the validation dataset. The multimodal data fusion obtained the highest accuracy of
92.84%, followed by VGG16 (90.58%), InceptionV3 (92.84%), and ResNet (85.06%). In
this case, the accuracy obtained from the multimodal data fusion according to feature
concatenation distinctly denoted the highest performance compared to the single deep
learning models. The multimodal data fusion was more stable compared to the single
CNN models. During the learning process, the irrelevant portion of a task was prone to
noise, which can enhance the generalisation ability of the models. In this case, multimodal
data fusion can improve the model performance to a certain degree that has proven to be
superior to the single CNN models. By optimising the shared portion of an epoch twice
during fine-tuning, the training loss of the models declined rapidly and became more stable.
By comparing different deep learning models with the same hyperparameters, it could
determine the superiority of the models under specific configurations. To better understand
how the deep learning models are generalised for other issues and domains may be helpful
in understanding features training or fine-tuning.
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Figure 3. Comparison in accuracy and loss for the training and validation performance of deep
learning models.

In terms of model training, the proposed multimodal data fusion has the longest com-
putation time due to the complexity of the model network. Despite using feature datasets
based on a single CNN architecture, multimodal data fusion utilised a new recognition
model that does not require the execution of finding features from the image datasets. As a
result, the performance of multimodal data fusion improved the classification accuracy of
the model, since it offers high accuracy rates for the fruit classification task. Additionally,
the results demonstrated a strong performance of multimodal data fusion compared to each
unimodal architecture designed in the fine-tuning phase. It is vital to choose the features
taken from the multimodal data fusion despite having a small number of labelled datasets
available during the training process [36].

The comparison of the deep learning models in terms of the consumed time for training
is displayed in Figure 4. The multimodal data fusion obtained the longest consumed
time (78.3 min) for the training, considering the fact that the model comprised feature
concatenation of three different CNN architectures. InceptionV3 took the shortest training
time with 33.7 min, followed by VGG16 (40.9 min) and ResNet (61.4 min), respectively.
Multimodal data fusion has a huge number of parameters, which causes a long training
time, slow convergence speed, and vast storage capacity in practical applications. The
weights of the convolution layers are pre-trained by multimodal data fusion in order to
avoid a long training time. In this case, dropout is applied to reduce the training time and
control overfitting due to a large number of parameters. It should be emphasised that the
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model training time of the deep learning models relied on hardware resources that could
be shortened by using an advanced graphics processing unit (GPU).

Consumed time for training

Multimodal data fusion

InceptionV3

VGG16

ResNet

"]

o

10 20 30 40 50 60 70 80 90
Time [min]

Figure 4. The consumed time for training.

3.3. Modal Comparison of Different Deep Learning Models

Different deep learning network architectures may vary in terms of feature recognition.
By fusing these multimodal networks, a high classification accuracy could be achieved
compared to a single network. The multimodal data fusion, along with the three CNN
architectures, including ResNet, VGG16, and InceptionV3, was developed for fruit quality
detection as the basis for the deep learning approach. The methods for the network archi-
tectures are evaluated under the same parameter settings and configurations. Based on the
findings, it is noted that the proposed multimodal data fusion method has a high accuracy
compared to other single models. Figure 5 shows the confusion matrices associated with the
correct classification rate (green) and misclassification rate (pink) by different deep learning
models. It was observed that the classification results were consistent for MD2 with 100%
accuracy for all deep learning models. For multimodal data fusion, it can be seen that MD2
and Josapine were correctly distinguished with a classification rate of 100%, respectively.
InceptionV3 and VGG16 also performed well with 99% and 98% accuracies for correctly
classified Josapine. On the other hand, ResNet obtained the lowest accuracy compared to
the other deep learning models, with 92% accuracy for correctly classified Morris.

The performance comparison of the multimodal data fusion and single CNN archi-
tectures in terms of precision, recall, F1-score, and accuracy is illustrated in Table 4. The
performance metrics have been evaluated for the estimated labels and ground truth labels
used in the pineapple datasets. In terms of precision, the model performance in ascending
order was multimodal data fusion (0.9495), VGG16 (0.91110), InceptionV3 (0.9049), and
ResNet (0.8932). For recall, multimodal data fusion obtained the highest value of 0.9580,
followed by InceptionV3 (0.8963), ResNet (0.8812), and VGG16 (0.8555), respectively. Like-
wise, the other performance metrics such as Fl-score and accuracy showed promising
results, with the highest performance values obtained by multimodal data fusion for the
classification of pineapple varieties. From the results, multimodal data fusion outperformed
the other single CNN architectures in relation to the performance metrics, which were
based on the concatenation of the features. Sa et al. [37] proposed a multimodal deep
CNN using near-infrared and RGB images for the identification of sweet peppers, which
provided a Fl-score of 0.838 by considering both the precision and recall performances.
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Figure 5. The confusion matrix of deep learning models for (a) ResNet, (b) VGG16, (c) InceptionV3,
and (d) multimodal data fusion.

Table 4. Performance metrics comparison of the deep learning models.

Deep Learning Models Precision Recall F1-Score Accuracy
ResNet 0.8932 0.8812 0.9205 0.8385
VGG16 0.9110 0.8555 0.9299 0.8999
InceptionV3 0.9049 0.8963 0.9258 0.9256
Multimodal data fusion 0.9495 0.9580 0.9473 0.9687

Generally, the conventional method for feature extraction is obtained based on the
low-level and high-level features. For this reason, the relevant information related to the
pineapple samples was correlated depending on the discriminative features of the fruit in
terms of shape and pixel value features. The deep learning-based approach was performed
to identify the significant feature extractions with minimal data pre-processing steps. The
efficacy of the deep learning approach was suitable for related classification tasks in order
to extract the optimal features which described the low- and high-level information [25].
Apart from that, the feature concatenation of multimodal data fusion achieved a better
performance compared to the single CNN deep learning models, which could improve the
interpretability of the required tasks. Through this multimodal data fusion, the performance
accuracy of fruit detection was significantly improved by employing three different network
models for monitoring the quality changes of pineapple fruit.
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3.4. Performance of Multimodal Data Fusion

Among all the model networks, the multimodal data fusion outperformed the single
CNN architectures (ResNet, VGG16, and InceptionV3). Transfer learning was not per-
formed due to the multimodal nature of the input image dataset, which was different
from the available pre-trained models. Apart from that, overfitting might occur because of
the depth of the CNN models that contributed to the strongly adjusted training variables
based on the image sizes [4]. These results are in agreement with the studies conducted
by Ganesh et al. [38], who developed multimodal segmentation based on the mask region-
based CNN method using orange images for fruit detection in the orchard. Zhang et al. [39]
proposed a multimodal fusion using a neural network combined with the weight informa-
tion of fruits in terms of the shape, colour, and texture. Gené-Mola et al. [6] developed a
fruit detection system with multimodal images of apples using the radiometric ability of
Kinect v2 based on the depth, colour, and range-corrected infrared intensity dataset.

Over the past years, the thermal imaging technique has emerged as a new modality
for the quality and safety inspection of various food and agricultural products [40]. The
changes in the morphological properties can be determined with thermal images that
deliver high sensitivity and high correlation with the internal attributes of the fruit. The
thermal images were correlated based on the morphological changes of the fruit during stor-
age when building the multimodal data fusion framework. The proposed multimodal data
fusion can be employed for real-time data collection and image analysis from different data
representations. Generally, different fields vary in terms of ranges and distributions due to
the diverse domains obtained from multiple types of representations and descriptions of
multimodal data [41]. In a real-world application, multimodal data fusion has different
structures either in the form of unstructured or high-dimensional data. The multi-layer and
deep feature representations of multimodal data fusion are explored to fuse the network
mechanism with the qualitative information from different storage treatments in relation
to the quality attributes of pineapples. The deeper layer could learn high-level features
based on the previous layers by generating them from the feature image datasets of each
group [42]. For this reason, the last fully connected layers of the trained network achieved
from the feature visualisation signify a better representation of the different mechanisms
associated with the pineapple varieties.

The performance of the multimodal data fusion was better than the single CNN
architectures on all evaluation metrics, which was also improved via unpaired training
datasets, as well as multiple modalities. The effectiveness of multimodal data fusion could
further learn the feature representation through the conversion between modalities during
the training process in order to enhance the encoding paths [23]. Driven by the feasibility
of non-destructive techniques and the adaptability of the model network, the fusing of
multimodal data features enhanced the fruit classification tasks [24]. Ahn et al. [5] designed
multimodal architectures from the hyperspectral images to select feature representation
according to the deep neural networks in monitoring the food nutrient estimation. It
is worth highlighting that the deep learning architectures are useful in multimodal data
recognition tasks. In another study, Garillos-Manliguez & Chiang [4] suggested multimodal
classification using a deep CNN based on the feature concatenation of hyperspectral and
RGB images of papayas to determine the fruit maturity. Weng et al. [43] explored the
potential of multi-feature fusion in terms of texture, morphology, and spectroscopic features
from hyperspectral images in order to classify rice varieties.

Having the ability of feature representation learning, no pre-processing is required
for extracting the domain-specific features from the input datasets. Due to the high level
of learning representation in multimodal data fusion, the corresponding raw datasets
could automatically be trained at both low and high levels of abstraction [44]. Multimodal
data fusion helps in improving the classification performance of deep learning models
that are well suited for diverse highly engineered detection purposes [45]. As the multi-
modal data fusion integrates information from multiple sources for classification tasks, it
is advantageous in terms of functional continuity and robustness of the model. Through
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data integration, multimodal fusion combines low-level features from each modality via
correlations in order to synchronise among numerous input datasets [46].

4. Conclusions

The deep learning method is capable of reducing the complexity of the feature ex-
traction and enhancing the networks through the representation learning models despite
having the high dimensionality of multimodal input datasets. Through feature concatena-
tion of the selected image parameters, the image datasets were fused to create multimodal
data fusion during data processing. The selected deep learning model architectures used
the multimodal input data and demonstrated promising results for the determination of
pineapple quality. Among all the deep learning architectures, multimodal data fusion
achieved the highest classification accuracy of 0.9687, followed by InceptionV3, VGG16,
and ResNet, which exhibited comparable outcomes. Multimodal data fusion also took
the longest training time of up to 78.3 min compared to the single CNN models. Taking
into consideration the benefits of multimodal data fusion coupled with powerful deep
learning models, the proposed approach delivers a huge potential for the identification
of physicochemical changes of fruits in various storage treatments. This study further
enhances the foundation of the deep learning method, especially for the data collection of
different fruit varieties at various growth stages.
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