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Abstract: The sowing date and density are considered to be the main factors affecting crop yield. 

The determination of the sowing date and sowing density, however, is fraught with uncertainty due 

to the influence of climatic conditions, topography, variety and other factors. Therefore, it is neces-

sary to find a comprehensive consideration of these factors to guide the production of winter rape-

seed. A reliable crop model could be a crucial tool to investigate the response of rapeseed growth to 

changes in the sowing date and density. At present, few studies related to rapeseed model simula-

tion have been reported, especially in the comprehensive evaluation of the effects of sowing date 

and density factors on rapeseed development and production. This study aimed to evaluate the 

performance of the AquaCrop model for winter rapeseed development and yield simulation under 

various sowing dates and densities, and to optimize the sowing date and density for agricultural 

high-efficient production in the Jianghuai Plain. Two years of experiments were carried out in the 

rapeseed growing season in 2020 and 2021. The model parameters were fully calibrated and the 

simulation performances in different treatments of sowing dates and densities were evaluated. The 

results indicated that the capability of the AquaCrop model to interpret crop development for dif-

ferent sowing dates was superior to that of sowing densities. For rapeseed canopy development, 

the RMSE for three sowing dates and densities scenarios were 7–22% and 16–23%, respectively. The 

simulated biomass and grain yield for different sowing dates treatments (RMSE: 0.8–2.1 t·ha−1, Pe: 

0–35.3%) were generally better than those of different densities treatments (RMSE: 0.7–3.9 t·ha−1, Pe: 

8.2–90%). Compared with other sowing densities, higher overestimation errors of the biomass and 

yield were observed for the low-density treatment. Adequate agreement for crop evapotranspira-

tion simulation was achieved, with an R2 of 0.79 and RMSE of 26 mm. Combining the simulation 

results and field data, the optimal sowing scheme for achieving a steadily high yield in the Jianghuai 

Plain of east China was determined to be sowing in October and a sowing density of 25.0–37.5 

plant·m−2. The study demonstrates the great potential of the AquaCrop model to optimize rapeseed 

sowing patterns and provides a technical means guidance for the formulation of local winter rape-

seed production. 
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1. Introduction 

Rapeseed (Brassica napus L.), the third-largest oilseed crop in the world, is used to 

produce edible oil, feed protein and biodiesel [1]. As one of the main planting countries, 

China accounts for 15.6% of the global rapeseed total sown area and 17.4% of the total 

yield: FAOSTAT, https://www.fao.org/faostat/en. (accessed on 1 June 2022). In 2020, the 

rapeseed sown area and yield made up 51.5% and 39.2% of oil crops in China, respectively 

[2]. As the primary oilseed crop grown in the Jianghuai Plain, the winter rapeseed is typ-

ically planted in rotation with rice to enhance the efficiency of land use. Due to the 
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complexity of climate change, rapeseed sowing dates are constantly adjusted [3]. There-

fore, it is crucial to clarify the response of rapeseed growth to the change in sowing dates 

for guiding field management practices and improving rapeseed production. 

Previous studies revealed that the variations of the sowing date directly determined 

the rapeseed growth and development. Delayed sowing dates usually shortened the 

growth period and lowered the harvest index (HI). Moreover, a later sowing date could 

decrease the branch number and pod number, resulting in yield reduction [4,5]. Kirke-

gaard et al. [6] found that with the delay of the sowing date, the stress caused by low 

temperatures and other factors reduced the yield of rapeseed and the oil content. In addi-

tion, the sowing density is another significant factor dominating the rapeseed yield. A 

higher sowing density increases crop canopy coverage and canopy light utilization, and 

reduces soil evaporation, hence resulting in a high yield [7]. The study demonstrated that 

although the per plant number of branches and pods would be decreased with an increas-

ing sowing density, the number of effective pods increased at the population level, which 

led to an improvement in rapeseed production at high densities [8]. However, crop yields 

begin to decline over a certain sowing density, due to intense competition between plants 

and limited light, nutrients and water conditions [9,10]. 

To date, some studies have been conducted on the response of rapeseed development 

to the sowing date and density in different regions and climatic conditions [11–13]. For 

example, Guan et al. [14] investigated the variation of rapeseed yields under different 

sowing dates and densities in Hunan Province, south of China, which revealed that ap-

propriate late sowing and increased sowing density can reduce the seasonal contradiction 

between double-cropping rice and rapeseed sowing while ensuring a stable rapeseed 

yield. Wu et al. [6]. studied the effects of the sowing date and density on yields for direct-

sown rapeseed, and indicated that the sowing date was the main factor affecting the plant 

height, primary branch number and yield of rapeseed, and early sowing was beneficial to 

obtain a high yield. When the sowing date is delayed, increasing the sowing density can 

compensate for the effect of late sowing on the yield. Li et al. [15] explored the effects of 

different sowing dates and density conditions on rapeseed field agronomic traits. The re-

sults indicated that with the postponement of the sowing date, the field weed coverage 

and lodging were increased, which suppressed rapeseed growth and damaged the rape-

seed yield, while the yield could be compensated by increasing the sowing density to in-

hibit weeds to reduce lodging and increase the yield. However, most previous studies 

focused on short-term field experiments, and the results were highly uncertain due to the 

changing of crop varieties, soil conditions and climate types, especially in the frequent 

occurrence of extreme climates over recent years. 

A crop growth model is an effective tool to quantify the impacts of the environment, 

climate and field management measures on crop growth. It can completely simulate the 

process of crop development, and incorporate the influence of external factors that have 

been widely used in agricultural prediction, climate change impact assessments, agricul-

tural decision making and optimized cultivation mode [16–20]. In recent studies, most 

well-known models have been calibrated and validated to simulate the development and 

grain yield of rapeseed under different scenarios. For example, Mousavi et al. [21] used 

the SWAP model to model the development of rapeseed by two cultivation periods in 

Badjgah and the rapeseed yield simulation results showed that the normalized root mean 

square error (nRMSE) was 8.0% and 14.2%, respectively. Jing et al. [22] used the DSSAT -

CROPGRO model to simulate spring rapeseed growth under different nitrogen applica-

tion rates in eastern Canada and the results showed that satisfactory accuracy was 

achieved for the aboveground biomass simulation, with an nRMSE of 19%. He et al. [23] 

evaluated the capability of the APSIM–Canola model to simulate rapeseed phenology and 

the impact of phenology on the simulated yield (RMSE for days of flowering and maturity: 

1.9–4.2 days). Qian et al. [24] simulated crop yields using the DSSAT-CERES-Wheat and 

DSSAT–CROPGRO–Canola models driven by estimated and measured daily solar radia-

tion data. The results indicated that the deviations of the two sets of data for wheat and 
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rapeseed yield estimation were 5% and 12%, respectively. However, most of the studies 

investigated the response of rapeseed to different environmental changes under a single 

sowing pattern [25–28]. Limited studies have been conducted on simulating rapeseed 

growth and development; especially, a performance evaluation of the model for the 

growth of rapeseed with different sowing dates and densities has not been reported. 

Therefore, to explore the optimal sowing date and density for producing high rape-

seed biomass and yields, two seasons of rapeseed field experiments in 2020 and 2021 were 

conducted with the consideration of different sowing dates and densities scenarios. The 

AquaCrop model, a famous water-driven crop simulation model, was employed to simu-

late winter rapeseed development and yield [29]. Compared with other models, the Aq-

uaCrop model only requires explicit and intuitive input parameters and has a good user 

interface. However, the model has less research on crop growth simulation in rain-fed 

areas, and there are also large differences in the selection of conservative parameters and 

non-conservative parameters [30]. The objectives of this study were to: (1) reveal the re-

sponse of rapeseed growth under various sowing dates and densities conditions; (2) eval-

uate the capability of the model for interpreting the variation of canopy coverage, bio-

mass, yield and evapotranspiration of winter rapeseed; and (3) determine the optimal 

sowing date and density of winter rapeseed in the Jianghuai Plain. 

2. Materials and Methods 

2.1. Study Area 

The data used in this study were obtained from the filed experiments conducted at 

an ecological experimental station (Figure 1). It is located in the Jianghuai Plain of eastern 

China (32°21′ N, 119°24′ E, 5 m above sea level). The research site is located in a subtropical 

monsoon climate, with an annual precipitation and average temperature of 1063 mm and 

14.8 °C, respectively. The predominant soil at the site is classified as the loamy, with an 

average field capacity of 0.35 cm3·cm−3, permanent wilting point of 0.13 cm3·cm−3 and dry 

bulk density of 1.49 g·cm−3. The soil initial nutrient contents in the 0–20 cm surface layer 

were as follows: mass fraction of organic matter 10.2 g·kg−1, total nitrogen 0.97 g·kg−1, avail-

able phosphorus 16.3 mg·kg−1 and available potassium 151.2 mg·kg−1, respectively [31]. 

 

Figure 1. The location map of the study area and test field photos, black marker point represents the 

location of the test station. 
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2.2. Experimental Design 

A split-plot experiment was performed and conducted in two growing seasons, with 

the sowing date as the main plot, and sowing density as the subplot (Table 1). Referring 

to the local common sowing time, four sowing time periods were set as: early (ES), normal 

(NS1 and NS2) and late (LS) sowing. In addition, three sowing densities of low density 

(LD), medium density (MD) and high density (HD) were set for each of the sowing dates. 

Each sowing treatment had three replicates. The plot size was 5 m × 5 m, with a row spac-

ing of 0.4 m. The seedlings were thinned manually by the 5-leaf stage to achieve the de-

signed density. All treatments were carried out under rainfed conditions, and other field 

management practices (e.g., weeding, insecticidal and disease prevention) were consistent 

with local practices. The winter rapeseed was harvested in the May of next year. 

Table 1. Different sowing dates and density treatments in 2020 and 2021 growing seasons. 

Growth Cycle Sowing Density 
Sowing Date 

ES NS1 NS2 LS 

September 2020–May 

2021 

LD (12.5 plants·m−2) 9.21 10.06 10.23 11.06 

MD (25.0 plants·m−2) 9.21 10.06 10.23 11.06 

HD (37.5 plants·m−2) 9.21 10.06 10.23 11.06 

October 2021–May 2022 
LD (12.5 plants·m−2) - 10.08 10.23 11.09 

HD (37.5 plants·m−2) - 10.08 10.23 11.09 

2.3. Field Data Collection 

2.3.1. Canopy Cover 

The AquaCrop model uses the canopy coverage (CC) instead of the leaf area index 

(LAI) to express crop development. CC is usually defined as the percentage of the vertical 

projected area of crop (including stems and leaves) within the unit area [32]. In this study, 

the data of the winter rapeseed CC were extracted by the vegetation index threshold 

method proposed by Jiapaer and Niu et al. [33,34]. Images, for winter rapeseed CC extrac-

tion, were collected by a multispectral camera (Rededge-MX, MicaSense Inc., Seattle, WA, 

USA) mounted on DJI Inspire 2 (DJI Inc., Shenzhen, Guangdong, China). After image pro-

cessing, the CC of different plots was extracted and calculated using Equation (1). The 

normalized difference vegetation index (NDVI) images were extracted and verified for 

bare soil, seedlings and the maximum canopy of the winter rapeseed images (Figure 2), 

and the NDVI value of 0.46 was determined as the threshold for the extraction of CC, thus 

the pixels of the NDVI below the threshold were represented as soil backgrounds. Canopy 

coverage is extracted at approximately 20–30 days. 

CC =
𝑁𝑐𝑎𝑛𝑜𝑙𝑎

𝑁𝑐𝑎𝑛𝑜𝑙𝑎 + 𝑁𝑠𝑜𝑖𝑙
× 100% (1) 

where 𝑁𝑐𝑎𝑛𝑜𝑙𝑎 is the number of winter rapeseed pixels and 𝑁𝑠𝑜𝑖𝑙 is the number of soil 

background pixels. 
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Figure 2. Extracting CC schematic by using threshold method. (a) Winter rapeseed RGB images and 

NDVI images extracted based on threshold method at different growth stages. (b) Soil and winter 

rapeseed histogram distribution statistics based on NDVI. 

2.3.2. Aboveground Dry Biomass and Yield 

The aboveground dry biomass (AGB) was measured 3–6 times per growing season. 

In order to avoid the boundary effect, 10 samples were randomly collected from the center 

of each plot. The samples were weighed and then dried in an oven at 75 °C for three days 

until they reached a steady weight. The dry weight of the sample was measured, and the 

dry matter mass per unit area was calculated by multiplying the dry matter mass per plant 

by the sowing density. The pods were collected when two-thirds of the pods in the plot 

were brown. Ten plants per plot were randomly sampled and harvested until crop ma-

turity. Then, the seed yield per plant was measured. 

2.3.3. Crop Evapotranspiration 

The crop evapotranspiration (ETC) for winter rapeseed is calculated by the water bal-

ance method (Equation (2)) [35]. 

ETc = (𝑃𝑆𝑆 −𝑀𝑆) + 𝑃 + 𝐼𝑊 − 𝑅 − 𝑆𝑑 (2) 

where 𝐸𝑇𝑐  is evapotranspiration (mm), 𝑃𝑆𝑆  is the soil water content before sowing 

(mm), 𝑀𝑆 is the soil water content in the harvest period (mm), 𝑃 is the effective precip-

itation during the whole growth period (mm), 𝐼𝑊 is the irrigation amount during the 

whole growth period (mm), 𝑅 is surface runoff (mm), 𝑆𝑑 is deep drainage (mm) and the 

precipitation exceeding field capacity is regarded as 𝑅 and 𝑆𝑑. 

The experiment was carried out under rainfed conditions; hence, the IW was zero. A 

50 cm layer was calculated in this study with an average field capacity of 0.35 cm3 cm−3, 

so when rainfall is greater than 175 mm, the excess is regarded as R and Sd. 

2.4. Model Description 

AquaCrop, a water-driven model, was evolved from the water production function 

proposed by Doorenbos et al. [36]. The model separated the actual crop evapotranspira-

tion (ET) into crop transpiration (Tr) and soil evaporation (E), and calculated the yield by 

the aboveground dry biomass using the harvest index [29]. The main processes of the crop 

simulation can be described as the following steps: 

(1) The crop development process: AquaCrop employs the CC to describe the develop-

ment of crops. Three parameters of the initial canopy coverage, maximum canopy 

coverage and canopy growth coefficient were used to determine the dynamic of the 

crop canopy coverage. 

(2) Crop evapotranspiration: ET simulation is divided into Tr and E. Based on the given 

meteorological data, the reference evapotranspiration (ET0) is calculated by the Pen-

mane–Monteith equation in the FAO Irrigation and Drainage Paper No. 566 [35]. Tr 

is calculated by the product of ET0 and the crop transpiration coefficient (KcTr), and 

the KcTr is proportional with the CC. Soil evaporation is calculated by multiplying 

ET0 with the soil evaporation coefficient, a coefficient that relates to the fraction of 

uncovered soil surface. 

(3) Biomass: The output of the model simulation biomass was the AGB, excluding root 

and tuber crops. The model uses normalized water productivity (WP*) and Tr for 

estimating the biomass (Equation (3)). The WP* indicates the produced dry matter 

(g) per unit land area (m2) per unit of transpired water amount (mm). The WP* can 

be supposed to be the constant of the given crops and growth conditions (e.g., C3 

crops: 15–20 g·m−2, C4 crops: 30–35 g·m−2) suggested by Steduto et al. [37]. 

(4) Crop yield: After determining the crop biomass, the yield formation is obtained by 

the product of biomass and HI (Equation (4)). 
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B = 𝑊𝑃∗ × ∑
𝑇𝑟𝑖
𝐸𝑇0𝑖

 (3) 

Y = 𝐻𝐼 × 𝐵 (4) 

where B is the cumulative aboveground biomass production (kg·m−2), WP is the water 

productivity (g·m−2), 𝑇𝑟𝑖 is the daily crop transpiration (mm·day−1), 𝐸𝑇0𝑖 is the daily ref-

erence evapotranspiration (mm·day−1) and 𝐻𝐼 is the harvest index. 

2.5. Input Data and Model Calibration 

The input data of the AquaCrop model are divided into four categories: meteorolog-

ical data, crop data, management data and soil data. These input parameters can be di-

vided into conservative and non-conservative parameters during model calibration. Con-

servative parameters are assumed to be unchanged with time, management practice or 

location, and can be used as the default values for model input. They include, for example, 

the crop maximum transpiration coefficient, water productivity, reference harvest index 

and water stress threshold for inhibiting leaf growth, stomatal conductance and acceler-

ating canopy senescence. Non-conservative parameters, also known as user variety-spe-

cific parameters, include weather, soil, crop phenology and field management data in ad-

dition to crop parameters (e.g., sowing density and date) [10]. The input data and detailed 

model calibration are described in Sections 2.5.1–2.5.3. 

2.5.1. Weather Data 

The basic input meteorological data imputing into the AquaCrop model include tem-

perature (maximum and minimum), relative humidity, wind speed, rainfall and solar ra-

diation or sunshine hours. These meteorological factors are used to calculate ET0 and to 

determine the stress degrees, such as temperature and water stress. The meteorological 

data for this study were provided by the HOBO U30 USB Weather Station (HOBO U30, 

Onset, MA, USA) 50 m away. The data mainly include air temperature, air relative hu-

midity, 2 m high wind speed, solar radiation and daily precipitation. The time interval of 

data observations is 1 h. The overall trends in temperature and precipitation are shown in 

Figure 3 for the 2020 and 2021 growing seasons. 

The compared precipitation was observed in two growing seasons, with amounts of 

515 mm in 2020 and 495 mm in 2021. The inner-annual distribution of precipitation in both 

years were inconsistent, presenting as more uniform in the first season and extreme fluc-

tuation in the second season (Figure 3a). The cumulative average temperature in the 2021 

growing season (4008 °C) was slightly higher than that of the 2020 growing season (3833 

°C). However, the 2020 growing season (average temperature in February: 10 °C) temper-

ature increased sooner than that of the 2021 growing season (average temperature: 6 °C). 

 

Figure 3. (a) Annual cumulative precipitation and monthly total precipitation and (b) annual cumu-

lative temperature and monthly average temperature in 2020 and 2021 growing seasons. 
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2.5.2. Crop Parameters Calibration 

Crop parameters play a crucial role in accurately simulating crop growth. A set of 

conservative parameters, such as the threshold of temperature, root depth and canopy 

expansion, were usually not significantly changed, which could be benefited from previ-

ous studies. Few studies have been successfully performed to simulate rapeseed growth 

based on the AquaCrop model, which provides the reliable parameter values for referenc-

ing [38,39]. The calibration of non-conservative parameters was carried out by the field 

measured data and phenological observation records of the 2020-NS1-HD treatment. Con-

sidering the response of crop development to temperature, the growing degree day (GDD) 

mode was used to run the model [40]. Through the measured data of CC, it was found 

that the maximum CC of different sowing densities were different. Thus, based on the 

method proposed by Zeleke et al. [38], we set the different maximum CC for three density 

conditions. For both MD and HD, the densities were set to “almost entirely covered” (90% 

and 95%), and LD was set to “well covered” (85%). The determined parameters are shown 

in Table 2. 

2.5.3. Management Practices 

As an important part in model simulation, the management data of the AquaCrop 

model mainly included field management and irrigation management. Field management 

includes soil fertility, film mulching, weed infestation and field runoff. In this study, the 

soil fertility was set to be sufficient to support the development of winter rapeseed. More-

over, no film mulch was applied for the winter rapeseed. The soil bunds in the field could 

effectively limit surface runoff. Weed management was set up as 'very good'. This study 

was carried out under rainfed conditions without an irrigation treatment. 

Table 2. Default and calibrated winter canola parameters of the AquaCrop model used in this 

study. 

 Parameter Description Value Unit 

Inputs 

Daily air temperature (maximum and 

minimum) 
 °C 

Daily precipitation  mm 

Daily relative humidity  % 

Daily solar radiation  MJ·m−2 

Initial soil moisture  vol% 

Parameter 

Conservative   

Canopy decline coefficient 5.2 %·day−1 

Minimum effective rooting depth 0.3 m 

Maximum effective rooting depth 1 m 

Root zone expansion curve shape 0.6 cm·day−1 

Basal crop coefficient (maximum) 0.95  

Normalized water productivity 15 g·m−2 

Reference harvest index 30 % 

Soil water depletion factor for canopy 

expansion threshold-upper 
0.2  

Soil water depletion factor for canopy 

expansion threshold-lower 
0.55  

Soil water depletion factor for canopy 

expansion stress coefficient curve shape 
3.5  

Soil water depletion factor for stomatal 

control threshold-upper 
0.6  

Soil water depletion factor for stomatal 

stress coefficient curve shape 
5  
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Soil water depletion factor for canopy 

Senescence stress coefficient-upper 
0.7  

Soil water depletion factor for 

senescence stress coefficient curve shape 
3  

Base temperature 0 °C 

Upper temperature 30 °C 

Crop transpiration affected by cold 

stress 
16.5 °C 

Minimum temperature of pollination fail 5 °C 

Maximum temperature of pollination fail 35 °C 

Non-conservative   

Plant density 
125,000, 250,000, 

375,000 
plants·ha−1 

Initial canopy cover 0.63, 1.25, 1.88 % 

Maximum canopy cover 85, 90, 95 % 

Canopy growth coefficient 4.7 %·day−1 

Time from sowing to emergence 140  

Time from sowing to maximum canopy 

cover 
1437  

Time from sowing to start senescence 2052  

Time from sowing to maturity 2680  

Time from sowing to flowering 1437  

Duration of flowering 340  

Length building up HI 1091  

Outputs 

Growth days  day 

Canopy cover  % 

Biomass  ton·ha−1 

Harvest yield  ton·ha−1 

Soil water content  vol% 

2.6. Model Evaluation and Validation 

The model evaluation was based on the dynamic trends and statistical errors between 

the simulated and measured data. The classical statistical indicators of the coefficient of 

determination (R2), root mean square error (RMSE) and Nash–Sutcliffe model efficiency 

coefficient (EF) were selected [10]. 

RMSE = √
∑ (𝑆𝑖 −𝑀𝑖)

2𝑛
𝑖=1

𝑛
 (5) 

EF = 1 −
∑ (𝑆𝑖 −𝑀𝑖)

2𝑛
𝑖=1

∑ (𝑀𝑖 − �̅�)2𝑛
𝑖=1

 (6) 

R2 =
∑ (𝑆𝑖 − �̅�)2𝑛
𝑖=1

∑ (𝑀𝑖 − �̅�)2𝑛
𝑖=1

 (7) 

where 𝑀𝑖 and 𝑆𝑖 (i = 1, 2, …, n) represent measured and simulated values, respectively, 

and �̅� represents the mean value. 

3. Results and Discussion 

3.1. Phenological Days 

Accurate crop phenology, especially flowering, ripening and harvesting, is critical 

for agricultural production management and yield evaluation [41–43]. In AquaCrops, 
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crop phenology is divided into four stages: emergence, time to flowering, flower duration 

and maturity. Therefore, combined with field phenological observation data, the capabil-

ity of the model to determine winter rapeseed phenological information was verified (Fig-

ure 4). The results showed that in the simulation of different sowing dates, the model had 

a certain degree of deviation in the estimation of winter rapeseed phenological days (ES: 

underestimation 14 days, NS1: underestimation 1 day, NS2: overestimation 12–14 days, 

LS: overestimation 16–18 days). While under different densities, the output results of the 

model for phenological days are consistent due to the same sowing date and conditions. 

Therefore, the main source of error was attributed to the variation of the sowing time, 

which impacted the crop growth period. Similar situations have been reported in other 

previous studies; for example, Shah et al. [44] found that when the wheat sowing date was 

postponed by 44 days, the seedling stage was prolonged by 7 days, but the maturity pe-

riod was shortened by 2 days. Jiang and Serafin et al. [45,46] explored the effects of the 

sowing date on rapeseed and soybean, respectively, and similar conclusions were ob-

tained that a later sowing date could delay the emergence time and shorten the seedling 

stage, and the whole growth period, by 4–7 days and 20 days, respectively. Therefore, 

with the change of the sowing date, the actual maturity days of rapeseed fluctuated be-

tween 238 and 197 days. Comparing the estimation accuracy of different stages of rape-

seed in two growing seasons (emergence RMSE: 2.7 and 2.0 days, time to flowering RMSE: 

25.4 and 13.5 days, flower duration RMSE:6.0 and 4.3 days, and maturity RMSE: 7 and 8.3 

days), the estimation error was mainly caused by the time to flowering stage of rapeseed. 

In a comparison of the fixed growth days simulation with the calendar mode, the 

GDD model achieved a similar trend. Therefore, we choose the GDD model to simulate 

and set the accumulated temperature from sowing to maturity as the calibration value as 

the basic threshold. This indicated that under this mode, the beginning and ending of each 

growth stage were tightly controlled by the GDD values. With the delay of the sowing 

date, the growth days of rapeseed were shortened, indicating that the total GDD of rape-

seed was changed [15,45]. Therefore, the model had the deviation in simulating pheno-

logical days for different sowing dates. Shortening of the growth period was mainly af-

fected by photoperiod and temperature. Nanda et al. [47] pointed out that the growth 

period of rapeseed before flowering was mainly affected by the photoperiod, while the 

flowering duration of rapeseed was mainly controlled by the temperature. The growth 

process of rapeseed was accelerated with the increase of the photoperiod. A similar con-

clusion was also reported when investigating the effects of sowing dates on maize by Cai 

et al. [48]. The experiment dates showed that the time to flowering for rapeseed was short-

ened by 5–29 days with the delay of the sowing date, and the flowering duration was 

stable at about 27 days. Therefore, with the delay of the sowing date, the total GDD re-

quired for rapeseed to reach maturity would be decreased. The model uses a unified GDD 

threshold in the simulation of rapeseed growth for different sowing dates (Table 2). For 

example, the time node to the flowering stage in the simulation of all sowing dates of the 

GDD of 1437 °C was used as the threshold for the time to flowering stage, which resulted 

in the simulated values of the LS and NS2 treatments being significantly shorter than the 

measured values in two growing seasons, while in the ES treatment, the simulated values 

were lower than the measured values. 
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Figure 4. (a) Days of different phenological stages in 2020 growing season, (b) days of different 

phenological stages in 2021 growing season. S: Simulated value of phenological days, M: measured 

value of phenological days. 

3.2. Canopy Cover 

CC is one of the important driving and output variables in the AquaCrop model and 

an accurate estimation of crop canopy cover is crucial for determining the simulation re-

sults of ETC, biomass and yield. Comparisons of simulated and measured canopy cover-

age at different sowing dates is shown in Figure 5. The simulation results in two growing 

seasons showed that the simulated winter rapeseed coverage was in good agreement with 

the measured values. The simulation accuracy of rapeseed CC in 2020 (RMSE: 7–21%; EF: 

0.54–0.95; R2: 0.79–0.97) was better than of that in 2021 (RMSE: 13–22%; EF: 0.55–0.83; R2: 

0.70–0.89). Generally, the simulation accuracies of the CC were gradually improved with 

the postponement of sowing dates. A common feature was observed in both seasons 

whereby a peak or a short platform period was observed at 60–120 days after sowing 

(DAS), and then continued to rise to the maximum CC until maturity. Compared with the 

later sowing dates treatment, the average temperature of the seedling stage for the ES and 

NS1 sowing dates treatments were 18–24 °C, which were further beyond the threshold of 

the base temperature (0 °C). Therefore, a higher temperature promoted rapeseed to de-

velop more rapidly in the vegetative growth stage of the seedling stage and an abundance 

of leaves was produced, resulting in the surface coverage to increase rapidly. With the 

delay of the sowing date, the monthly average temperature of NS2 and LS decreased to 

4–13 °C, triggering a low temperature stress that limited rapeseed development. Com-

pared with the high coverage caused by the rapid development of leaves before the win-

tering of ES and NS1, NS2 and LS maintained a low coverage in winter before entering 

the reproductive growth stage, resulting in a flat trend of the measured data [31,49,50]. In 

addition, 2021-NS1-HD maintained a low coverage in the early growth stage. This is due 

to the comparison of 20 mm rainfall in 60 DAS after 2020-NS1 sowing, and 151 mm rainfall 

in 60 DAS after 2021-NS1 sowing. Excessive water limits the development of the rapeseed 

canopy. Waterlogging is one of the reasons that the growth and development of rapeseed 

is limited, leading to a yield reduction, through the study of Cong et al. [51]. 
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Figure 5. Simulated and measured canopy cover for different sowing dates in 2020(a–c) and 2021(d–

f) growing seasons (The different sowing date scenarios were verified under HD density). 

Comparisons of the simulated and measured canopy coverage at different densities 

is shown in Figure 6. In the 2020 growing season, the simulation accuracy decreased as 

the density lowered (RMSE: 12–23%; EF: 0.81–0.50; R2: 0.89–0.69). Meanwhile, it can be 

seen that the measured CC values of the density treatment were significantly higher than 

that of the model simulation value during the 0–90 DAS in 2020 growing season. The main 

reason could be attributed to the rapid development of the NS1 treatment in the vegetative 

stage of the seedling stage, and the larger leaves of rapeseed triggered the surface cover-

age to increase rapidly. With the ending of the overwintering period of rapeseed, the early 

developed leaves began to wither with the development of stems and lateral branches, 

and the LD treatment CC decreased significantly compared with other density treatments. 

The same situation occurred in the 2021 growing season, although the early development 

of the 2021-NS1 canopy was subjected to water stress resulting in lower CC measure-

ments. The HD treatment coverage was 10% higher than the LD treatment regarding rape-

seed development after overwintering (90 DAS). Compared with the large fluctuation of 

measured values in the two growing seasons, the simulated values of CC were more con-

sistent. This was because the GDD threshold used by the model to simulate the time for 

the rapeseed maximum canopy at different sowing densities is fixed. In this study, there 

were three maximum coverages (HD: 95%, MD: 90%, LD: 85%) for different densities, re-

sulting in the decrease for the growth rate of the curve. The calibrated AquaCrop is ac-

ceptable for the simulation accuracy of winter rapeseed CC in the region by comparison 

with the results (average RMSE: 27%; EF: 0.61. R2: 0.82) of Dirwai and Zeleke et al. [38,39]. 

 

Figure 6. Simulated and measured canopy cover for different sowing densities in 2020(a–c) and 

2021(d–e) growing seasons (the verification of different density scenarios was performed under NS1 

sowing date conditions). 

3.3. Crop Evapotranspiration 
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The ETC simulation accuracies of the different densities (RMSE: 19 mm) were higher 

than those of the different sowing dates (RMSE: 31 mm). In Figure 6, it can be seen that 

the simulated ETC under different sowing densities were divided into two parts: 393 mm 

and 434 mm. The main reason was that the simulation results of the soil moisture were 

consistent when the different seeding densities were simulated under the condition of the 

same seeding time, so the simulated ETC calculated according to the water balance equa-

tion was the same. Therefore, when verified in different density scenarios during the 2020 

growing season, the ETC for the three density treatments were 393 mm. This indicated that 

the model does not consider the effects of sowing density and maximum canopy cover 

changes when simulating soil moisture conditions during the same sowing period. The 

same situation was reported In the study of Sanhu et al. [10]. Notably, two points were 

deviated from the simulation of different sowing dates, namely 2020-ES and 2020-LS (Fig-

ure 7). The reason could be attributed to the errors in the model estimation of the pheno-

logical days mentioned in Section 3.1. For the ES treatment, the length of growth days was 

underestimated by 14 days, in which the precipitation of 129 mm was observed, resulting 

in a bias in calculating the measured ETc. Additionally, the length of growth days of the 

LS treatment was overestimated by 18 days, inducing an overestimated error of the ETc. 

Although the total growth lengths of NS2 and NS1 were also overestimated by 14–18 days 

in the model simulation, only 1–9.6 mm rainfall were recorded during the period, which 

has no significant impact on the ETc estimation. 

In general, compared with the results obtained by Raja and Sandhu et al. [10,52], who 

used the AquaCrop model to simulate maize at different planting dates and densities (whole 

RMSE: 17 and 35 mm, R2: 0.71 and 0.54), the AquaCrop model has the adaptable perfor-

mance for estimating the ETC of winter rapeseed (whole RMSE: 26 mm, EF: 0.69, R2: 0.79). 

 

Figure 7. Simulated and measured ETC for all treatments in 2020 and 2021 growing seasons. (The 

different sowing date scenarios were verified under HD density conditions. The validation of dif-

ferent density scenarios was performed under NS1 sowing date conditions). 

3.4. Biomass and Grain Yield 

The simulated results of biomass and yield were in good agreement with the meas-

urements in the different sowing date treatments. The simulation accuracy of biomass in 

the 2020 growing season (RMSE: 0.8–1.7 ton·ha−1; EF: 0.72–0.96; R2: 0.92–0.99) was gener-

ally higher than that in 2021 growing season (RMSE: 1.4–2.1 ton·ha−1; EF: 0.71–0.89; R2: 

0.94–0.97). The main reason for the lower accuracy in the second year could be attributed 

to the limitation of early canopy development (Figures 5 and 6), which decreased the can-

opy transpiration (Tr) and triggered a lower cumulative dry matter mass. 
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The biomass simulation results for the different densities are shown in Figure 8. In 

2020-NS1, the biomass of the HD and MD treatments achieved good simulation results 

(EF: 0.91–0.92, RMSE: 1.25–1.55 t·ha−1). As mentioned earlier, 2021-NS1-HD was limited in 

its simulation accuracy due to early canopy development (EF: 0.71, RMSE: 2.1 t·ha−1). In the 

biomass simulation of low density, more than 40% overestimations were observed in both 

growing seasons (Figure 9c,e). Although the maximum canopy cover of differentiation for 

the sowing densities were arranged (85%, 90% and 95%), these canopy cover differences 

were not significant for the change of biomass accumulation based on model mechanisms 

(Equation (3)). One possibility to solve this problem is to adjust the WP* by establishing a 

correlation with the sowing densities. Based on the two years of field experiment data, Li 

et al. [15] reported that rational close planting helps to increase rapeseed crop yields 

 

Figure 8. Simulated and measured biomass for different sowing dates in 2020(a–c) and 2021(d–f) 

growing seasons. 

 

Figure 9. Simulated and measured biomass for different sowing densities in 2020(a–c) and 2021(d,e) 

growing seasons. 

Table 3 displays the yield simulation for different sowing dates and density treatments. 

For the different sowing date treatments, the simulated yield presented a general overestima-

tion but had a large fluctuation in both seasons, with the Pe ranging from 0–35.3%. In the GDD-

driven mode, the comparison in yields between those simulated and measured were not only 

in final values, but in harvest time. For instance, although the relative error of yield was 0% in 

the simulated ES treatment, the simulated harvest date was ahead of the actual harvest time. 

At the opposite of early sowing, the overestimation error observed in the NS2 and LS treat-

ments are mainly attributed to the delay of simulation maturity times (Figure 8 and Table 

3). The simulation results of the yield under different densities were consistent with the 
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dry biomass simulation where good agreement was achieved for the HD and MD treat-

ments, with the maximum Pe around 10%. On the other hand, the underestimated bio-

mass brought a low production, resulting in the simulation accuracy being unacceptable. 

Comparable results were also reported by Dirwai et al. [39], who suggested that the sim-

ulation accuracy of rapeseed biomass and yield using AquaCrop was adequate, with the 

EF ranging from 0.30 to 0.54 and Pe from 34% to 58%. Nevertheless, the AquaCrop model 

provided sufficient accuracy for the simulation of a high-density rapeseed yield. 

Table 3. Comparison between final yield simulated and measured values (the different sowing date 

scenarios were verified under HD density conditions, and the different density scenarios were per-

formed under NS1 sowing date conditions). 

Different Sowing Densities Different Sowing Dates 

Treatment Measured Simulated Pe (%) Treatment Measured Simulated Pe (%) 

2020 

HD 4.9 4.5 −8.2 ES 4.5 4.5 0 

MD 4.7 4.2 −10.6 NS2 3.7 4.4 18.9 

LD 2.5 4.0 60 LS 3.1 4.2 35.3 

2021 

HD 3.8 4.2 10.5 NS1 3.8 4.2 10.5 

LD 2.0 3.8 90 NS2 4.0 4.1 2.5 

    LS 3.6 4.0 11.1 

Note: Pe represents the relative error between measured and simulated value relative to the meas-

ured values. 

3.5. Optimum Sowing Date and Density 

As the main factors of rapeseed yields, the sowing date and density will change with 

the change of region and climatic conditions. Therefore, it is important to explore the op-

timal sowing date and density for the formulation of local production management 

measures and the improvement of rapeseed yields [53]. The comparison of in situ meas-

ured yields for all treatments in both growing seasons are shown in Table 4. In the 2020 

growing season, with the increase of density, the yield of rapeseed was increased. With 

the exception of the ES treatment, the yield of the LD treatment was significantly lower 

than that of the MD and HD treatments, while the differences between the MD and HD 

treatments were not obvious. Furthermore, the yield would decline with the delay of the 

sowing date. During the 2021 growing season, this conclusion was confirmed. Appropri-

ate sowing dates and a reasonable sowing density could effectively increase the winter 

rapeseed yield. The conclusion was consistent with the yield simulation results of the Aq-

uaCrop model in Section 3.4 and similar results were also reported by Li et al. [15]. 

The early sowing rapeseed has a higher accumulation dry matter before entering the 

overwintering stage than that of the late sowing scenarios. With the rapeseed reviving 

after the overwintering period, the growth process would be accelerated with the increase 

of the photoperiod; thus, the late sowing rapeseed in the vegetative stage of the dry matter 

accumulation time was insufficient [47,54]. The same conclusion was reported in a study 

of the effects of sowing dates on dry matter accumulation in rice and maize by Pal and Fu 

et al. [48,55]. Meanwhile, the study also mentioned that the delay of the sowing date 

would shorten the growth of crops, which mainly occurred in the vegetative growth stage 

(from emergence to jointing). Although late-sowing rapeseed had the same cultivation 

and management as early-sowing winter rapeseed, it could not obtain a higher yield. This 

shows that for an increase of winter rapeseed yields, an earlier sowing date should be 

chosen, so that winter rapeseed has sufficient dry matter accumulation. Meanwhile, with 

an increase of the rapeseed sowing density, canopy light use efficiency and effective pod 

numbers, higher crop canopy coverage and decrease of the soil evaporation, the yield was 

increased [56–58]. Therefore, combined with the measured data and simulated results of 

the rapeseed, an optimal sowing date in October and sowing density of around 25.0–37.5 

plant·m−2 in the Jianghuai Plain would achieve a steadily high yield. 
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Table 4. All treatments grain yields in the 2020 and 2021 growing seasons. 

Sowing Date Sowing Density 2020 Yield (t·ha−1) 2021 Yield (t·ha−1) 

ES 

LD 3.2 ± 0.86 bcde   

MD 4.2 ± 0.2 abcd   

HD 4.5 ± 0.49 abc   

NS1 

LD 2.5 ± 1.01 e 2 ± 0.41 bc 

MD 4.7 ± 1.26 ab   

HD 4.9 ± 0.85 a 3.8 ± 1.15 a 

NS2 

LD 2.8 ± 0.8 de 1.9 ± 0.85 bc 

MD 4.5 ± 0.4 abc   

HD 3.7 ± 1.22 abcde 4 ± 0.85 a 

LS 

LD 2.6 ± 0.52 e 1.2 ± 0.15 c 

MD 2.5 ± 0.25 e   

HD 3.1 ± 0.55 cde 3.6 ± 1.15 ab 

Note: Different lowercase letters in the same growth seasons represented significant differences in 

yield, as determined by Tukey’s test (p < 0.05). 

4. Conclusions 

This study revealed the response of rapeseed growth under various sowing dates 

and densities conditions, evaluated the capability of the AquaCrop model for interpreting 

the variation of simulated phenological dates, canopy coverage, biomass, yield and evap-

otranspiration and determined the optimal sowing date and density of winter rapeseed 

in the Jianghuai Plain. 

With the delay of the sowing date, the growth period of rapeseed was shortened 

(from 238 days to 197 days) and the yield was reduced (from 4.9 t·ha−1 to 3.1 t·ha−1). Due 

to the influence of the change of the sowing date on the growth cycle of rapeseed, the 

estimation of phenological days in the model has a deviation of 1–18 days. The difference 

in rapeseed yields between the NS1-HD and LS-HD treatments reached 3.15 t·ha−1 in 2020. 

Meanwhile, the rapeseed yield was significantly increased with the increase of sowing 

density. The simulated CC achieved satisfactory accuracy in different sowing dates sce-

narios (RMSE: 7–22%; EF: 0.54–0.95: R2:0.70–0.97). The estimated ETC of winter rapeseed 

were in good agreement with the in situ measurement, with the R2, RMSE and EF of 0.79, 

26 mm, and 0.69, respectively. In the simulation of biomass and yield, the medium- and 

high-density treatments achieved higher simulation accuracy (RMSE: 0.8–2.1 t·ha−1, EF: 

0.71–0.96, Pe: 0–35%). The model overestimated the rapeseed production potential in the 

LD condition (about 40%). Combined with the measured data and simulated results of the 

rapeseed, an optimal sowing date in October and a sowing density of around 25.0–37.5 

plant·m−2 in the Jianghuai Plain would achieve a steadily high yield. 

The study demonstrates the great potential of the AquaCrop model for optimal rape-

seed sowing patterns and provides technical means guidance for the formulation of local 

winter rapeseed production. Despite the encouraging results, further improvements are 

warranted to solve the overestimation problem in low density production, such as adjust-

ments to water productivity or the harvest index. 
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