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Abstract: This study presents a micro-scale approach for the cropland suitability assessment of
permanent crops based on a low-cost unmanned aerial vehicle (UAV) equipped with a commercially
available RGB sensor. The study area was divided into two subsets, with subsets A and B containing
tangerine plantations planted during years 2000 and 2008, respectively. The fieldwork was performed
on 27 September 2021 by using a Mavic 2 Pro UAV equipped with a commercial RGB sensor. The
cropland suitability was performed in a two-step classification process, utilizing: (1) supervised
classification with machine learning algorithms for creating a vegetation mask; and (2) unsupervised
classification for the suitability assessment according to the Food and Agriculture Organization of the
United Nations (FAO) land suitability standard. The overall accuracy and kappa coefficients were
used for the accuracy assessment. The most accurate combination of the input data and parameters
was the classification using ANN with all nine input rasters, managing to utilize complimentary
information regarding the study area spectral and topographic properties. The resulting suitability
levels indicated positive suitability in both study subsets, with 63.1% suitable area in subset A and
59.0% in subset B. Despite that, the efficiency of agricultural production can be improved by managing
crop and soil properties in the currently non-suitable class (N1), providing recommendations for
farmers for further agronomic inspection. Alongside low-cost UAV, the open-source GIS software
and globally accepted FAO standard are expected to further improve the availability of its application
for permanent crop plantation management.

Keywords: unmanned aerial vehicle; tangerine plantation; vegetation index; FAO land suitability;
artificial neural network; open-source GIS software

1. Introduction

For economies to sustain, permanent natural resources including climate, soil, and
topography should be used rationally and sustainably for agricultural production [1]. The
World Commission on Environment and Development defines sustainable development
as meeting current agricultural production demands without compromising the capacity
of future generations to meet their own needs [2]. In addition, more crop yield is needed
to provide necessities because of fast population expansion and migration [3]. Natural
resources including forests, pastures, wetlands, and agricultural fields are converted into
settlements or industrial zones, which results in the underutilization of these regions [4].
Therefore, it is crucial to develop a land management plan which supports the conservation
and optimal usage of natural resources for future generations. Determining whether a
particular land is suitable for agriculture is a necessary step in land use planning [5]. A
decision to employ existing natural resources based on the predicted cropland suitability
is made as part of the process of determining amenities [6]. The process of assessing a
specific area of land suitability, such as in agriculture or forestry, and its level of envi-
ronmental sustainability, is known as cropland suitability assessment [7]. The analysis
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of complementary abiotic environmental data, climate, soil, and topography, is required
to determine the suitability of agricultural land [8]. As permanent crops require initial
substantial investments and the long-term commitment of the agricultural land, suitability
analyses are particularly of interest for agricultural land management [9]. This approach
also enables the rational utilization of the abandoned agricultural land for the cultivation
of permanent crops, positively affecting the sustainability of agricultural production [10].

Open data remote sensing satellite missions can observe the surface of the Earth
with a spatial resolution in the range between 10 m and 1 km [11]. Due to the relation-
ship of reflectance in the visible, red-edge, and near-infrared spectral bands with crop
health and growth, they are frequently employed to evaluate cropland suitability [12].
Missions with moderate spatial resolution, such as Landsat and Sentinel-2 missions, are
frequently employed in agriculture, and their temporal resolution spans from a few days to
two weeks [13]. The fact that most of the world’s land is frequently obscured by clouds, im-
pairing the Earth observation from space, is one of the main obstacles to utilizing satellites
to monitor the Earth’s surface for agricultural purposes [14]. Their spatial resolution is too
low to detect vegetation properties on a sub-decimeter level in smaller agricultural parcels
typical for permanent crops, which is another problem [15]. This is crucial because only
spatial patterns or textures that are discernible at reasonably high spatial resolution may be
used to identify changes in vegetation growth [16]. As a result, satellite missions cannot
fully address the remote sensing needs of agriculture. Therefore, unmanned aerial vehicles
(UAVs) became highly popular to close the gaps in observing such agricultural fields [17].
The RGB (red-green-blue) and multispectral sensors mounted on UAVs can be tuned to
monitor crop health, allowing farmers to react in time and apply the necessary fertilizer
and insecticide [18]. UAVs are used to monitor the field in 3D for early soil analysis that is
required for the planning of seeding using the variable-rate-technology (VRT) principles
in precision agriculture [19]. After sowing, these data are used to plan irrigation, and
for the required amounts of nitrogen in certain zones of the cultivated area [20]. UAVs
are also used for crop spraying, using sensors to apply the needed pesticide amount in
a specific location [21]. As a result, a reduced quantity of fertilizers and pesticides are
applied, reducing groundwater contamination. The application of aerial spraying using
UAVs might even reduce the spraying duration multiple times compared to traditional
spraying [22].

Vegetation indices are frequently utilized to quantify crop properties, out of which the
most commonly used is the normalized difference vegetation index (NDVI) [23]. However,
its computation requires farmers to acquire multispectral sensors mounted on UAVs, which
might not be affordable in less developed parts of the world. To overcome this, researchers
focused on the development of processing methods that utilize UAV images obtained
by low-cost RGB sensors. Various spectral indices, as alternatives to NDVI which utilize
blue, green, or red spectral bands, were developed and evaluated in the process. These
include the normalized green-red difference index (NGRDI) [24], green leaf index (GLI) [25],
and Kawashima index (IKAW) [26]. Such studies successfully implemented these indices
collected using low-cost UAVs in crop monitoring [27], creating prescription maps in
precision agriculture [28], and analyzing specific phenological stages [29]. Meanwhile,
no comprehensive methodology for cropland suitability assessment utilizing low-cost
UAVs was developed so far at a micro-scale, being largely focused on the macro-scale
areas, such as national or county scales [30,31]. Besides data collection using low-cost
UAVs, the image processing segment using the open-source geographic information system
(GIS) software complements the global accessibility to farmers by ensuring state-of-the-art
machine learning classification methods [32].

The aim of this study was to provide a framework for the cropland suitability as-
sessment by combining two requirements for effective agricultural land management at
a micro-scale: (1) using a low-cost UAV equipped with the commercially available RGB
sensor, and (2) using open-source GIS software for the cropland suitability assessment.
These components provide a widespread solution to the farmers by minimizing their initial
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financial expenditures in planning the utilization of agricultural land. This study specifi-
cally focused on the cropland suitability of permanent crops, using tangerine plantation as
a reference case.

2. Materials and Methods
2.1. Study Area

The study area is located in southern Croatia, in the Neretva river valley (17◦32′ E,
43◦01′ N) (Figure 1). The specificity of agricultural production in this area is the proximity
to the sea, a warmer climate which during the summer extends into the fall, and the colder
weather lasts longer during the spring [33]. The average amount of precipitation in the
study area is about 1300 mm per year, but farmers face a problem when 65–75% of that
amount falls during the winter. Therefore, the irrigation system network that has been
created is extremely relied upon for agricultural production. The study area was divided
into two subsets, with subsets A and B containing tangerine plantation planted during
years 2000 and 2008, respectively. The total study area covers 1.94 ha, with each subset
covering the equal area of 0.97 ha.
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2.2. Fieldwork and Data Acquiring 

Figure 1. Tangerine plantation subsets in the Neretva river valley representing a study area.

2.2. Fieldwork and Data Acquiring

The fieldwork was performed on 27 September 2021, starting at 10 a.m. local time
by study area reconnaissance and setting up global navigation satellite system (GNSS)
orientation points for the georeferencing of UAV imagery. A total of 10 GNSS orientation
points were placed regularly over a study area, and their coordinates were acquired using
a Trimble R8x GNSS receiver with the Croatian Positioning System (CROPOS). Its high-
precision positioning service enabled real-time-kinematic (RTK) positioning with 2 cm
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horizontal and 4 cm vertical accuracy [34]. The fieldwork preceded a beginning harvest of
tangerines, which began to mature in the study area, as displayed in Figure 2.
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Figure 2. A terrestrial representation of tangerine trees during the fieldwork in the study area.

A low-cost Mavic 2 Pro UAV equipped with a 1” CMOS RGB sensor [35] was used
for image collection. The images were acquired from a relative flight altitude of 50 m,
resulting in a total of 137 images over a 2.0 ha area. Image overlap was set to 80% for
front and 70% for side overlap. The photogrammetry processing was performed in Agisoft
Metashape Professional software v1.5.2 (St. Petersburg, Russia) using the Structure-from-
motion algorithms. The dense point cloud consisted of 5,316,064 points, producing the
spatial resolution of the digital orthophoto and digital surface model of 1.1 cm and 8.9 cm,
respectively. Both rasters were reprojected to the Croatian Terrestrial Reference System
(HTRS96/TM, EPSG: 3765) and harmonized to the 10 cm spatial resolution.

2.3. Input Data for Cropland Suitability Assessment

Data processing in GIS was performed in two open-source software, SAGA GIS v7.9.0
(Göttingen, Germany) and QGIS v3.10 (Grüt, Switzerland). The input data consisted of three
primary data groups: (1) spectral bands, (2) spectral indices, and (3) topographic indices.
The spectral bands consisted of blue (B), green (G) and red (R) spectral bands expressed in
8-bit digital number (DN) values ranging from 0 to 255. These were used for the calculation
of three spectral indices: NGRDI, GLI and IKAW, which enabled the characterization of
vegetation properties in previous studies [24,25,28]. Moreover, these indices focus either
on quantifying vegetation variability using green and red reflectance (NGRDI), using red
and blue reflectance as a complementary index to NGRDI (IKAW) [36], or utilizing the
combination of all three visible bands for the representation of biomass [37]. These indices
represented an alternative to more popular indices, such as NDVI, which could be utilized
with the low-cost UAVs equipped with RGB sensor [38]. Despite utilizing only spectral
information from the visible part of the spectrum, NRGDI and GLI reliably represent
vegetation leaf area index, producing a high correlation in a study by Liu and Wang [39].
The selected spectral indices were calculated according to the equations displayed in Table 1.

Table 1. Spectral indices used in the study.

Spectral Index Abbreviation Equation References

Normalized Green Red Difference Index NGRDI NGRDI =G−R
G+R

[40]

Green Leaf Index GLI GLI = 2G−R−B
2G+R+B

[41]

Kawashima index IKAW IKAW =R−B
R+B

[42]
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In contrast to the spectral data defined in the two-dimensional area by spectral bands
and indices, the third input data group completed the three-dimensional representation
of the study area by including three topographic indices derived from the digital surface
model. These were potential annual total insolation [43], flow accumulation [44] and wind
exposition [43] calculated in SAGA GIS v7.9.0 (Göttingen, Germany). The potential total
insolation was calculated as a sum of direct and diffuse insolation during the year 2022,
using a solar constant of 1367 Wm−2, and generalizing atmospheric effects by a 70% lumped
atmospheric transmittance parameter. Flow accumulation modelled the intensity of surface
water retention in the field expressed in down flow area, using the multiple flow direction
method proposed by Freeman [45]. Wind exposition was represented as a dimensionless
index, with its values proportionally indicating areas more sheltered (below 1) and exposed
(above 1) to wind. Correlation analysis using Pearson’s correlation coefficient of all nine
input rasters was performed to evaluate the complementarity of input data [46]. The
individual rasters from three input data groups used in the study are presented in Figure 3.Agronomy 2023, 13, 362 6 of 17 
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2.4. Cropland Suitability Assessment

The proposed cropland suitability assessment method for permanent crops at the
micro-scale based on low-cost UAV imaging is summarized in Figure 4. The fundamental
suitability assessment approach relies on two-step classification: (1) supervised classifi-
cation using machine learning to reliably determine vegetation mask and remove non-
vegetation areas from further processing; and (2) unsupervised classification using K-means
to rank vegetation classes according to Food and Agriculture Organization of the United
Nations (FAO) standard for land suitability assessment [47].
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Training/test data were delineated according to the ground truth observations into
two classes (vegetation and non-vegetation). The total area of training/test data was
368.5 m2, covering 1.9% of the study area. The division of training and test data was
performed using the stratified random split to a 60/40 ratio, creating training and test data
sets covering the area of 221.1 m2 (1.1% of the study area) and 147.4 m2 (0.8% of the study
area), respectively. The input data into supervised classification using machine learning
was evaluated in three variants: variant 1 with three rasters (spectral bands), variant 2 with
six rasters (spectral bands and indices), and variant 3 with nine rasters (spectral bands
and indices, topographic indices). Three machine learning algorithms were evaluated as
well according to recommendations in previous research [48], including Random Forest
(RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Besides their
robustness and high classification accuracy, the selection of these three methods comprises
representative methods of established machine learning approaches: RF for ensemble
decision trees, ANN for artificial neural networks and SVM for supervised support vector
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machines [49]. The parameters for supervised classification were evaluated and selected
on an iterative basis, according to the highest reached overall accuracy. RF was performed
with the maximum tree depth of 25 and 1SE (one-standard-error) rule to ensure a higher
resistance to training data noise and to produce more compact decision trees. The selected
SVM type for the classification was c-support vector classification with a polynomial kernel
and a gamma coefficient of 1. ANN consisted of five layers in the network, not including
input and output layers, each with five neurons. The maximum number of iterations
was set to 300 and activation was performed using the sigmoid function. The accuracy
assessment of the supervised classification was performed using the error matrix, as a
standard descriptive tool for evaluating the classification accuracy of remotely sensed
data [50]. Overall accuracy and kappa coefficients quantified the accuracy, with higher
values proportionally indicating higher classification accuracy.

According to the most accurate supervised classification result, non-vegetation pixels
were dissolved and extracted from the study area, providing a vegetation mask for the
unsupervised classification. The nine input rasters were clipped to the extent of the
vegetation mask and inputted in the K-means unsupervised classification using the Hill-
Climbing variant in five classes. The resulting classes were ranked according to the FAO
land suitability specifications [51], designating the highly suitable (S1), moderately suitable
(S2), marginally suitable (S3), currently non-suitable (N1), and permanently non-suitable
(N2) classes.

3. Results

The correlation matrix justifies the selection of three input data groups (spectral
bands, spectral indices, topographic indices), as individual rasters from their respective
groups resulted in low correlation with rasters from other groups. As for the within-group
relationships, R with G and B resulted in an extreme Pearson’s correlation coefficient
(Figure 5).
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All three evaluated machine learning algorithms for the supervised classification
of vegetation and non-vegetation areas enabled high reliability in creating vegetation
mask (Table 2). The most accurate combination of the input data and parameters was the
classification using ANN with all nine input rasters, managing to utilize complimentary
information regarding study area spectral and topographic properties. This combination
resulted in the highest overall accuracy and kappa coefficient, performing especially well
in recognizing non-vegetation areas (Figure 6). The RF classification results also enabled
very high accuracy in creating vegetation mask, ranking a close second behind ANN.
Meanwhile, SVM was very sensitive to the selection of input rasters, resulting in the lowest
classification accuracy for all variants. Figure 7 displays the distribution of training/test
data for supervised classification in the study area, as well as the resulting vegetation mask
from the most accurate classification result.

Table 2. Accuracy assessment of the supervised classification results for the creation of
vegetation mask.

Classification Algorithm Input Data Overall Accuracy Kappa

RF
Variant 1 0.994 0.984
Variant 2 0.993 0.981
Variant 3 0.994 0.985

SVM
Variant 1 0.907 0.762
Variant 2 0.964 0.903
Variant 3 0.965 0.911

ANN
Variant 1 0.993 0.983
Variant 2 0.995 0.988
Variant 3 0.996 0.990

Variant 1: spectral bands; Variant 2: spectral bands and indices; Variant 3: spectral bands and indices,
topographic indices.
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The results from the unsupervised classification, ranked according to the FAO suitabil-
ity standard, showed a similar representation of individual suitability classes in both study
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subsets regarding the relative area, while subset A covered a larger area due to higher
biomass (Table 3). The total area of suitable classes in subsets A and B resulted in 63.1%
and 59.0%, respectively, while the lowest class area indicated permanently non-suitable
land for tangerine cultivation. Class means results showed variability, particularly for
topographic indices, total insolation, and flow accumulation (Table A1). The final suitability
map produced by the proposed cropland suitability assessment method at the micro-scale
is presented in Figure 8.
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4. Discussion

The application of UAVs in agriculture is becoming common, as is the use of other
machinery for agricultural production. The major impact is the low cost of UAVs compared
to state-of-the-art agricultural machinery [19], and it allows for advanced crop monitoring
that gives the farmer a lot of information to work with. By adjusting land management
plans according to cropland suitability assessment results, farmers can increase yields and
reduce crop damage [8]. The amount of mineral fertilizer and pesticides is also reduced,
which has a positive effect on the environment [52]. While a low-cost UAV equipped
with an RGB sensor presents an affordable solution for cropland suitability assessment
and crop monitoring at a micro-scale, they provide restricted observation capabilities
in agriculture. UAVs with hyperspectral, multispectral, or thermal sensors, can more
reliably detect water stress in crops to determine which parts of the agricultural area need
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irrigation [53]. Furthermore, it is possible to calculate significantly more vegetation indices,
which determine the relative density and health of the crop [54]. Measurements spanning
several narrow-band waves (10 nm) with additional bands in the visible, near-infrared, and
the short-wave infrared regions of the spectrum are also made possible via hyperspectral
sensors [55]. Thus, more accurate vegetation indices are produced by choosing significant
bands in hyperspectral data, which is essential for enhancing the efficiency of LAI index
calculation [56]. Novel technologies such as high throughput phenomics can additionally
enhance crop health assessment, providing a better insight into abiotic stress tolerance
using automated solutions based on remote sensing [57]. Nevertheless, low-cost UAVs
equipped with RGB cameras are presently available for a wide range of farmers looking
to make initial cropland suitability analyses based on vegetation indices and topographic
properties as used in this study.

To maximize the accuracy of suitability assessment results, this study reinforced
the necessity to evaluate several input data variants and machine learning classification
algorithms. Several previous studies confirmed these findings, especially considering
vegetation indices calculated from the data from the visible part of the spectrum, obtainable
by low-cost RGB sensors. Early research by Hunt et al. [58] examined the relationship
between alfalfa, maize, and soybean biomass levels, and the NGRDI index. Higher mean
visible reflectance for a particular NGRDI showed that low chlorophyll content was related
to greater intensity. To further increase its applicability in cropland suitability studies, the
red spectrum of the digital camera’s red filter might be moved to a longer wavelength
(about 680 nm), which would make NGRDI more sensitive to variations in chlorophyll
content [59]. In the study by García-Martínez et al. [60], the triangular greenness index (TGI)
and object-oriented classification were used to analyze the green cover, and a correlation
coefficient of 0.77 was found between the green cover and maize grain yield. Additionally,
the findings from the study of Hunt et al. [61] showed that TGI has the potential for manag-
ing nitrogen fertilizer until was saturated at high amounts of chlorophyll concentration
but the correlation was independent of the spectral resolution of the sensor. These findings
could provide a basis for the upgrade of the proposed cropland suitability assessment
methods at the micro-level for the variable rate application in precision agriculture, pro-
viding the required crop potential zones [62]. The creation of input data variants with
three increasingly complex levels of image preprocessing collected using UAV with RGB
camera, with variant based on spectral bands as a baseline, indicated a constant minor
classification superiority of all evaluated input data. While using the most affordable
UAVs in crop suitability assessment, this study supported the previous observation of the
advantage of time investment in image preprocessing, resulting in a cost-efficient increase
in classification accuracy [63]. Despite RF frequently being more accurate to SVM and
ANN based on UAV images for cropland suitability and health analyses [64,65], there is
an increasing number of cases in which ANN provides superior results in permanent and
perennial crop analyses in comparison to RF, SVM, and similar machine learning meth-
ods. Besides its superiority in tangerine plantation suitability assessment from this study,
Syazwani et al. [66] achieved the highest accuracy using ANN in precision agriculture of
pineapple plantation, while Khan et al. [67] noted its popularity in various segment of oil
palm cultivation. Nevertheless, due to classification accuracy results being dependent on
input data properties, it is still important to evaluate multiple machine learning methods to
ensure optimal solution for a particular case [68].

Along with the analysis of vegetation indices, it is advisable to regularly perform soil
analysis in order to increase yields and reduce production costs as part of cropland suitabil-
ity analysis. Present regulations for soil analysis in Croatia [69] require only one sample per
parcels with an area larger than 1 ha, collected as the average from 20–25 subsamples. There-
fore, conventional soil sampling regulations disregard in-field variabilities and provide an
overview of generalized soil condition. With the proposed cropland suitability assessment
approach, farmers can identify low performance areas and collect additional samples in
critical areas and using this information to detect nutrient deficiency in such areas. The
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tangerine plantations in the study area are very sensitive to soil sodium content, whose high
amount impairs yield quality [70]. Regular water analysis for irrigating and monitoring
the level of sodium in the soil are required to lessen the detrimental effects of sodium.
These insights, along with the vegetation mask creation approach for the differentiation of
vegetation and non-vegetation areas prior to cropland suitability classification, strongly
indicate that the proposed approach can be viable for a number of similar permanent
crops. By applying microelements through foliar fertilization, permanent crops can receive
sufficient amounts of elements necessary for growth and development regardless of poor
soil conditions [71].

Future uses of remote sensing in agronomic management will frequently expand
on the principles of conventional methods. Combining several vegetative indicators to
calculate agricultural productivity is one of the remote sensing technologies’ unrealized
potentials [72]. To represent spatio-temporal patterns in crops and soils, the data from
vegetation indices could be enriched with climate data in order to provide useful infor-
mation for decision-making [73]. Claverie et al. [74] used this approach for maize and
sunflower, combining biomass phenology data throughout their vegetative season. Using
a crop suitability model and remote sensing, they linked the phenology stages of plant
development yield prediction. Different wavelengths were identified by Guan et al. [75]
to be able to predict agricultural production, although climate data was necessary for the
assessment of crop growth characteristics. In widening the scope of cropland suitability
using the biophysical properties, Zarco-Tejada et al. [76] investigated the application of
chlorophyll fluorescence for the estimation of net photosynthesis. As crop growth enables
most of the background soil visible until the crop entirely covers the ground, the vegetation
indices indicated a mixture of plant and soil reflectance prior to the crop covering the soil.
Future uses of remote sensing for agricultural issues will start to build relationships using
machine learning and artificial intelligence to collect data with spatiotemporal properties.
Artificial intelligence is already being applied to cropland suitability determination, and
it has the potential to enhance both the interface between remotely gathered data and
other data sources, as well as the updating of that data [3,77]. Assessing variations in
crop emergence over time, crop vigor, and crop response to climatic conditions may be
conducted using this kind of technique.

5. Conclusions

With the further development of low-cost UAVs and open-source software intended
for processing data collected by the UAV in GIS, more opportunities to apply these systems
in agriculture are expected. The development of UAV application in cropland suitability
assessment is complimentary to precision agriculture, which enables performing agricul-
tural fieldwork within agrotechnical deadlines, high productivity, a reduced number of
operations, and the lowest cost of labor.

This study proposed a micro-scale approach for the cropland suitability assessment
of permanent crops based on a low-cost UAV, achieving spectral and topographic aspects
of cropland suitability for the tangerine plantation. Additionally, the application of open-
source GIS software for supervised classification using machine learning algorithms and
globally accepted FAO standard are expected to further improve the availability of its
application for permanent crop plantation management. The performed study showed
currently high suitability levels in both study subsets, with 63.1% suitable area in subset
A and 59.0% in subset B. Despite that, the efficiency of agricultural production can be
improved by managing crop, soil, and topographic properties in the currently non-suitable
class (N1), providing recommendations for farmers for further agronomic inspection. The
use of a low-cost RGB sensor justified its use for the study aim, and the amount of collected
data can be expanded by using multispectral, hyperspectral, and thermal sensors. This
increases the amount of collected data and enables the calculation of an even greater
number of vegetation indices. Using a larger number of sensors increases the price of the
UAV system, therefore, when buying a UAV, the farmers should carefully choose which
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sensors are needed on a particular farm, taking into account the amount of arable land and
the capabilities of those UAVs for the desired aim.
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Appendix A

Table A1. Mean values of input data rasters per FAO suitability class.

Input Data Groups Input Data Mean Values per FAO Suitability Class
S1 S2 S3 N1 N2

Spectral bands
B 72.267 75.612 78.451 75.953 90.690
G 139.740 123.815 131.218 116.605 116.053
R 120.629 106.702 114.524 100.348 105.024

Spectral indices
NGRDI 0.078 0.084 0.076 0.088 0.063

GLI 0.187 0.161 0.161 0.151 0.098
BI 130.617 115.747 123.306 108.985 110.878

Topographic indices
Total insolation 1858.409 1230.934 1555.098 874.781 452.934

Flow accumulation 3.234 4.904 7.209 4.071 5.759
Wind exposition 1.066 1.030 1.034 1.023 0.989
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